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The health threat from Sudan red dyes has been the subject of much attention in recent
years and is crucial to design and establish reliable measurement technologies. In the
present study, a new magnetic nanomaterial, polyamidoamine dendrimer-modified
magnetic nanoparticles (Gn-MNPs), was synthesized and characterized. The
nanomaterials had good adsorption capacity for Sudan dyes from natural waters.
G1.5-MNPs possessed excellent adsorption capacity and a linear adsorption
relationship over the range from 0.02 to 300 μg L−1 of Sudan dyes with relative
coefficients all larger than 0.996. The sensitivity of the proposed method was excellent
with detection limits over the range from 1.8 to 5.5 ng L−1 and the precision was less than
3.0%. G1.5-MNPs showed a remarkable application potential for the enrichment of trace
environment pollutants in aqueous samples and the developed method based on this
nanomaterial could be a robust and reliable alternative tool for routine monitoring of such
pollutants.

Keywords: Sudan red dyes, magnetic solid phase extraction (MPSE), PAMAM dendrimer, PAMAM dendrimer-
modified magnetic nanoparticles, high performance liquid phase chromatography

INTRODUCTION

Sudan red I-IV dyes are well-known food additives that have been included in groupings of carcinogens
(Yu et al., 2015; Liu et al., 2018). They are phenyl-azoic derivatives that are neurotoxic, genotoxic, and
carcinogenic (Heydari et al., 2019; Moreno-González et al., 2020). Thus, Sudan dyes are forbidden in
foodstuff at any concentration level for any purpose based on the regulations of the Food StandardsAgency
and EuropeanUnion (Li et al., 2013a). Nevertheless, they are still attractive as food additives to enhance the
appearance of chili, curry, ketchup, and Curcuma due to their bright red-orange color, colorfastness, and
low cost (Sricharoen et al., 2017). There is, therefore, an urgent need to develop environmentally friendly,
highly sensitive, effective, and practicable methods for monitoring Sudan Red pollutants.

Until recently various methods have been established based on enzyme-linked immunosorbent
assay (ELISA), capillary liquid chromatography, high performance liquid chromatography with
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variable wavelength detector, liquid chromatography equipped
with mass spectrometry, ultra-high performance liquid
chromatography tandem mass spectrometry, (Chang et al.,
2011; Chen et al., 2013; Zhou et al., 2014; Benmassaoud et al.,
2017; Piątkowska et al., 2017). Among them, conversional liquid
chromatography is widely used because of its low cost (Qi et al.,
2011; Zhou et al., 2014). However, the residue concentration of
pollutants is often very low and the sample matrix is complex,
which makes it difficult to directly detect the target analytes.
Therefore, sample pretreatment is of great value and has been a
crucial step in the analytical process. At present, many sample
pretreatment technologies have been explored for the enrichment
of target pollutants including dispersive liquid-liquid
microextraction (DLLME) (Zhou et al., 2014; Bazregar et al.,
2018), liquid–solid extraction (Rebane et al., 2010), ultrasonic-
assisted extraction (Yan et al., 2011), cloud point extraction (Liu
et al., 2007), and solid-phase extraction (SPE) (Qi et al., 2011).
Noticeably, SPE is regarded as a cost-effective tool due to its
simplicity, high preconcentration, and low consumption of
organic toxic solvents (Dibaei et al., 2016). Recently, there has
been a growing interest in magnetic solid phase extraction
(MSPE) due to its favorable properties including the small
dosage of the adsorbent, simplicity, easy separation, and saving
time (Gong et al., 2017; Li et al., 2014). As a reliable method,
MSPE has been successfully used to preconcentrate
environmental pollutants such as phthalate esters, polycyclic
aromatic hydrocarbons, lignin, and heavy metal ions (Wu
et al., 2017; Zhou et al., 2017; Wu et al., 2019; Yuan et al.,
2020). MSPE is based on magnetic or magnetizable sorbents such
as iron, cobalt, nickel, and their oxides. Among them, Fe3O4 is the
most often-used core material due to its easy separation and
reusability (Yan et al., 2017). It is crucial to functionalize it with
different materials and to enhance its stability and extraction
capacity (Li et al., 2013b).

Dendrimers, as the name implies, are a group of highly-
branched polymers that contain three-dimensional
architectures, and the molecular size, shape as well as function
may be controlled precisely (Xiao et al., 2016). The structure of
dendrimers is composed of three major parts which are initial
core, interior branched repeating units, and exterior functional
groups, respectively. As such, dendrimers own excellent
properties such as viscosity, solubility, flexibility, and density
distribution compared with polymers (Zarghami et al., 2016).
Moreover, they can trap or encapsulate pollutants because of
abundant empty cavities among the branches of dendrimers and
high specific surface area (Sajid et al., 2018). Based on the
literature, iron based magnetic core-support, silica-support,
carbon-support, titania-support dendrimers have been used for
the adsorption and removal of pollutants (Barakat et al., 2013;
Wu et al., 2016). Amongst the dendrimers, PAMAMdendrimer is
a significant class of dendrimers (Hayati et al., 2017). Our group
has modified Fe3O4 with PAMAM dendrimer and developed
sensitive determination methods for cadium and mercury,
phthalate esters, and typical phenols from water, and the
developed method provided exceptionable sensitivity and other
merits such as simplicity, easy operation, and low cost (Wu et al.,
2019; Wu et al., 2020; Yuan et al., 2020; Zhou et al., 2021).

The present work aimed to synthesize Fe3O4/polyamidoamine
dendrimer (Gn-MNPs) composite via a simple grafting-to
method, which possesses comprehensive advantages of toilless
isolation of magnetic materials and high enrichment ability of
dendrimers. The designative and synthetic materials were then
used as MSPE adsorbents for the preconcentration of Sudan
pollutants. The significant parameters, including generation of
dendritic polymers, adsorbent amount, and other factors that
would affect enrichment performance were investigated.

EXPERIMENTAL

Chemicals and Apparatus
(3-Aminopropyl) triethoxysilane (APTES, AR), methyl acrylate
(MA, GC), Sudan Red dyes were bought from Aladdin Chemistry
Co., Ltd. (Shanghai, China). ultrapure water was used in all
experiments. The information of other reagents, analytical, and
characterization instruments are discussed in detail in the
supporting information of this article.

Preparation of PAMAM
Dendrimer-Modified Fe3O4 MNPs
Fe3O4 MNPs were prepared based on the work of Mardani
(Mardani, 2017). Gn-MNPs were obtained based on a
modified method (Kim et al., 2016). The synthesis of magnetic
materials in detail is provided in supporting information.
Figure 1 depicts the schematic diagram of the preparation of
Gn-MNPs (n means generation number, generally, it is 0, 0.5, 1,
1.5, 2, 2.5) and adsorption of Sudan pollutants.

Enrichment Process
First, 80 mg Gn-MNPs was diffused into a 50 ml spiked sample
solution, and this solution was dispersed completely by stirring
for 1 h.With putting a magnet, the phase separation was obtained
and the adsorbent was collected. Then, Sudan red pollutants were
desorbed from the adsorbent using 6 ml acetone in 9 min.
Thereafter, the eluent was taken out and dried with a mild
nitrogen stream. Finally, the residue was eluted and dispersed
with 200 μl methanol. 50 μl of them was taken for analysis.

RESULTS AND DISCUSSION

Characterization of MNPs and Gn-MNPs
Figure 2 depicts the morphology of naked MNPs and Gn-MNPs.
Figures 2A,B,C,D demonstrates that MNPs were agglomerated
which was ascribed to magnetic force between MNPs, while Gn-
MNPs had better dispersion due to electrostatic stabilization as
well as steric stabilization with the increase of PAMAM grafting
generation. The average particle size of G1.5-MNPs was near
12 nm statistically. Moreover, the energy dispersive spectrum
(EDS) of G1.5-MNPs is shown in Figure 2E. As revealed in
Figure 2E, the materials contained iron, silica, oxygen, and
nitrogen elements, which proved the success of synthesizing
G1.5-MNPs.
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Figure 2F shows the thermogravimetric weight change (TGA)
curves of MNPs and G1.5-MNPs (Wu et al., 2020). The TGA curves
diagrams indicate the weight loss of MNPs was about 4.4%, while
G1.5-MNPs with a greater loss of approximately 8.3% was observed.
The reason for the weight loss of naked MNPs was due to the
physically adsorbed water and surface hydroxyl groups below 200°C.
The weight loss of G1.5-MNPs increased owing to the
decomposition of the dendrimers layer and the stable functional
groups as the temperature changed from 200 to 800°C. In summary,
we successfully synthesized adsorbent material.

Figure 2G illustrates the structure of as-prepared materials. The
strong band at 560 cm−1 in all four samples was the typical
characteristic of the vibration of the band between Fe and O,
while the Gn-MNPs owed typical peaks at 1,044 and 992 cm−1

accounting for Si-O-Si and Si-O-Fe bonds, respectively, (Chou and
Lien, 2010). Two feature peaks at 2,924 and 2,853 cm−1 were
ascribed to the symmetry and asymmetry stretching-vibration of
the -CH2- group, in addition, the absorption peak at 1,383 cm

−1 was
ascribed to the bending vibration of -CH2- group, which confirmed
the existence of alkyl groups. Methyl group earns deformation
vibration at 1,470 cm−1, which was not present in G0-MNPs. The
broad peak at 3431cm−1 might mask the responses of the stretching
vibration of -OH or -NH- group. The stretching vibration of and
-CO-O- group and -CO-NH- group appear at 1728 and 1,623 cm−1,

which is in agreement with the report from (Yuan et al., 2020).
Furthermore, the response intensity raised at 1728 cm−1 due to the
increase of the amount of -CO-O- groups as the dendrimer
generation increased.

XRD patterns were shown in Figure 2H. Six evident
characteristic peaks at about 2θ � 30.1, 35.1, 44.0, 53.9, 57.6,and
62.8 were due to crystal indexes of (220), (311), (400), (422), (511),
and (440) of Fe3O4, which confirmed the cubic spinel phase of
naked MNPs (Zhou et al., 2013). Moreover, Gn-MNPs and MNPs
had analogical feature diffraction peaks, which proved that the
progress of dendrimer modification did not alter the crystal phase
of MNPs and MNPs were steady with magnetic property.

Optimization of MSPE
Batch experiments were designed and performed to examine the
extraction efficiencies of different generations of the magnetic
material. Figure 3A depicts the extraction efficiencies of different
generations of the prepared materials. It reveals that the extraction
performance followed the order of G0-MNPs < G0.5-MNPs < G1.5-
MNPs >G2.5-MNPs. There was a definite possibility that more active
sites could be provided with the raise of PAMAM generation, while
the generation number was higher than 1.5, the steric hindrance led to
difficulty for target contaminants to enter the interior structure of
PAMAM dendrimers, which led to the decline of the recoveries (Wu

FIGURE 1 | Schematic diagram of the preparation of Gn-MNPs.
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FIGURE 2 |Characterization. (A) TEM image of Fe3O4 nanoparticles; (B) TEM image of G0.5-MNPs; (C) TEM image of G1.5-MNPs; (B) TEM image of G2.5-MNPs;
(E) EDS image of G1.5-MNPs; (F) TGA of G1.5-MNPs; (G) FT-IR spectrums of Gn-MNPs; (H) XRD patterns of MNPs and Gn-MNPs.
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FIGURE 3 | Optimization of enrichment parameters (A) Selection of
PAMAM generation; (B) Effect of adsorbent dosage; (C) Effect of eluent; (D)
Effect of adsorption time; (E) Effect of eluent volume; (F) Effect of elution time
Experimental conditions: spiked level of analytes, 10 μg L−1; adsorbent
amount, 80 mg; eluent, acetonitrile; adsorption time, 60 min; elution volume,
6 ml; elution time, 9 min; pH, seven; ionic strength, 0% (w/v); concentration of
humic acid, 0 mg L−1; sample volume, 50 ml. Each parameter was optimized
with other parameters keeping constant, and the optimal value was used in
the subsequent optimization process.

Figure 3 | (Continued).
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and Zhang, 2013). Consequently, G1.5-MNPs were the optical
adsorbent for extraction.

As MSPE is concerned, the amount of adsorbent is an
important parameter, which was tested from 40 to 120 mg.
Figure 3B exhibits the effect of the amount of adsorbent.
From the figure, it was obvious that the extraction
performance of Sudan II-IV had a significant improvement
along with the adsorbent dosage from 40 to 60 mg, and kept
slow increase with further raising of the adsorbent amount
from 60 to 100 mg and then kept constant with the further
raise of the adsorbent dosage up to 120 mg. This was
attributed to the fact that more adsorption sites were
supplied with the increase in adsorbent dosage, and
100 mg adsorbents provided enough adsorption sites for
the fixed spiked amount of analytes, which meant that the
recoveries were almost unchanged when the amount was
higher than 100 mg. However, the recoveries of Sudan I
always increased slowly with further raising of the
adsorbent amount in the range of 40–120 mg. Therefore, a
constant amount of adsorbents (100 mg) was used in
subsequent experiments.

Organic solvent with optimal elution performance will
play a crucial role in the process of MSPE. To obtain an ideal
elution performance, four different eluents such as methanol,
ethanol, acetone, and acetonitrile were checked. Figure 3C
describes the effect of the eluent. Among the four organic
solvents, acetone resulted in the largest extraction
efficiencies. The elution performance of ethanol was also
very good, and a little lower than that with acetone. This
may contribute to the fact that the more similar polarity
between acetone and Sudan Red dyes, which made target
analytes earn larger solubility in acetone according to the rule
of like-dissolves-like. Hence, acetone was employed as the
optimal eluent for the subsequent studies.

Adsorption is a complex procedure, and the adsorption rate to
the adsorbent and desorption rate from the adsorbent are
important in the extraction procedure. Good adsorption is
obtained when a balance of the two rates is equal. Hence a
reasonable time is crucial. The balance time was examined from
20 to 100min. As can be seen from Figure 3D, the recoveries of
Sudan pollutants raised with prolonging the time to 40min and
remained almost unchanged when the time changed from 40 to
100 min. It was certain that the extraction process had reached
adsorption equilibrium when the adsorption time was at 40min.
Consequently, because of obtaining ideal extraction performance
and shortening analytical time, the adsorption time was set at
40min.

For the solid-phase extraction and MSPE procedures, eluting is
an essential step. The volume of the elution solvent and desorption
time play important roles in the elution process. These two factors
were optimized by adjusting the elution volume from 3 to 9 ml and
the elution time over the range of 3–15min, respectively. As
revealed by Figures 3E,F, 7.5 ml acetone could elute the Sudan
red pollutants from nanomaterials and the elution procedure could
be completed within 9 min, and there was no remarkable increase
with further increase of the volume of elution solvent and
elution time.

Sample pH is a crucial parameter that affects the mutual effects
between the Sudan red pollutants and G1.5MNPs adsorbent due to
the different existing states of target analytes under different pH
values. In this study, the sample pHwas adjusted either by H2SO4 or
NaOH solution. The results showed that good enrichment
efficiencies were achieved under acidic and neutral conditions,
while the recoveries decreased under alkaline conditions (the data
were not provided). It was highly likely that the target Sudan red
pollutants were apt to be decomposed and led to raising the solubility
in water when the solution pH was higher than 7, which was not
good for the enrichment of target Sudan red pollutants.

In general, the addition of salt into the samples improves
the recoveries of the Sudan red dyes by affecting water
solubility. A series of ionic strength experiments were
carried out with the addition of NaCl from 5 to 20% (w/v)
(Supplementary Figure 1). Supplementary Figure 1 reveals
that there is a slight dip with the increase of NaCl
concentration from 0 to 5% for Sudan II-IV, which could
be attributed to the salting-in effect. Furthermore, the
enrichment efficiencies rose with the raise of NaCl spiked
from 5 to 20%, which was due to the effect of salting-out
which reduced the solubility of target Sudan red pollutants in
water with the increase of NaCl addition. It was noteworthy
that the recoveries with a NaCl concentration at 20% (w/v)
were higher than that with no addition of NaCl for Sudan II.
The extraction performance of Sudan III and IV with 20%
NaCl (w/v) was almost the same as that without the addition
of NaCl. Unlike Sudan II-IV, the extraction performance of
Sudan I had a constant and slow increase with the increase of
NaCl in the range of 5–20%. Hence, NaCl was spiked at 20%
(w/v) for all analytes in the following experiments.

Humic acid is a very common substance in natural waters,
which sometimes has some impact on the enrichment of the
pollutants with solid phase adsorbent. In the present study, it
was investigated with concentrations varying from 0 to
20 μg ml−1 (Supplementary Figure 2). The recoveries of
Sudan red pollutants sharply decreased with the addition of
humic acid changing from 0 to 15% because of competitive
adsorption, and then raised with the addition of humic acid,
changing from 15 to 20 μg ml−1. The reason for this could be
that Sudan red dyes were partially adsorbed onto the magnetic
materials, which led to the increase of the recoveries. However,
the extraction efficiencies with no humic acid were higher than
with the addition of humic acid at 20 μg ml−1.

To estimate the influence of sample volume in the MSPE
process, a series of experiments were performed in the range of
30–110 ml (Supplementary Figure 3). The extraction
performance of Sudan III-IV increased with the increase of
the sample volume in the range of 30–50 ml. Meanwhile, the
extraction performance of Sudan I–II was constant. The
extraction performance of Sudan red pollutants slightly
decreased with sample volume larger than 50 ml. It was
perhaps because the adsorbents were dispersed incompletely
when the sample volume was too small, in addition, the
amount of Sudan red pollutants increased with the sample
volume rising from 50 to 110 ml, which meant that the fixed
dosage of adsorbents could not provide enough active sites to

Frontiers in Chemistry | www.frontiersin.org August 2021 | Volume 9 | Article 7089956

Wu et al. MSPE of Sudan Dyes Using PAMAM-MNPs

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


completely adsorb the increasing analytes. Thus, the sample
volume was optioned to be 50 ml.

Evaluation of the Present Established
Method
Under the aforementioned optimized conditions, the important
analytical characteristics of the present established method are
examined and the data are presented in Table 1. The data
displayed that the linearity and LODs were respectively over
the range of 0.02–300 μg L−1 (R2, 0.996–0.999) and 1.8–5.5 ng L−1

(LOD, S/N � 3) for four Sudan dyes. The experimental results
illustrate that the developed method is a feasible method for the
measurement of Sudan dyes at low levels. Furthermore, the
reproducibility was lower than 3.0% (n � 6), which indicated
that the present established method owns satisfactory precisions.

Real Water Sample Analysis
In this experiment, four water samples from the Dongsha river,
Changping Park, Binhe Park, and Chaobai river were collected for
estimating the possibility and practicality of this established
method for real aqueous samples. These samples were
pretreated and measured with the established method. The
analytical results are presented in Table 2.

In the blank samples, Sudan dyes were not detected in the
collected aqueous samples. For validating the present established
method, the real water samples were fortified with Sudan red
pollutants at two different concentrations of 5 and 10 μg L−1. The

mean recoveries were satisfied over the range from 92.5 to
102.2%. These data demonstrated that the proposed method
provided satisfactory recoveries and precision for the reliable
measurement of these pollutants in aqueous samples.

A comparison was made between the analytical performances
of the established method with the existing methods reported
(Table 3). The present established method had a much wider
linear scope and lower LODs thanmost of the previously reported
examples. Besides, lower RSDs in the present work demonstrated
that satisfactory repeatability was achieved. On the whole, the
MSPE with G1.5-MNPs as adsorbent prior to HPLC-UV shows
superiority over other methods and it is an ideal extraction and
analytical method for trace Sudan dyes in natural waters.

CONCLUSION

In the present study, polyamidoamine (PAMAM) dendrimer was
successfullymodified onto Fe3O4 nanoparticles, and a novelmagnetic
solid phase extraction with 1.5 generation of PAMAM dendrimer
modified magnetic nanomaterials for the enrichment of trace Sudan
Red contaminants was developed. The effective method based on
MSPE as an adsorbent in combination with HPLC-UV for the
sensitive measurement of Sudan red pollutants in real waters was
successfully established. The proposed method showed excellent
linearity ranges, low LODs, and good precision. Moreover, the
established MSPE-HPLC-UV method demonstrated that it was
very simple, fast, easy to separate, and cost was very low, which

TABLE 1 | Analytical performances of methods.

Compound Regression equation Linear range
(μg L−1)

R2 Precisions (%,
n = 6)

LOD (ng
L−1)

Sudan I y � 28.822x−90.641 0.02–300 0.998 1.4 4.9
Sudan II y � 48.49x + 59.913 0.02–300 0.999 1.1 3.8
Sudan III y � 63.975x + 213.09 0.02–300 0.996 3.0 1.8
Sudan IV y � 64.606x + 201.28 0.02–300 0.996 2.8 5.5

TABLE 2 | Analytical results in real water samples.

Water sample Spiked (μg L−1) Recovery (%)

Sudan I Sudan II Sudan III Sudan IV

Dongsha 0 nda nd nd nd
River 5 99.6b ± 1.3c 96.4 ± 2.3 98.4 ± 2.2 98.9 ± 2.3
Water 10 100.7 ± 0.6 95.5 ± 0.8 95.8 ± 1.5 94.4 ± 1.4
Changping 0 nd nd nd nd
Park 5 96.2 ± 1.6 95.1 ± 1.2 97.0 ± 0.6 99.3 ± 0.7
Water 10 98.7 ± 2.3 102.2 ± 4.0 99.2 ± 1.4 99.2 ± 2.1
Binhe 0 nd nd nd nd
Park 5 97.9 ± 4.6 95.5 ± 1.5 99.4 ± 1.1 98.8 ± 1.3
Water 10 99.8 ± 0.9 98.9 ± 1.2 98.0 ± 2.0 97.7 ± 2.0
Chaobai 0 nd nd nd nd
River 5 101.7 ± 3.7 96.7 ± 4.4 92.5 ± 3.0 93.7 ± 3.2
Water 10 98.3 ± 1.6 98.5 ± 1.7 97.8 ± 2.8 98.1 ± 2.6

aNot detected.
bMean of three determinations.
cStandard deviation for three determinations.
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can match with the demand of pre-concentration and measurement
of trace Sudan red pollutants and could be a good alternative for the
analysis of pollutants in an aqueous sample.
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