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A B S T R A C T   

Breast cancer is the females’ most common cancer. Targeting the immune microenvironment is a 
new and promising treatment method for breast cancer. Nevertheless, only a small section of 
patients can profit by immunotherapy, and improving the ability to accurately predict the po-
tential for immunotherapy response is still awaiting further exploration. In this study, we found 
that the key factors of glutamine metabolism, glutaminase 1 (GLS) and mitochondrial aspartate 
transaminase (GOT2), showed opposite expression patterns in breast cancer samples. Based on 
the expression level of GLS and GOT2, we divided the breast cancer samples into two clusters: 
Cluster 2 showed GLS expressed higher and GOT2 expressed lower, whereas Cluster 1 showed 
GOT2 expressed higher and GLS expressed lower. GSEA showed that the clusters were related to 
pathways of immunity. Further analysis showed that Cluster 2 was positively associated with 
immunity infiltration. Through WGCNA, we identified a module strongly correlated with gluta-
mine metabolism and immunity and identified 11 dendritic cell-associated genes involved in 
dendritic cell development, maturation, activation and other functions. In addition, Cluster 2 also 
showed higher immune checkpoint gene expression, which suggest the Cluster 2 had even better 
response to immunotherapy. The validation dataset could also be clustered into two groups. 
Cluster 2 (GLS expressed higher and GOT2 expressed lower) of the validation dataset was also 
positively associated with dendritic cells and a better immunotherapy response. Thus, these data 
indicate that GLS and GOT2 are prognostic biomarkers which closely related to dendritic cells and 
better reacted to immunotherapy in breast cancer.   

1. Introduction 

Breast cancer is the females’ most common cancer in the whole world. The evaluated number of incident breast cancer cases were 
over 2.8 million in 2022, accounting for 31% of all new cancers, and 43,250 patients died of breast cancer [1]. Considering the highly 
heterogeneous features of breast cancer, treatment strategies for breast cancer vary by molecular features (such as estrogen receptor 
(ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2)) [2], gene mutations (such as BRCA1/2 [3,4] 
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and PIK3CA [5]) and the immune microenvironment [6]. Among these treatment methods, targeting the immune microenvironment is 
a new prospective treatment strategies to breast cancer [7–9]. 

In the tumor immune microenvironment, dendritic cells (DCs) have pivotal roles in orchestrating natural and adaptive immunity of 
antitumor and have become a powerful tool for tumor immunotherapy in preclinical and clinical studies [10]. DCs catch and absorb 
antigens, and submit them to T lymphocytes after internalizing processing [11]. Activated dendritic cells promote CD4+ T cells and 
CD8+ T cells initial differentiate into specific effector T cells with distinct abilities [11], stimulate natural killer cell (NK) cells, mast 
cell-related cells and macrophages in the innate immune system [12,13], interact with B cells to regulate humoral immunity or 
indirectly induce B-cell proliferation [14,15]. DC regulation is a complex process in the immune microenvironment. After sensing 
incentive, DCs get into a complicated developmental procedure, which called DC maturity. This process enhances DCs transiently 
taking up antigens [16,17], increases the expression degree of MHC class I, class II molecules and costimulatory molecules, and se-
cretes kinds of inflammatory cytokines and chemokines [18]. Finally, DCs migrate from tissues to draining lymph nodes [19,20]. 
Blocking immune checkpoint pathways is another promising means for immunotherapy [21]. There are a lot of genes participated in 
the immune checkpoint pathway, including PD1-related genes (PD1, PDL1 and PDL2), CTLA4-related genes (CD80, CD86 and CTLA4), 
other immune checkpoint genes (LAG3, TIGIT and TIM3), and agonists of T-cell activation genes (4-1BB, CD27, CD40, CD70, ICOS and 
OX40) [22]. The expression of these genes is critical for immune checkpoint therapeutic strategies [23]. Although targeting the im-
mune microenvironment is a new prospective therapeutic method for breast cancer, only a small section of patients can profit by 
immunotherapy, and improving the ability to accurately predict the potential for immunotherapy response is still awaiting further 
exploration. 

Glutamine, as the most abundant and commonly used amino acid, is a crucial nitrogen source and respiratory fuel in cells, including 
immune cells. Glutamine plays major roles in releasing secretory factors and regulating cell proliferation and maintenance [24]. 
Glutamine metabolism is very important for multiple biological processes, including maintaining tumor survival and progression and 
immune cell activation [25–27]. Glutaminase (GLS), as the first enzyme in glutamine metabolism, converts glutamine to glutamate 
[28]. In prostate cancer cells, GLS promotes cell proliferation and suppresses cell apoptosis [29], contributing to cancer radiosensi-
tivity [30]. Defected GLS in vascular endothelial suppresses tumor growth and metastasis and improves the response to chemotherapy 
[31]. Inhibiting GLS in cancer cells can diminish cell-autonomous tumorigenesis [32] and tumor immune evasion [33]. GLS is also 
positively correlated with immune cell infiltration in cancer [34]. GLS is positively correlated with resting memory CD4 T cells and 
negatively correlated with monocytes [35]. In addition, glutamate-oxaloacetate transaminase 2 (GOT2) also has an important role in 
glutamine metabolism. Silencing GOT2 promotes glutamine metabolism reprogramming and hepatocellular carcinoma progression 
[36]. Mitochondrial glutamine metabolism inhibits senescence in a GOT2-dependent manner to support pancreatic cancer growth 
[37]. GOT2 can also inhibit antitumor immunity by shaping the immune microenvironment through spatially limiting both CD4+ and 
CD8+ T cells [38]. High GOT2 expression is positively associated with immunologically quiet subtype patients and can be used for 
clear-cell renal cell carcinoma immunophenotyping as a marker [39]. Nevertheless, the potential molecular mechanisms of GLS and 
GOT2 in breast cancer have yet to be fully elucidated. 

In our study, on the basis of the expression level of GLS and GOT2, we divided the breast cancer samples into two clusters (GLS 
expressed lower and GOT2 expressed higher) and Cluster 2 (GLS expressed higher and GOT2 expressed lower). The Cluster 2 subset 
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showed a stronger association with immune infiltration. Further studies suggested that the Cluster 2 subset was positively related to 
dendritic cells. Through WGCNA, we identified a module strongly correlated with glutamine metabolism and immunity and identified 
11 dendritic cell-associated genes. Gene association analysis and protein‒protein interaction analysis suggests that these genes are 
correlated and positively related to GLS expression and negatively related to GOT2 expression. Cluster 2 was also positively correlated 
to the expression level of immune checkpoint genes, indicated that Cluster 2 has better responds to immunotherapy. The validation 
dataset can also be divided into two clusters based on the expression level of GLS and GOT2. The Cluster 2 was positively associated 
with dendritic cells and a better immunotherapy response. Thus, these results indicate that GLS and GOT2 are prognostic biomarkers 
correlated with dendritic cells and better react to immunotherapy in breast cancer. 

2. Materials and methods 

2.1. Data sources and preprocessing 

The clinical and transcriptome profiling data of the GDC TCGA Breast Cancer (BRCA) dataset (dataset ID: TCGA-BRCA.htseq_fpkm. 
tsv) were from xena website (https://xenabrowser.net/datapages/?cohort=GDC%20TCGA%20Breast%20Cancer%20(BRCA)& 
removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443). The clinical information of cases, containing age, gender, T 
stage, N stage, M stage, pathological stage, and prognosis information were gotten form the dataset. HTSeq-FPKM of 1072 primary 
breast cancer specimens were further analyzed with log2(FPKM+1) transformation (supplementary R code 1.1), and performed dif-
ferential analysis by using HTSeq-Counts (supplementary R code 1.2). The PAM50 subtype was downloaded from the GDC TCGA 
Breast Cancer (BRCA) dataset through the R package TCGAbiolinks [40]. We used stacked bar chart to estimate the correlation be-
tween two clusters and PAM50 (supplementary R code 12.1). 

Expression profiling by TCGA Breast Cancer (BRCA) dataset (dataset ID: TCGA.BRCA.sampleMap/HiSeqV2) was from xena 
(https://xenabrowser.net/datapages/?dataset=TCGA.BRCA.sampleMap%2FHiSeqV2&host=https%3A%2F%2Ftcga.xenahubs. 
net&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443). The dataset which contained 1097 breast cancer tissues 
was analyzed for validation of classification, immune features and hub gene expression association in breast cancer (supplementary R 
code 7.1–11.1). 

2.2. Immune infiltration analysis 

We chose 17 glutamine-associated gene sets (119 genes) and immunological signature gene sets (21,383 genes, c7.all.v2023.1.Hs. 
symbols.gmt) out of the Molecular Signatures Database (MSigDB). Through the intersection of glutamine-associated genes and im-
mune signature genes we obtained 118 genes (supplementary R code 1.4). 

ESTIMATE, which the proportion of stromal cells as well as immune cells was determined according to the gene expression 
characteristics in tumor samples, and the microenvironment to tumor of per BRCA sample was evaluated by R software package es-
timate according to an article that inferred the purity of tumor and the mixture of cells about stroma and immunity from the expression 
data (supplementary R code 1.3) [41]. By calculating four ESTIMATE indices and setting the absolute value of the four ESTIMATE 
indices (Stromal Score, Immune Score, ESTIMATE Score and Tumor Purity) > 0.25, 8 genes were finally selected (supplementary R 
code 2.1). 

CIBERSORT computes cell composition on the basis of the expression profiles [42]. We use CIBERSORT to calculate the ratio of 10 
kinds of immunocytes in breast cancer samples [43]. To generate the signature matrices for CIBERSORT, we chose marker genes of 10 
kinds of immune cells according to previous reports [43–45] and the CellMarker website (http://xteam.xbio.top/CellMarker/). Then, 
the marker gene list was optimized by the Garnett [46] trained classifier in the sc-RNA dataset (GSE114725) of breast cancer [45]. 
After obtaining the marker gene list, the signature matrices used in CIBERSORT were generated using the sc-RNA dataset (GSE114725) 
(supplementary R code 4.2). 

We used the R package GSVA to analysis the single-sample gene set enrichment (ssGSEA) [47], and worked out the infiltration 
degree of 28 kinds of immunocyte types [48] (supplementary R code 4.3). 

2.3. Consensus clustering on the basis of GLS and GOT2 expression 

We extracted the expression of GLS and GOT2 (supplementary R code 2.2.1) and used the R package ConsensusClusterPlus to 
cluster [49]. We divided the breast cancer samples into two clusters (supplementary R code 2.3). 

2.4. Survival analysis 

The overall survival times of patients with different subtypes were obtained from the PAM50 subtype information of the GDC TCGA 
Breast Cancer (BRCA) dataset. Kaplan‒Meier plots were generated by using R (4.1.3) software (supplementary R code 12.2 and 12.3). 

2.5. The enrichment analysis of gene set and the differentially expressed analysis of genes 

To explore the GO immunity associated signaling pathways, we used the package clusterProfiler to analyze gene set enrichment 
(GSEA) [50] with the parameters below: p value-cutoff = 0.05 and q-value-cutoff = 0.05. The top forty terms of GO pathways were 
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shown. GO pathways with significant enrichment results were demonstrated based on gene ratio and P adjusted value. We considered 
Gene sets were remarkably enriched when padj <0.05 [51] (supplementary R code 12.4). 

The differentially expressed genes between two clusters were analyzed through R software package DESeq2 [52] (supplementary R 
code 5.1.1). |log2FoldChange | >1 and adjusted p < 0.05 were the threshold values. We used the “ggpubr” and “ggthemes” packages to 
display differentially expressed genes in the volcano plots (supplementary R code 5.1.2). 

2.6. Weighted gene coexpression network analysis 

On the basis of differentially expressed genes we performed WGCNA through the R package [53]. In order to guarantee that the 
created coexpression network is close to scale-free distribution, 4 was chosed as the soft power. Then, we got four modules and their 
association with clusters, Stromal Score, Immune Score, ESTIMATE Score, and Tumor Purity were calculated. Then the genes were 

Fig. 1. The study design. (a) Workflow of data processing and bioinformatics analysis, comprising three main modules, including gene screening 
and consensus clustering, weighted gene coexpression network analysis and analysis of immune infiltration, and external validation. 
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obtained based on the values of module membership (MM) and gene significance (GS) (MM > 0.40 and GS > 0.30) (supplementary R 
code 5.2). 

2.7. Gene‒Gene and Gene-ESTIMATE interaction relationships 

We used a search tool to retrieve interacting genes to evaluate the interaction between hub genes (STRING, https://cn.string-db. 
org/) [54] and established profiles of protein‒protein interactions (supplementary R code 5.6). Spearman’s correlations of gene–gene 
and gene–ESTIMATE were analyzed through R package corplot (supplementary R code 5.4 and 5.5). 

2.8. Statistical analysis 

R (4.1.3) and SPSS (18.0) software were used to perform statistical analysis. And the Wilcoxon rank sum test was applied to perform 

Fig. 2. Consensus clustering of breast cancer samples on the basis of GLS and GOT2 expression. (a) ESTIMATE analysis of immune- and 
glutamine-associated regulators. The absolute value of four ESTIMATE indices (Stromal Score, Immune Score, ESTIMATE Score and Tumor Purity) 
> 0.250. Among them, red represented positive association, blue represented negative association, the darker the color, the stronger the association. 
(b) The expression of GLS and GOT2 in tumor and adjacent normal tissues. Red represents AdjN, blue represents tumor. ****p < 0.001. (c) The 
expression correlation analysis of GLS and GOT2. The expression of GLS was negative correlation with GOT2. R = 0.122, p = 3.693e-05. (d) 
Consistency matrix heat map was shown through consistency clustering (k = 2). Among them, light blue on behalf of Cluster 1, dark blue on behalf 
of Cluster 2. (e) The delta area helps to identification the most optimal number of clusters, which was k = 2. (f) Consistency score bar graph for 
subgroups with cluster counts between 2 and 9, and the optimal cluster counts was 2. Each colour represents a cluster, when the number of clusters 
is too large, and the number of patients in some clusters is too small, resulting in the disappearance of its colour block. (g) The GDC TCGA Breast 
Cancer (BRCA) dataset was divided into two clusters according to the expression of GLS and GOT2. The heatmap shows that GLS expressed lower 
and GOT2 expressed higher in Cluster 1 (n = 541), while GLS expressed higher and GOT2 expressed lower in Cluster 2 (n = 531). 
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the box plot analysis. We used Spearman’s coefficient to perform the correlation analysis. The chi-square test was applied to weigh the 
clinical features between two clusters (the Fisher’s exact test also was used when it was necessary). Multivariate logistic regression 
analysis was performed to estimate the clinical features between the clusters. Kaplan–Meier method (log-rank test) was performed to 
map survival curves. All hypothetical tests used in this study were two-sided, and the p value < 0.05 was significant. 

3. Results 

3.1. Consensus clustering based on the expression of GLS and GOT2 in breast cancer 

The study design is shown in Fig. 1a. To investigate the roles of glutamine metabolism in the tumor immune microenvironment of 
breast cancer, all immunity-associated gene sets (including 21,383 genes) and glutamine-associated gene sets (including 119 genes) 
from the Molecular Signatures Database (MSigDB) were intersected, and we obtained 118 genes. By calculating four ESTIMATE 
indices, we found that 8 genes (including GOT2, GLS, F13A1, NOS3, SLC38A5, GFPT2, TGM2 and SLC7A7) were significantly asso-
ciated with Stromal Score, Immune Score, ESTIMATE Score and Tumor Purity (Fig. 2a). There was not glutamine metabolism related 
reports about F13A1, NOS3, GFPT2, TGM2 and SLC7A7 genes. SLC38A5 is reported as a amino acid transporter shuttled amino acids 
(including glutamine) across cell member but not the glutamine specific transporter [55–57]. Both GLS and GOT2 were essential genes 
to glutamine metabolism [28,36,37]. GLS is the opening enzyme of glutamine metabolism, which converts glutamine to glutamate 
[28]. In addition, GOT2 inhibits glutamine metabolism in tumor [36]. So we using GLS and GOT2 for further analysis. GLS was 
positively associated with Stromal Score, Immune Score, ESTIMATE Score and negatively associated with Tumor Purity, and GOT2 was 
negatively associated with Stromal Score, Immune Score, ESTIMATE Score and positively associated with Tumor Purity (Fig. 2a). Then 
we analyzed the transcription levels of GLS and GOT2 in the GDC TCGA Breast Cancer (BRCA) dataset (n = 1072) through the Wil-
coxon rank-sum test. Compared with tumor-adjacent tissue samples (AdjN), GLS expression level was decreased and GOT2 expression 
level was increased in breast tumor samples (Tumor) (Fig. 2b). Spearman’s correlation analysis showed a negative correlation between 
GLS and GOT2 expression (R = 0.122, p = 3.693e-05) (Fig. 2c). Then, consensus analysis was performed to cluster the GDC TCGA 
Breast Cancer (BRCA) dataset according to the expression matrix of GLS and GOT2 through the ConsensusClusterPlus method. The 
classification of the two-subgroup was that the cluster consistency score of each subgroup is higher than 0.800 (Fig. 2d–f), suggesting 
that two group clustering was more reliable than multi-group clustering. The patterns of gene expression of Cluster 1 and Cluster 2 
were significantly different, but the gene expression profiles within each cluster had high similarity (Fig. 2d and g). The 1072 breast 
cancer samples were divided into two clusters: Cluster 1 (GLS expressed lower and GOT2 expressed higher, n = 541) and Cluster 2 (GLS 
expressed higher and GOT2 expressed lower, n = 531) (Fig. 2g). These results suggest that the glutamine regulators GLS and GOT2 
show opposite expression patterns in breast cancer, and the breast cancer samples can be divided into two clusters based on GLS and 
GOT2 expression patterns. 

3.2. Evaluation of clinical characteristics 

To better clarify the clinical properties of the clusters, we investigated the proportion of Cluster 1 and Cluster 2 in various molecular 
subtypes of breast cancer in the GDC TCGA Breast Cancer (BRCA) dataset. Cluster 2 was the predominant cluster in the subtype of 
TNBC (Supplementary Fig. S1a). We also observed that in luminal B subtype, the share of Cluster 1 was slightly larger than that of 

Table 1 
Clinical features of the two clusters.   

Cluster1 Cluster2 P value 

n 451 447  
age (mean) 59.984 55.470 <0.001 
gender = male (%) 8 (1.774) 3 (0.671) 0.231 
pathological.stage(%)   0.244 
Stage 1 75 (16.630) 80 (17.897)  
Stage 2 254 (56.319) 272 (60.850)  
Stage 3 112 (24.834) 88 (19.687)  
Stage 4 10 (2.217) 7 (1.566)  
T.stage(%)   0.031 
T1 105 (23.282) 126 (28.188)  
T2 271 (60.089) 262 (58.613)  
T3 51 (11.308) 50 (11.186)  
T4 24 (5.321) 9 (2.013)  
N.stage(%)   0.421 
N0 213 (47.228) 231 (51.678)  
N1 160 (35.477) 137 (30.649)  
N2 49 (10.865) 53 (11.856)  
N3 29 (6.430) 26 (5.817)  
M.stage(%)   0.638 
M0 441 (97.783) 440 (98.434)  
M1 10 (2.217) 7 (1.566)   
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Cluster 2 (Supplementary Fig. S1a), and the proportions of Cluster 1 and Cluster 2 were no significant difference between the HER2- 
enriched and luminal A subtypes (Supplementary Fig. S1a). These data suggest that Cluster 2 had a latent correlation with the TNBC 
subtype in breast cancer. 

We also analyzed the survival rate in the GDC TCGA Breast Cancer (BRCA) dataset. However, the survival rates were not signif-
icantly different between the Cluster 1 and Cluster 2 in TNBC (Supplementary Fig. S2a), HER2-enriched (Supplementary Fig. S2b), 
luminal A (Supplementary Fig. S2c) and luminal B (Supplementary Fig. S2d) subtypes of breast cancer. The correlation analysis 
showed that the T stage and age correlation degree in Cluster 1 were higher comparing with Cluster 2 (Table 1). In addition, multi-
variate logistic regression analysis showed that the independent factors were T stage, N stage, age and pathological stage, which 
affecting clustering (Table 2). The above data indicate that the clusters are related with the prognosis of breast cancer. 

3.3. Cluster 2 is related to dendritic cells in breast cancer 

We further analyzed the immune infiltration in Cluster 1 and Cluster 2. We performed ESTIMATE analysis to evaluate the immune 
association in Cluster 1 and Cluster 2. We found that the Stromal Score, Immune Score and ESTIMATE Score of Cluster 2 were higher 
compared with Cluster1, and the Tumor Purity was lower than that of Cluster 1 (Fig. 3a). The expressed extent of genes about Cluster 1 
and Cluster 2 were compared, and GSEA analysis was performed using the differentially expressed genes. We found many immunity- 
associated pathways among the top 40 pathways (Supplementary Fig. S3a). We also performed CIBERSORT and ssGSEA analysis to 
explore the differences of the immunity functions between the Cluster 1 and Cluster 2. CIBERSORT analysis revealed that Cluster 2 had 
a higher proportion of dendritic cells and M1 macrophages, and a lower proportion of CD4 memory T cells, follicular helper T cells and 
CD8 T cells comparing with Cluster 1 (Fig. 3b). Consistent with CIBERSORT analysis, ssGSEA also showed that there was a higher 
infiltration extent of dendritic cells in Cluster 2 than Cluster 1 (Fig. 3c). 

To further explore the association between immune infiltration and clusters, we analyzed the transcription level in the GDC TCGA 
Breast Cancer (BRCA) dataset. Comparing Cluster 2 with Cluster 1, we got 1073 up-regulated genes and 397 down-regulated genes in 
the volcano plot (Fig. 4a). The expression profiles of differential genes were used for further WGCNA, and we identified 4 modules 
(Fig. 4b and c). The blue module was positively associated with Cluster (R = 0.390, p = 8.000e-41), StromalScore (R = 0.370, p =
7.000e-37), ImmuneScore (R = 0.870, p = 0.000), and ESTIMATEScore (R = 0.730, p = 4.000e-180) and negatively associated with 
TumorPurity (R = -0.760, P = 1.000e-203) (Fig. 4d). From the blue module, we identified 71 hub genes based on MM > 0.400 and GS 
> 0.300 (Fig. 4e). Among these genes, we found that 11 genes (VCAM1 [58], PTPN22 [59], ICAM1 [60], IL7R [61], TNFSF14 [62], 
GPR174 [63], CCR2 [64], CCR4 [65], CTLA4 [66], LYN [67–69] and RUNX3 [70]) were essential for dendritic cell development, 
maturation, activation and other functions. Spearman’s correlation analysis between genes and ESTIMATE analysis also showed that 
these dendritic cell-associated genes were positive associated with ESTIMATE Score and were negative associated with Tumor Purity 
(Fig. 4f). The gene expression correlation analysis also showed that these genes were positive correlation with GLS expression and were 
negative correlation with GOT2 expression (Fig. 4g). The protein‒protein interaction analysis showed that 10 dendritic cell-associated 
genes, VCAM1, PTPN22, ICAM1, IL7R, GPR174, CCR2, CCR4, CTLA4, LYN and RUNX3, were correlated (Fig. 4h). Thus, all these 
results demonstrated that Cluster 2 was positive association with dendritic cells in breast cancer. 

3.4. The better response to immunotherapy in cluster 2 than cluster 1 

The expression level of these immune checkpoint genes is critical for the immune checkpoint therapeutic strategy [23], which is 
another promising means for immunotherapy [21]. In addition to its dendritic cell-associated function, CTLA4 is also an immune 
checkpoint gene. We also observed that the CTLA4 gene showed a higher expression level in Cluster 2 than in Cluster 1. Thus, we 
compared immune checkpoint gene expression extent in these two clusters. We observed that the expression level of PD1-related genes 
(PD1, PDL1 and PDL2) (Fig. 5a), CTLA4-related genes (CD80, CD86 and CTLA4) (Fig. 5b), other immune checkpoint genes (LAG3, 

Table 2 
Multivariate logistic regression for clustering (Cluster 2 vs Cluster 1).  

Variables Multivariate Logistic Regression 

Odds Ratio (95% Confidence Interval) P value 

age 0.969 (0.959–0.980) 0.0001 
T stage  0.032 
T2 vs T1 2.155 (0.722–6.435) 0.169 
T3 vs T1 1.111 (0.420–2.939) 0.832 
T4 vs T1 1.752 (0.677–4.534) 0.248 
N stage  0.004 
N1 vs N0 0.410 (0.164–1.024) 0.056 
N2 vs N0 0.299 (0.128–0.700) 0.005 
N3 vs N0 1.072 (0.536–2.141 0.845 
Pathological stage  0.003 
stage2 vs stage1 1.366 (0.316–5.893) 0.676 
stage3 vs stage1 2.598 (0.736–9.171) 0.138 
stage4 vs stage1 0.758 (0.259–2.219) 0.613  
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TIGIT and TIM3) (Fig. 5c), and agonists of T-cell activation genes (4-1BB, CD27, CD40, CD70, ICOS and OX40) (Fig. 5d) were sig-
nificant higher in Cluster 2 than Cluster 1. These results suggested that the immunotherapy responses in Cluster 2 was better than in 
Cluster 1. 

3.5. Validation of immune characteristics between the cluster 1 and cluster 2 

To validate the immune characteristics between the Cluster 1 and Cluster 2, we used the TCGA Breast Cancer (BRCA) dataset (n =
1097) for further analysis. We used the same method which previously performed in the validation dataset to divided the breast cancer 
samples into two clusters. Consistent with the GDC TCGA Breast Cancer (BRCA) dataset, the cluster consistency scores of each sub-
group were higher than 0.8 (Fig. 6a–c), suggesting that it was more reliable to divide into two groups than divide into more groups in 
the validation dataset. The gene expression profiles of Cluster 1 and Cluster 2 were also significantly different, but the gene expression 
profiles within each cluster had high similarity (Fig. 6a and d). GLS expressed lower and GOT2 expressed higher in Cluster 1 (n = 558), 
while the GLS expressed higher and GOT2 expressed lower in Cluster 2 (n = 539) in the validation dataset (Fig. 6d). 

We also performed ESTIMATE analysis to evaluate the immune features in Cluster 1 and Cluster 2 of the verification dataset. We 
found the Stromal Score, Immune Score and ESTIMATE Score of the Cluster 2 were higher compared those with Cluster 1, and the 
tumor purity was lower than that of Cluster 1 (Fig. 7a). Both CIBERSORT and ssGSEA revealed that Cluster 2 was positive association 
with dendritic cells compared with Cluster 1 in the validation dataset (Fig. 7b and c). The expression of 11 dendritic cell-associated 
genes (VCAM1, PTPN22, ICAM1, IL7R, TNFSF14, GPR174, CCR2, CCR4, CTLA4, LYN and RUNX3) identified in Fig. 4 was also 

Fig. 3. Comparing the characteristics of Immune Infiltration between the Cluster 1 and Cluster 2. (a) ESTIMATE analysis in Cluster 1 and 
Cluster 2. The Stromal Score, Immune Score and ESTIMATE Score of Cluster 2 were higher, and the tumor purity was lower comparing with Cluster 
1. (b) CIBERSORT analysis revealed that the portion of dendritic cells in Cluster 2 was larger compared that with Cluster 1. (c) ssGSEA revealed that 
Cluster 2 showed a higher infiltration extent of dendritic cells compared with Cluster 1. Red represented Cluster 2, blue represented Cluster 1. ns, no 
significance, *p < 0.05, ***p < 0.005, and ****p < 0.001. 
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positive correlation with GLS and negative correlation with GOT2 in the validation dataset (Fig. 8a). Spearman’s correlation analysis 
between genes and four ESTIMATE indices also showed that these genes were positive associated with ESTIMATE Score and negative 
associated with Tumor Purity (Fig. 8b). Above studies demonstrated that Cluster 2 was positive association with dendritic cells in the 
validation dataset. 

We also observed that the expression level of the immune checkpoint genes: PD1-related genes (PD1, PDL1, PDL2) (Fig. 9a), 
CTLA4-related genes (CD80, CD86, CTLA4) (Fig. 9b), other immune checkpoint genes (LAG3, TIGIT, TIM3) (Fig. 9c), and agonists of T- 
cell activation genes (4-1BB, CD27, CD40, CD70, ICOS and OX40) (Fig. 9d) were also higher in Cluster 2 compared with those in 
Cluster 1 of the validation dataset. These results suggest that the immunotherapy response of Cluster 2 was better than Cluster 1 in the 
validation dataset. 

Fig. 4. Cluster 2 positively correlated with dendritic cell maturation-associated genes. (a) Volcano diagram showed the differential gene 
expression analysis between the Cluster 2 and Cluster 1. Red represented upregulated genes, blue represented downregulated genes, and black 
represented no change in genes comparing Cluster 2 with Cluster 1. (b) Network topology analysis of soft power (soft powers = 4). (c) Gene 
dendrogram and module colours. (d) Heatmap among module eigengenes, Cluster and ESTIMATE results. We identified a module (blue) correlated 
with glutamine metabolism (Cluster, R = 0.390, p = 8.000e-41) and immunity (Immune Score, R = 0.870, p = 0.000) (e) Scatter diagram of module 
eigengenes in the blue module (MM > 0.400 and GS > 0.300), and through it we found 71 hub genes. (f) Relevance between hub genes (11 genes 
which among hub genes were essential for dendritic cell development, maturation, activation and other functions.) and results of four ESTIMATE 
indices (Stromal Score, Immune Score, ESTIMATE Score and Tumor Purity). Red represented positive association, blue represented negative as-
sociation, and the darker the color, the stronger the connection. (g) Association between the expression of 11 hub genes and GLS or GOT2. Red 
represented positive correlation, blue represented negative correlation. The darker the colour, the stronger the correlation. (h) Protein‒protein 
interaction network of 11 hub genes. 
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Fig. 5. Comparison of the expression of immune checkpoint gene between the Cluster 1 and Cluster 2. Comparing the expression of PD1- 
related genes (a), CTLA4-related genes (b), other immune checkpoint genes (c) and agonists of T-cell activation genes (d) between the Cluster 1 
and Cluster 2. Red represented Cluster 2, blue represents Cluster 1. ****p < 0.001. 

Fig. 6. Validation of clustering in the GDC TCGA Breast Cancer (BRCA) dataset. (a) Heatmap corresponding to consensus matrix using 
consensus clustering (k = 2). Among them, light blue represented Cluster 1, dark blue represented Cluster 2. (b) The delta area helps to make sure 
the most optimal number of clusters. (c) Consensus score bar graph for subgroups with cluster counts ranging from 2 to 9, and the optimal cluster 
counts was 2. Each colour represents a cluster, when the number of clusters is too large, and the number of patients in some clusters is too small, 
resulting in the disappearance of its colour block. (d) The validation dataset was divided into two clusters according to the expression of GLS and 
GOT2. The heatmap shows that GLS expressed low and GOT2 expressed high in Cluster 1 (n = 558), while GLS expressed high and GOT2 expressed 
low in Cluster 2 (n = 539). 
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4. Conclusions and discussion 

Altogether, our study indicates that GLS and GOT2 are prognostic biomarkers associated with dendritic cells and response to 
immunotherapy in breast cancer. 

GLS and GOT2 are associated with T cells and the microenvironment of immunity in cancer [34,35,38,39,71]. GLS is positively 
associated with the extent of immune infiltration in cancer [34]. In the microenvironment of tumor immunity, GLS is positive cor-
relation with resting memory CD4 T cells and negative correlation with monocytes [35]. Inhibiting GLS in cancer cells can diminish 
tumor immune evasion [33] and enhance the antimelanoma activity of T-cell-mediated immunotherapies [71]. GOT2 suppresses 
antitumor immunity through spatial limitation of both CD4+ and CD8+ T cells [38]. High GOT2 expression is positive association with 
the immunologically quiet subtype of clear-cell renal cell carcinoma [39]. In our study, however, we found an association between 
dendritic cells and the expression level of GLS and GOT2 in breast cancer. And divided breast cancer patients into two clusters on the 
basis of the expression of GLS and GOT2: Cluster 1 (GLS low expressed and GOT2 high expressed) and Cluster 2 (GLS high expressed 
and GOT2 low expressed). Cluster 2 (GLS expressed high and GOT2 expressed low) breast cancer showed a higher association with 
dendritic cells, implying that GLS and GOT2 may also be involved in dendritic cell regulation. Further gene expression correlation 

Fig. 7. Validation of Characteristics of Immunity between the Cluster 1 and Cluster 2. (a) ESTIMATE analysis in Cluster 1 and Cluster 2. The 
Stromal Score, Immune Score and ESTIMATE Score of Cluster 2 were higher, and the tumor purity was lower compared with Cluster 1. (b) 
CIBERSORT analysis revealed that the portion of dendritic cells in Cluster 2 was larger compared with that in Cluster. (c) ssGSEA revealed that 
Cluster 2 showed a larger infiltration extent of dendritic cells compared with Cluster 1. Red represented Cluster 2, blue represented Cluster 1. ns, no 
significance, *p < 0.05, **p < 0.01, ***p < 0.005, and ****p < 0.001. 
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analysis found dendritic cell-associated genes (VCAM1 [58], PTPN22 [59], ICAM1 [60], IL7R [61], TNFSF14 [62], GPR174 [63], CCR2 
[64], CCR4 [65], CTLA4 [66], LYN [67–69] and RUNX3 [70]), suggesting that glutamine metabolism regulated by GLS and GOT2 may 
play important roles in dendritic cell development maturation, activation and other functions of dendritic cells. The association be-
tween the expressions of GLS and GOT2 and dendritic cells may provide a new clue regarding how glutamine metabolism regulates 
antitumor immunity. The mechanism by which GLS and GOT2 regulate dendritic cell maturation awaits discovery. 

Targeting immune checkpoint pathways is a promising means for cancer immunotherapy [21]. In our study, we found that Cluster 
2 (GLS expressed high and GOT2 expressed low) was positively associated with immune checkpoint gene expression, implying that GLS 
and GOT2 may be involved in immune checkpoint pathway regulation. These results indicated that the immunotherapy response of 

Fig. 8. Dendritic cell-associated gene expression analysis in the validation dataset. (a) Association between the expression of dendritic cell- 
associated genes and GLS or GOT2. (b) Association between hub genes and the ESTIMATE indice (Stromal Score, Immune Score, ESTIMATE Score or 
Tumor Purity). Red represented positive correlation, blue represented negative correlation. The darker the colour, the stronger the correlation. 

Fig. 9. Comparison of the expression of immune checkpoint gene between the Cluster 1 and Cluster 2 in the validation dataset. Com-
parison of PD1-related genes (a), CTLA4-related genes (b), other immune checkpoint genes (c) and agonists of T-cell activation genes (d) between 
the Cluster 1 and Cluster 2. Red represented Cluster 2, blue represents Cluster 1. ****p < 0.001. 
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Cluster 2 is better. Therefore, this classification based on GLS and GOT2 expression may provide guidance for breast cancer immu-
notherapy. The mechanism by which GLS and GOT2 regulate the immune checkpoint pathway needs to be further explored. 

The normal breast tissues have a large number of immune cell population, including CD8+ and CD4+ T cells, B cells, dendritic cells, 
macrophages, NK cells, and other immune cell subtypes, which constitute the immune microenvironment and eliminate transformed 
breast cells [45,72,73]. TNBC which is lack of the expression of ER, PR, and HER2, is related to a low overall survival rate and a high 
recurrence rate [74–76]. In our study, we observed that Cluster 2 (GLS expressed high and GOT2 expressed low) was predominantly in 
the TNBC subtype, implying that the GLS and GOT2 genes may be considered as immunotherapy biomarkers for the TNBC subtype. The 
mechanism of GLS and GOT2 regulate the microenvironment of immunity and immune checkpoint pathway can provide new clues for 
TNBC treatment. 
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