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ABSTRACT

Motivation: The classification of proteins into homologous groups
(families) allows their structure and function to be analysed
and compared in an evolutionary context. The modular nature
of eukaryotic proteins presents a considerable challenge to the
delineation of families, as different local regions within a single
protein may share common ancestry with distinct, even mutually
exclusive, sets of homologs, thereby creating an intricate web of
homologous relationships if full-length sequences are taken as the
unit of evolution. We attempt to disentangle this web by developing
a fully automated pipeline to delineate protein subsequences that
represent sensible units for homology inference, and clustering them
into putatively homologous families using the Markov clustering
algorithm.
Results: Using six eukaryotic proteomes as input, we clustered
162 349 protein sequences into 19 697–77 415 subsequence families
depending on granularity of clustering. We validated these Markov
clusters of homologous subsequences (MACHOS) against the
manually curated Pfam domain families, using a quality measure
to assess overlap. Our subsequence families correspond well to
known domain families and achieve higher quality scores than do
groups generated by fully automated domain family classification
methods. We illustrate our approach by analysis of a group of
proteins that contains the glutamyl/glutaminyl-tRNA synthetase
domain, and conclude that our method can produce high-coverage
decomposition of protein sequence space into precise homologous
families in a way that takes the modularity of eukaryotic proteins
into account. This approach allows for a fine-scale examination of
evolutionary histories of proteins encoded in eukaryotic genomes.
Contact: m.ragan@imb.uq.edu.au
Supplementary information: Supplementary data are available at
Bioinformatics online. MACHOS for the six proteomes are available
as FASTA-formatted files: http://research1t.imb.uq.edu.au/ragan/
machos

1 INTRODUCTION
Comparative biology is based on the recognition of homology
(Hall, 1994). The concept of homology, originally introduced
to characterize anatomical features that have the same function
in different animals (Owen, 1843), was subsequently redefined
(as ‘homogeny’) in reference to common ancestry (Lankester,
1870). Homology, in the sense of descent with modification from a
common ancestor, has long served as the touchstone for comparative
molecular biology (Margoliash, 1969; Zuckerkandl and Pauling,
1965a,b), and continues to provide the biological context for
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comparison of genome sequences and other genome-scale data
(Koonin, 2005).

In these molecular and genomic contexts, sets of putatively
homologous genes or proteins (‘families’) are typically treated as
the fundamental units of analysis (Fitch, 1970; Koonin, 2005).
The motivation for this choice is three-fold: genes have long been
identified as the units of heritability, and proteins as units of function
(hence selectability); and both often exhibit sufficient length
(number of nucleotides, codons or amino acids) and variability for
rigorous statistical analysis. Consequently, much effort has been
invested in recognizing homology among, and delineating families
of, genes and proteins. In the absence of sequence data from temporal
series of ancestors, sets of sequences are inferred to be homologous
if they share a degree of sequence identity or similarity, or exhibit
patterns of sequence, that are not held in common with unrelated
sequences, e.g. those retrieved by random sampling of a database
such as GenBank (Benson et al., 2007) or Protein Data Bank
(Berman et al., 2000).

Families are typically delineated via a three-step procedure. First,
all sequences within a comprehensive dataset (e.g. the UniProt
Knowledgebase, see The Uniprot Consortium, 2007) are compared
pairwise using BLAST (Altschul et al., 1990), SSEARCH (Pearson,
1991; Smith and Waterman, 1981) or some other statistical
tool, yielding a square matrix of pairwise match scores. Next,
scores less significant than some arbitrary threshold are removed
from further consideration; if the threshold is chosen well, this
eliminates many biologically irrelevant matches but few biologically
relevant ones, and greatly reduces computational cost. Finally the
remaining sequences are grouped into sets such that the strongest
matches are within-set and the weakest between-set; these sets are
interpreted as (putatively homologous) families. These steps are
often abstracted, explicitly or implicitly, as operations involving
graphs, with individual sequences as vertices and pairwise match
scores as weighted edges. Indeed, in practice, gene or protein
families can actually be delineated by graph partitioning (Enright
et al., 2002; Harlow et al., 2004; Krause et al., 2005; Kriventseva
et al., 2001; Yona et al., 2000).

Homologs may additionally share other properties including
secondary and other higher-order structure, chromosomal location,
patterns of intra-molecular interaction, connectivity within pathways
and networks, spatial and temporal expression and (as a con-
sequence) cellular function. Investigating the interrelationships
among heredity, structure and function has often yielded not
only deeper understanding of evolutionary processes, but also
biotechnological, biomedical and other practical outcomes.

Genes of morphologically complex eukaryotes are structurally
complex. Their exon–intron structure is well-recognized, but addi-
tional features are only now becoming apparent, e.g. the presence
of sequence motifs for developmentally regulated alternative
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transcription (Carninci et al., 2005) or miRNA binding (John
et al., 2004). The proteins they encode often contain discrete,
evolutionarily conserved regions that may fold autonomously, form
spatially compact domains, and/or convey specific functions (Bork,
1991; Dorit et al., 1990; Holm and Sander, 1996; Richardson,
1981). These regions may arise from a contiguous stretch of amino
acids, or be spatially discontinuous at the primary-sequence level
(Jones et al., 1998). In different combinations and arrangements,
these subsequences generate novel combinations of folded structure
that underlie innovation in protein function, as reflected by the
observation that over 80% of metazoan proteins contain two or more
domains (Apic et al., 2001).

This complexity creates both conceptual and operational problems
for the recognition of homologous families. A set of proteins
may share a region of significant primary-sequence similarity but
otherwise present no evidence of relatedness; in such cases, we
can infer only that the subsequence has descended from a common
ancestor (the second step in delineation of families, described
above, is intended to reduce the number of false inferences of this
type). Worse, a single protein may share different local regions of
significant similarity with mutually exclusive partners, i.e. show
conflicting patterns of homology. In such cases, it is clearly
inappropriate to consider entire proteins (or genes) to constitute the
fundamental unit of comparative analysis.

A number of expert-curated databases are available in which
protein subsequences, rather than entire proteins, are grouped into
putatively homologous families. However, substantial gaps remain
in the coverage of known genomes, transcriptomes and other
molecular sequences, such that a large fraction of protein sequences
remains un-annotated. Various attempts have been made to delineate
and classify these domains in a fully automatic manner with the
aim to achieve near-complete coverage of protein space. In DOMO,
subsequence boundaries are delineated by defining local regions
of similarity and reconciling their positions relative to sequence
termini (Gracy and Argos, 1998). In ProDom, the shortest sequence
in a database is assumed to consist of a single domain; members
of that domain family are built up using successive PSI-BLAST
searches, and the process iterates until no further sequences can be
clustered (Servant et al., 2002). More recently, ADDA decomposes
proteins into modules by analysing all-vs-all alignments derived
using a global maximum-likelihood model (Heger and Holm,
2003).

Here, we introduce a fully automated method that delineates
homologous sequence families by resolving individual proteins into
subsequences that we initially treat as fundamental units (i.e. nodes
of a graph). Subsequent re-constitution of edges in this graph,
followed by Markov clustering, yields sets of putatively homologous
subsequence families. Our approach differs from the three other
methods cited above in the way that subsequences are constituted,
and in the algorithm by which the subsequence similarity graph is
resolved into families. We apply this approach to six eukaryotic
proteomes, and using an accepted quality score show that our
approach performs at least as well as the other fully automated
methods (ProDom and ADDA) in recovering protein domains
and domain families as annotated in the expert-curated database
Pfam. We illustrate the method using the glutamyl/glutaminyl-
tRNA synthetase family as an example, and discuss its application
in generating homologous subsequence families for phylogenetic
analyses.

2 METHODS

2.1 Preparation of protein sequence datasets
Protein sequence and annotation data for human, mouse, rat, fly, worm and
yeast were obtained from ENSEMBL release version 42 (Birney et al.,
2006). These data include ‘protein variants’encoded by alternative transcripts
and splice variants within a gene locus as defined by the ENSEMBL gene
annotation. In order to remove, as efficiently as possible, redundant protein
variants (i.e. those encoded by exons that are completely contained within
one or more other exons), a strategy was devised to determine the minimal
combination of protein variants for which the underlying exons maximally
cover that gene locus.

At each gene locus, we define a universe U of all unique nucleotides in
all exons transcribed from that locus. Each protein variant is composed of
one or more exons, each of which corresponds to a contiguous stretch of
nucleotides within U. Therefore each protein variant i∈{1, ...,n}, where
n is the total number of variants, induces a subset Si of U, and the
union of all Si∈{1,...,n} =U. Our goal was to find the minimum number
of sets within {S1, ...,Sn} that maximally cover U. This is a classic set-
covering optimization problem, and is known to be NP-hard. We addressed
this problem using a greedy algorithm that represents a good polynomial-
time approximation (Lund and Yannakakis, 1994). This greedy algorithm
iteratively selects Si∈{1,...,n} that cover the maximum number of uncovered
nucleotides within U until all nucleotides have been covered (Fig. 1). In our
case, we stopped the iteration when the number of uncovered nucleotides
fell below 60. For the purposes of the work described here, we consider that
below this threshold, the return of additional unique sequence in U is unlikely
to justify the increased level of redundancy; other thresholds, however, may
be more appropriate in other contexts.

The description in the paragraph immediately above ignores the issue of
alternative reading frames. Each local region in the gene locus can potentially
encode three different substrings of amino acids, and the protein variants
that contain them can find different sets of match partners. Therefore in the
actual implementation, each nucleotide in U was allowed up to three unique
instances, one in each (local) coding frame.

To reduce computational load, where sequences exhibited 100% identity
(whether inter- or intra-specifically) one representative was selected at
random to serve as a placeholder through the subsequent comparison
and graph partitioning operations. The other copies (with the correspond-
ing annotation) were then reinstated into the final subsequence family
classification.

2.2 Detection of homologous sequences and alignments
Pairwise putative homologs were detected by an all-vs-all similarity
search using the Smith–Waterman algorithm as implemented in SSEARCH
(Pearson, 1991; Smith and Waterman, 1981). We used SSEARCH parameters
(a BLOSUM65 substitution matrix generated using the BLOCKS 13+
database, gap penalty of −12, and gap extension of −1) that have been
shown to achieve good accuracy in similarity detection as evidenced by
their ability to retrieve SCOP families (Price et al., 2005), along with an
expectation value cut-off of 0.01. However, since SSEARCH identifies
only the single best local alignment between any two sequences, pairwise
LALIGN (Huang et al., 1990) with the same SSEARCH parameters was
used in a subsequent step to identify other regions (if any) of significant
similarity that do not overlap with the top local alignment.

2.3 Delineation of subsequences
For each query protein sequence, there may exist a set of local pairwise
alignments to one or more other sequences (match partners), whether inter- or
intra-specifically. At any defined threshold, each of these pairwise alignments
extends through a discrete local region in both query and target sequence and,
together, these regions cover the query sequence to a greater or lesser extent.
In this way, each query sequence becomes partitioned into non-overlapping
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Fig. 1. Selection of protein variants to represent each gene locus. (A) Shown
is a hypothetical gene locus where alternative transcription or splicing events
result in four protein variants numbered from 1 to 4. The exons of each
protein variant map onto the gene locus in one of three different reading
frames (+1/+2/+3), resulting in regions a–f. Note that regions b and e
overlap the same stretch of sequence in the gene locus but their translated
protein sequence may be different as they are in different reading frames.
(B) Each protein variant thus associates with one or more of regions (a–f),
as represented in the bipartite graph. A greedy algorithm was then used
(see Methods) to find the minimum set of protein variants that maximizes
coverage of regions a–f.

subsequences, with all residues within a subsequence having a common set
of match partners. If there is an adjacent subsequence, all residues therein
will likewise share a common (but different, i.e. not fully identical) set of
match partners (Fig. 2). Each subsequence can be represented as a node in a
similarity graph.

However, delineating subsequences by forcing all their residues to share a
common set of match partners may be too restrictive, as short subsequences
were frequently defined at subsequence boundaries owing e.g. to alignment
artifacts. We therefore merged adjacent subsequences if they satisfied two
conditions: (a) the match partners of one of the subsequences form a complete
subset of the other and (b) at least one of the subsequences is <20
residues in length. The resulting merged subsequence was then defined
to have the same set of match partners as the longer of the original two
subsequences. Successive rounds of merging were applied until no further
adjacent subsequences could be merged. This has the effect of restricting the
proliferation of weakly supported, information-poor subsequence sets.

2.4 Construction of the subsequence similarity graph
We next generated a graph in which each node represents one of our (possibly
merged) subsequences, and the edges represent the pairwise weighted
sequence similarity. An edge is drawn between two subsequences if (a) one
subsequence occurs in its entirety within their pairwise local alignment or (b)
the two subsequences share a region of sequence similarity that covers 50%
or more of either subsequence. The weight of an edge is given by −logE
where E is the expectation value of the local alignment as already calculated
by LALIGN.

Fig. 2. Subsequence delineation and merging procedure. In order to
demonstrate how subsequences are generated, shown is a hypothetical
query protein sequence with regions of local similarity to a set of target
proteins (or match partners) labelled 1–6. On this basis, the query protein
sequence is divided into non-overlapping subsequences such that each
individual subsequence matches a set of partners (indicated at the top of
each subsequence) that is different from the set matched by its adjacent
subsequences. Some of these adjacent subsequences are merged (indicated
by arrows) if they do not match mutually exclusive partners. Merging occurs
iteratively until no further adjacent subsequences can be merged. At the end
of this process, the query protein is divided into regions which show different
signals of homology that are indicative of a modular composition.

2.5 Markov clustering of subsequence similarity graph
The subsequence similarity graph first had to be divided into coarse disjoint
sets, because the MCL software demanded excessive memory when the entire
graph was used as input. To accomplish this, we generated and coarsely
partitioned a protein-similarity graph (see next section), then mapped the
merged subsequences onto its disjoint partitions, thereby partitioning the
subsequence graph into the same number of coarse disjoint sets. Only those
edges that exist within each disjoint set were retained. We then ran MCL
on each disjoint set using a range of inflation parameter values (1.2, 1.6,
2.0 and 2.4) that determine granularity of the clustering. As there can be
no similarity relationships between disjoint sets, the results from all disjoint
sets were subsequently collated into a classification of subsequence families
(‘Markov Clusters of Homologous Subsequences’, MaCHoS or more simply,
MACHOS) at each inflation parameter value.

2.6 Protein-similarity graph
The protein-similarity graph used in the previous section was generated using
complete protein sequences as vertices. An edge was drawn between a pair of
vertices if the E-value of their pairwise SSEARCH match was better than 0.01
(above), and each edge was weighted by its SSEARCH E-value. This graph
was then coarsely partitioned using the Markov clustering software MCL,
obtained from http://micans.org/mcl/src (van Dongen, 2000), with inflation
parameter I =1.2.

2.7 Quality assessment using Pfam domain families
We mapped the reference classification of Pfam domains, as annotated by the
ENSEMBL database (Birney et al., 2006), onto our subsequences, yielding
clusters of subsequences that correspond to the Pfam domain families.
In this process, every Pfam domain maps to at least one subsequence,
while the converse is not true: some subsequences are not assigned to
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Fig. 3. A graphical representation of how quality scores are derived when
comparing a subsequence family classification scheme with a reference
classification such as Pfam. Red circles represent individual subsequences
and the set D delineates all subsequences that belong to the same Pfam
domain family. Only those subsequence families (e.g. MACHOS) with
≥50% of their members overlapping the Pfam domain family (set b in this
example, but not set a) are used in calculating the quality score based on the
number of subsequences in the TP (yellow), FN (blue) and FP (grey) regions.

any Pfam domain. We then examined the extent to which the subsequence
families delineated in this way (‘Pfam subsequence families’, PSFs) overlap
with the MACHOS generated above. To help ensure that only related families
contribute to the assessment of quality, we include a MACHOS in the analysis
only if at least 50% of its members lie within a single PSF. Where a single
PSF is overlapped by one or more such MACHOS (Fig. 3), we define three
types of subsequences in the union set: true positives (TP) (subsequences in
the PSF–MACHOS intersection), false positives (FP) (in the MACHOS but
not the PSF) and false negatives (FN) (in the PSF but not the MSF). For each
PSF we calculate the quality score Q as:

Q=100× TP

(TP+FP+TN)
(1)

However, there exists the possibility that our classification scheme is too
granular, i.e. that we have many small MACHOS overlapping a single PSF;
this would generate a misleadingly high quality score. Such cases can be
penalized by the following:

Qadjusted =100× (TP−no.of overlappingclusters+1)

(TP+FP+TN)
(2)

As previously suggested (Yona et al., 1999), this measure may be over-
conservative. Since the coverage of our protein space by Pfam domains is
not complete, there may be well valid members within our MACHOS that
are not annotated by Pfam, and this will result in over-estimation of our FP
rate. We account for this by calculating an upper bound on our quality score
by setting the FP rate to 0 in the Qadjusted equation above. This yields a new
measure Qupper

Qupper =100× (TP−no.of overlappingclusters+1)

(TP+TN)
(3)

The true quality score for a particular PSF probably lies between Qadjusted

and Qupper .

2.8 Comparison with ADDA and ProDom
Domain-family annotation and FASTA-formatted sequences of source
proteins were obtained from http://ekhidna.biocenter.helsinki.fi/downloads/
adda for ADDA (Heger and Holm, 2003) and from http://prodom.prabi.fr
for ProDom version 2005.1 (Bru et al., 2005). Full-length protein sequences
were included with our dataset of 125 008 non-redundant proteins into
a single FASTA file, and the common intersection of source protein
data among the three datasets was found using Warren Gish’s nrdb
(http://blast.wustl.edu/pub/nrdb/nrdb2).

To compare the performance of ADDA, ProDom and our approach with
respect to Pfam domains, we delineated subsequences within this common
set of protein sequences and classified them into families using domain
annotations in the file domains.fasta for ADDA, and prodom.srs for ProDom.
These subsequence families were then treated in the same manner as our
MACHOS in the calculation of quality scores, as described above.

3 RESULTS

3.1 Detection of homologous proteins
We obtained 162 349 protein sequences annotated by ENSEMBL
for human, mouse, rat, fly, worm and yeast (Birney et al., 2006).
A greedy algorithm for set-covering optimization was employed to
achieve efficient coverage of protein-coding regions. We intended
this approach to ensure that sequences encoded by most, if not
all, exons are represented in our protein space (Fig. 1), and
with these data we found that only 0.004% of all exons fail to
be represented. However, protein variants encoded by the same
ENSEMBL gene locus are kept if they contain mutually exclusive
sequence information (until iteration is stopped: see Methods).
Further removal of redundancy by collapsing sequences that are
100% identical into one representative sequence yielded a protein
dataset with 125 008 members, corresponding to 99.91% of the
underlying exonic sequence.

This protein dataset was used as input to an all-vs-all SSEARCH
similarity detection pipeline using an E-value cut-off of 0.01. There
were 12 229 proteins which found no significant match. Among
the remaining 112 779 proteins, SSEARCH identified 11 986 329
pairwise local alignments with significant similarity. However,
SSEARCH identifies only the single best region of similarity,
and homologous proteins can potentially share multiple regions of
similarity in the same or different order. Therefore we subsequently
used LALIGN to re-analyse the sequence pairs showing SSEARCH
matches, and identified a further 791 pairwise local alignments.

3.2 Delineation of subsequences and Markov clustering
into families

The 125 008 proteins were resolved into 1 049 488 subsequences
using our delineation and merging procedure (see Methods). Our
methodology examines the local alignments of each protein and
finds stretches of residues (subsequences), which are aligned to a
consistent set of target proteins (Fig. 2). At the end of the process, a
boundary is accepted between adjacent subsequences if they match
mutually exclusive sets of target proteins, or if the match sets are
different (i.e. not fully identical) and both subsequences are at least
20 residues in length. This has the effect of splitting individual
nodes of a complete-protein-similarity graph into multiple sub-nodes
where the evidence indicates a connectivity difference between or
among sub-nodes.

In this new graph, in which all new (sub-) nodes represent
subsequences, it is now necessary to reconstitute edges. We draw
an edge to represent the alignment between two sequences or
subsequences in different proteins. Some of these edges will have the
same meaning as before (i.e. between pairs of proteins not resolved
into subsequences), but many will now represent local alignments
between subsequences. The edges are again weighted by the E-value
of the match (see Methods).
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Fig. 4. (A) A hypothetical situation in which the query protein A is frag-
mented into A1 and A2 by the inclusion of a match partner E that is only
weakly similar (perhaps non-homologous) to part of A. The similarity graph
shows strong links among the real homologs (A, B, C and D) and a weak
link between A2 and E. Subsequent Markov clustering effectively cuts the
weak link and results in one MACHOS containing both A1 and A2, which
are then joined and treated as a single subsequence, correcting for the initial
over-fragmentation. (B) The distributions of subsequence lengths, before and
after subsequences are clustered into MACHOS at different granularities
(indicated by coloured lines), are shown with a bin size of 10 residues.
Although the underlying data are discrete points, we have represented the
data as smooth coloured lines to aid visual analysis.

Due to memory requirements, the entire subsequence graph was
too large to be used as input into the Markov clustering software
MCL (van Dongen, 2000). To circumvent this problem, we first
partitioned the subsequence graph into disjoint subgraphs. We did
this by partitioning the protein-similarity graph into coarse-grained
families, then mapping the subsequences and edges back onto these
families (see Methods). While this process removed 22 059 168
(7.64%) of the total number of edges from the subsequence graph
(i.e. those mapping between the coarse-grained families), these tend
to have larger (less-significant) E-values; overall, 97.67% of the

A

B

Fig. 5. (A) The distributions of MACHOS sizes at different inflation values
(indicated by coloured lines) are shown. The smooth coloured lines connect
underlying data points and are used to aid visual analysis. (B) The same data
shown as a log–log plot.

total edge weight from the original subsequence graph was retained.
Subsequent application of Markov clustering independently to these
disjoint graphs, and collation of the resulting clusters, yielded
MACHOS for our protein dataset.

Throughout the above process the possibility has remained that
protein sequences might be needlessly split into subsequences
owing to alignment artifacts or to the inclusion of non-homologous
sequences (Fig. 4A); indeed at this point we observed 257 400–
641 343 such instances, depending on granularity of clustering. We
merged such adjacent subsequences within the same MACHOS,
treating them as a single subsequence throughout subsequent
analyses. As expected, as the Markov inflation parameter was
increased and the clusters became finer-grained, the subsequences
in the final set of MACHOS become shorter in length (Fig. 4B), and
the number of subsequence families increases (Fig. 5A). However,
all family size distributions are linear in a log–log plot (Fig. 5B),
indicating a common theme of many small and few large families,
in keeping with other known domain or protein families (Kunin
et al., 2005).
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Table 1. Quality assessment of subsequence clusters using Pfam as a reference

Inflation Clusters TP % FP % FN % Qadjusted% Qupper% Non-overlapping MACHOS

MACHOS (complete set)

1.2 19 697 63.55 17.02 19.44 61.57 76.24 14 865
1.6 49 565 71.24 17.56 11.20 67.43 82.24 31 297
2.0 65 534 73.01 16.96 10.03 68.19 82.42 32 257
2.4 77 415 73.96 16.78 9.26 68.42 82.43 29 638

MACHOS (subset)

1.2 16 923 61.91 19.47 18.63 57.79 74.21 12 000
1.6 40 044 67.68 20.06 12.26 59.83 75.63 25 396
2.0 51 372 68.97 19.56 11.47 59.33 74.41 24 526
2.4 59 260 69.86 19.46 10.68 58.87 73.62 20 051

ADDA 42 977 62.82 17.19 20.13 55.01 68.85 36 254

ProDom 98 863 62.96 10.05 26.99 43.46 48.66 68 735

MACHOS (subset) refers to the subset of our subsequence families originating from the set of protein sequences that overlaps those used and annotated by ADDA and Prodom.
Abbreviations: TP = true positives; FP = false positives; FN = false negatives.

Table 2. Number of PSFs which are individually overlapped by different numbers of subsequence families

Number of subsequence families overlapping a PSF by ≥50% of subsequence members

Method 0 1 2 3 4 5 6–10 >10

Number of PSFs

MACHOS I =1.2 1003 1378 561 218 78 50 72 45
MACHOS I =1.6 345 1115 689 354 212 166 291 233
MACHOS I =2.0 270 1019 661 361 207 171 376 340
MACHOS I =2.4 240 967 626 357 217 169 420 409

MACHOS I =1.2 1061 1298 498 202 66 41 54 32
MACHOS I =1.6 398 1102 626 351 202 147 252 174
MACHOS I =2.0 298 1030 617 356 195 157 343 256
MACHOS I =2.4 267 971 603 363 188 167 376 317

ADDA 644 1381 548 253 133 81 123 89

ProDom 57 433 461 452 318 251 659 621

The top half of the table contains numbers derived from the MACHOS classification on the complete protein dataset. The bottom half shows the numbers calculated from different
classification methods, which used a common subset of the complete protein dataset as input (see Methods).

3.3 Validation with Pfam
To estimate the quality of our subsequence families, we compared
our classification of protein subsequences with Pfam, a well-
established expert-curated domain database (Finn et al., 2006).
The evaluation methodology as proposed by Yona et al. (1999)
was adapted to produce quality scores for our clustering results at
different inflation parameters (see Methods).

Quality scores reflecting how well our clusters correspond to Pfam
domain families are shown in Table 1. It is notable that MACHOS
quality is not greatly affected by granularity except at I =1.2, where
MACHOS are largest (Table 1). A subsequence contributes to the
quality score only if it is present in the union of an MACHOS with
a PSF that overlaps it by ≥50% (see Methods). Given a fixed size
distribution of PSFs, large MACHOS are less frequently overlapped

to this extent, and this is reflected in the relatively large number
(1003) of PSFs that do not overlap a MACHOS by ≥50% at I =1.2
(Table 2). For the PSFs that do overlap one or more MACHOS,
most overlap three or fewer MACHOS (Table 2), and relatively
high numbers of FN were observed, leading to a low overall quality
score (Table 1). In contrast, more PSFs overlap MACHOS generated
at I ≥1.6, and the corresponding quality scores are markedly higher
(Table 2). Our results suggest that the MACHOS generated at I ≥1.6
are in better agreement with PSFs.

Quality scores for MACHOS generated at I ≥1.6 do not differ
greatly, although they increase slightly at higher inflation values
(Table 1). However, MACHOS generated at higher inflation values
are much more granular, yielding shorter subsequences in larger
numbers of families (Fig. 4B). In this sense MACHOS generated at

i82



[18:10 18/6/03 Bioinformatics-btn144.tex] Page: i83 i77–i85

MACHOS

Fig. 6. The distributions of subsequence/domain lengths in non-singleton
families are shown using data from six family classification schemes
(indicated by coloured lines): MACHOS generated at different inflation
values from 1.2 to 2.4, ADDA (orange line) and ProDom (black line). The
distributions of subsequences >700 residues in length are not shown as they
form a long tail. The continuous coloured lines connect underlying data
points and are used to aid visual analysis.

I =1.6 are a good compromise between accuracy and the need to
avoid over-fragmentation into short subsequences.

3.4 Comparison with ADDA and ProDom
In order to compare our MACHOS with the domain or module
families produced by other fully automated classification schemes, a
set of 58 985 protein sequences was identified as the intersection of
source data among ADDA, ProDom and our own dataset of 125 008
non-redundant proteins (see Methods). The following comparative
analyses are based on different classifications of this intersection
dataset.

The length distributions of our merged subsequences, ADDA
modules and ProDom domains within non-singleton families are
shown in Figure 6. Our subsequences generally decrease in length
as the granularity of our clustering increases (i.e. as our MACHOS
become, on average, smaller). The length distribution of ProDom
domains is similar to that of our subsequences when we generate
MACHOS at I =2.0 and 2.4. In general, ADDA proposes longer
module lengths, with interesting spikes in the count at lengths that
are exact multiples of 10; to our knowledge this has not been
previously documented, and presumably arises from a rounding
operation inherent in the ADDA method.

Quality scores for the different clusterings, again using the PSFs
as the reference classification, were calculated using the same
method and criteria (see Methods) and are shown in Table 1. Again,
MACHOS show notably lower quality scores when generated at
I =1.2 than at higher granularity, and the same trend is observed
in numbers of non-overlapping PSFs. The mean quality scores of
our MACHOS generated at any inflation value are higher than
those from ADDA and ProDom. On a finer level, we compared
the distribution of PSFs that overlap MACHOS or ADDA/ProDom
domain families by 50% across different quality scores (Fig. 7).
The relatively low mean quality score of ProDom domain families
is apparent as 87% of overlapped PSFs achieved quality scores of

Fig. 7. The distribution of quality scores achieved by different
subsequence/domain family classification methods (indicated by coloured
lines) are shown with a bin size of 10%. The coloured lines connect
underlying data points and are used to aid visual analysis.

<60%. On the other hand, larger proportions of PSFs overlapping
ADDA domain families and MACHOS achieved higher quality
scores compared to ProDom. However, the PSF coverage of ADDA
domain families is lower than that of MACHOS, reflected by the
relatively larger number of non-overlapping PSFs (Table 2). The
results indicate that our MACHOS achieve better coverage, and are
more congruent with PSFs, compared with the output of the other
methods we consider.

3.5 Non-overlapping Pfam families
Whereas our concern so far has been the extent of overlap and
agreement between PSFs and MACHOS, we now focus on the PSFs
that fail to overlap any MACHOS by 50%. At I =1.6 there are 345
of these non-overlapping PSFs (Table 2); these PSFs are generally
small (Supplementary Table 1), and collectively represent only 2.9%
of the total residues covered by all PSFs.

Interestingly, the number of non-overlapping PSFs is significantly
less for ProDom than for any of these other approaches. This
highlights a potential bias, in that much of the Pfam domain family
annotation, namely Pfam-B, was derived from ProDom families
in the first place (Bateman et al., 2004). Intriguingly, however,
quality scores of the ProDom families are the lowest among all
these classification schemes, even when FP are excluded from
consideration. The reason for this phenomenon appears to be that
ProDom families are more granular than MACHOS or ADDA
domain families. Compared to other methods, ProDom generated
the highest number of families (Table 1). As the granularity
of subsequence/domain families increases, the number of non-
overlapping PSFs decreases. This trend can also be observed in
MACHOS, where the number of non-overlapping PSFs falls with
increasing inflation value or granularity (Table 1). The consequence
of having such a high coverage of PSFs is that individual PSFs tend
to overlap higher numbers of subsequence/domain families, which
is especially true in the case of ProDom (Table 2). Since the quality
score favours smaller numbers of subsequence/domain families that
are overlapped by individual PSFs, the quality scores achieved by
ProDom are generally lower as a result.
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Fig. 8. The family of proteins that contain the glutamyl/glutaminyl-tRNA
synthetase domain (shown in red). Each protein is shown with its ENSEMBL
translation ID and a horizontal line representing the full-length protein
sequence. Coloured rectangles drawn on top of horizontal lines are Pfam
domain annotations and the different colours refer to different domain
families as indicated. Coloured rectangles beneath horizontal lines represent
subsequences delineated by our method and those with the same colour
belong to a distinct MACHOS. All lines and rectangles are drawn to scale
with respect to the length of the protein sequences.

3.6 Example of subsequence families within a ‘protein’
family

We illustrate our method using a group of proteins in our dataset
which contain the glytamly/glutaminyl-tRNA synthetase domain
as annotated by Pfam (Fig. 8). One of our MACHOS generated
at inflation value of 1.6 was found to delineate independently all
occurrence of this domain within the dataset. More importantly,
it is apparent that subsets of this group of proteins also share
other domains. For example, ENSRNOP00000033323 and CG5394-
PA both contain the WHEP-TRS, aminoacyl-tRNA synthetase and
anticodon-binding domains. In this case, one MACHOS uncovered
the WHEP-TRS domains, and another MACHOS uncovered the
aminoacyl-tRNA synthetase and anticodon-binding domains. This is
an example where multiple Pfam domains may be found within the
same MACHOS; in our experience, this occurs when the domains
are always found together in the same order within the protein
dataset. Effectively, the combination of domains merely becomes
a single ‘unit’ in our approach. Another example is the MACHOS
uncovering the two parts of the glytaminyl-tRNA synthetase non-
specific RNA-binding domain which occur in the same order in four
of the eight proteins as mentioned.

4 DISCUSSION
We have developed a method for the automated delineation of
homologous subsequence families. This method first resolves
proteins into sensible fragments which can show conflicting

homology signals indicative of multi-domain organization. Then the
elegant Markov clustering algorithm, previously used in clustering
complete proteins into families, is employed to resolve more-
strongly connected clusters of these fragments that we interpret as
putatively homologous subsequence families. By analysis of protein
sequences from six eukaryotic proteomes, we demonstrate that our
method can automatically delineate subsequence families that are
akin to Pfam domain families. Our approach differs from existing
methods in the approach by which subsequences are constituted,
and the Markov clustering approach to resolution of subsequence
families. It is difficult to draw direct comparisons on the merits and
shortfalls of all the methods, as they take quite different approaches
to resolve subsequence/domain families. But the simplicity and
flexbility of our approach have produced subsequence families that
achieve better coverage and are more congruent with Pfam domain
families, compared to ADDA and ProDom.

The most computationally demanding parts of the method
are (a) inference of homology using SSEARCH and LALIGN
and (b) Markov clustering of the subsequence homology graph.
Together they required ≈ 13 679 h of CPU time for completion.
We have thus been prevented from carrying out the same
analyses on larger numbers of proteomes. However, parallel
implementation of some of these algorithms already exists (e.g.
parallel SSEARCH) or is being developed (e.g. parallel Markov
clustering: K. Burrage and A. Bustamam, personal communication),
which should enable our pipeline to handle much larger protein
datasets.

It is important to note that while our families show good
correspondence to trusted, manually curated Pfam domain families,
our objective has not been to retrieve families of structural domains,
but rather to assemble sets of full- or partial-length protein
homologs that have been delineated with sufficient resolution (both
along the sequence co-ordinates, and among species) for high-
quality application in comparative genomic or proteomic analyses
including selection of model organisms, interolog-based inference
and phylogenetic analysis.

Funding: This work was supported by Australian Research Council
grant CE0348221.

Conflict of Interest: none declared.

REFERENCES
Altschul,S.F. et al. (1990) Basic local alignment search tool. J. Mol. Biol., 215, 403–410.
Apic,G. et al. (2001) Domain combinations in archaeal, eubacterial and eukaryotic

proteomes. J. Mol. Biol., 310, 311–325.
Bateman,A. et al. (2004) The Pfam protein families database. Nucleic Acids Res., 32,

D138–D141.
Benson,D.A. et al. (2007) GenBank. Nucleic Acids Res., 35, D21–D25.
Berman,H.M. et al. (2000) The Protein Data Bank. Nucleic Acids Res., 28, 235–242.
Birney,E. et al. (2006) Ensembl 2006. Nucleic Acids Res., 34, D556–D561.
Bork,P. (1991) Shuffled domains in extracellular proteins. FEBS Lett., 286, 47–54.
Bru,C. et al. (2005) The ProDom database of protein domain families: more emphasis

on 3D. Nucleic Acids Res., 33, D212–D215.
Carninci,P. et al. (2005) The transcriptional landscape of the mammalian genome.

Science, 309, 1559–1563.
Dorit,R.L. et al. (1990) How big is the universe of exons? Science, 250, 1377–1382.
Enright,A.J. et al. (2002) An efficient algorithm for large-scale detection of protein

families. Nucleic Acids Res., 30, 1575–1584.
Finn,R.D. et al. (2006) Pfam: clans, web tools and services. Nucleic Acids Res., 34,

D247–D251.

i84



[18:10 18/6/03 Bioinformatics-btn144.tex] Page: i85 i77–i85

MACHOS

Fitch,W.M. (1970) Distinguishing homologous from analogous proteins. Syst. Zool.,
19, 99–113.

Gracy,J. and Argos,P. (1998) Automated protein sequence database classification. II.
Delineation of domain boundaries from sequence similarities. Bioinformatics, 14,
174–187.

Hall, B.K. (1994) Homology. The hierarchical basis of comparative biology. Academic
Press, San Diego.

Harlow,T.J. et al. (2004) A hybrid clustering approach to recognition of protein families
in 114 microbial genomes. BMC Bioinformatics, 5, 45.

Heger,A. and Holm,L. (2003) Exhaustive enumeration of protein domain families.
J. Mol. Biol., 328, 749–767.

Holm,L. and Sander,C. (1996) Mapping the protein universe. Science, 273, 595–603.
Huang,X.Q. et al. (1990) A space-efficient algorithm for local similarities. Comput.

Appl. Biosci., 6, 373–381.
John,B. et al. (2004) Human microRNA targets. PLoS Biol., 2, e363.
Jones,S. et al. (1998) Domain assignment for protein structures using a consensus

approach: characterization and analysis. Protein Sci., 7, 233–242.
Koonin,E.V. (2005) Orthologs, paralogs, and evolutionary genomics. Annu. Rev. Genet.,

39, 309–338.
Krause,A. et al. (2005) Large scale hierarchical clustering of protein sequences. BMC

Bioinformatics, 6, 15.
Kriventseva,E.V. et al. (2001) Clustering and analysis of protein families. Curr. Opin.

Struct. Biol., 11, 334–339.
Kunin,V. et al. (2005) The properties of protein family space depend on experimental

design. Bioinformatics, 21, 2618–2622.
Lankester,E.R. (1870) On the use of the term homology in modern zoology. Ann. Mag.

Nat. Hist., 6, 34–43.
Lund,C. and Yannakakis,M. (1994) On the hardness of approximating minimization

problems. J. ACM, 41, 960–981.

Margoliash,E. (1969) Homology: a definition. Science, 163, 127.
Owen,R. (1843) Lectures on the comparative anatomy and physiology of the

invertebrate animals, delivered at the Royal College of Surgeons, I 1843. Longmans
Brown Green & Longmans, London. pp. 379.

Pearson,W.R. (1991) Searching protein sequence libraries: comparison of the sensitivity
and selectivity of the Smith-Waterman and FASTA algorithms. Genomics, 11,
635–650.

Price,G.A. et al. (2005) Statistical evaluation of pairwise protein sequence comparison
with the Bayesian bootstrap. Bioinformatics, 21, 3824–3831.

Richardson,J.S. (1981) The anatomy and taxonomy of protein structure. Adv. Protein
Chem., 34, 167–339.

Servant,F. et al. (2002) ProDom: automated clustering of homologous domains. Brief.
Bioinform., 3, 246–251.

Smith,T.F. and Waterman,M.S. (1981) Identification of common molecular
subsequences. J. Mol. Biol., 147, 195–197.

The Uniprot Consortium (2007) The Universal Protein Resource (UniProt). Nucleic
Acids Res., 35, D193-D197.

van Dongen,S. (2000) Graph Clustering by Flow Simulation. PhD thesis. University of
Utrecht, Utrecht.

Yona,G. et al. (1999) ProtoMap: automatic classification of protein sequences, a
hierarchy of protein families, and local maps of the protein space. Proteins, 37,
360–378.

Yona,G. et al. (2000) ProtoMap: automatic classification of protein sequences and
hierarchy of protein families. Nucleic Acids Res., 28, 49–55.

Zuckerkandl,E. and Pauling,L. (1965a) Evolutionary divergence and convergence
in proteins. In Bryson,V. and Vogel,H.J. (eds.), Evolving Genes and Proteins.
Academic Press, New York, pp. 97–166.

Zuckerkandl,E. and Pauling,L. (1965b) Molecules as documents of evolutionary history.
J. Theor. Biol., 8, 357–366.

i85


	MACHOS: Markov clusters of homologous subsequences
	Simon Wong and Mark A. Ragan
	1 Introduction
	2 Methods
	3 Results
	4 Discussion



