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Background: Acute myeloid leukemia (AML) is a clinically heterogeneous group of
cancers. While some patients respond well to chemotherapy, we describe here a
subgroup with distinct molecular features that has very poor prognosis under
chemotherapy. The classification of AML relies substantially on cytogenetics, but most
cytogenetic abnormalities do not offer targets for development of targeted therapeutics.
Therefore, it is important to create a detailed molecular characterization of the subgroup
most in need of new targeted therapeutics.

Methods: We used a multi-omics approach to identify a molecular subgroup with the
worst response to chemotherapy, and to identify promising drug targets specifically for this
AML subgroup.

Results:Multi-omics clustering analysis resulted in three primary clusters among 166 AML
adult cancer cases in TCGA data. One of these clusters, which we label as the high-risk
molecular subgroup (HRMS), consisted of cases that responded very poorly to standard
chemotherapy, with only about 10% survival to 2 years. The gene TP53 was mutated in
most cases in this subgroup but not in all of them. The top six genes over-expressed in the
HRMS subgroup included E2F4, CD34, CD109, MN1, MMLT3, and CD200. Multi-omics
pathway analysis using RNA and CNA expression data identified in the HRMS subgroup
over-activated pathways related to immune function, cell proliferation, and DNA damage.

Conclusion: A distinct subgroup of AML patients are not successfully treated with
chemotherapy, and urgently need targeted therapeutics based on the molecular
features of this subgroup. Potential drug targets include over-expressed genes E2F4,
and MN1, as well as mutations in TP53, and several over-activated molecular pathways.
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INTRODUCTION

AML not only represents one of the most fatal leukemias but also
ranks among the deadliest of all cancers. It presents a myriad of
chromosomal alterations and gene mutations, comprising a
clinically heterogeneous group of diseases (Green and Konig,
2020). Cytogenetic abnormalities (chromosomal translocations,
deletions, etc.) are found in most AML cases, and strongly
correlate with prognosis. Therefore, the modern WHO
classification of AML categories and subtypes relies substantially
on cytogenetics (Carter et al., 2020). However, unlike molecular
features (mutations, overexpressed signaling pathways, etc.)
cytogenetic abnormalities usually do not offer molecular targets
that allow for development of targeted therapeutics. Therefore,
even where cytogenetic aberrations are established and correlated
with prognosis, it is important to create a detailed molecular
characterization of those subtypes most in need of new targeted
therapeutics. Many AML patients are treated using untargeted
chemotherapy. This is effective against those cytogenetic
subgroups recognized as having good prognosis under that
treatment regimen, but chemotherapy offers very low survival
rates to those cytogenetic subgroups recognized as having poor
prognosis under this treatment regimen, with only about 20%
survival beyond 2 years (Cancer Genome Atlas Research et al.,
2013). Currently, nine agents have been approved, including FLT3,
IDH, Bcl-2 inhibitor, and others. Due to the heterogeneity of AML,
there is a need to identifying new molecular targets for future
targeted therapies (Kantarjian et al., 2021). In recent years,
developments in multi-omics data integration have been useful
in identifying new subgroups as well as biomarkers for different
types of cancers. Nguyen et al. (2020a), used three-omics profiles,
DNA copy number aberration, methylation, and mRNA
expression, to discover two biologically distinct subgroups in
breast cancer. Zheng et al. (2020), used methylation array data
and gene expression data to identify prognostic biomarkers in
AML. Nguyen et al. (2020b), used mRNA, Methylation, and
miRNA from many types of cancer to develop tools and
discover disease subtypes. Therefore, we examined multi-omics
data to seek intrinsic molecular subgroups that could guide the
development of additional effective targeted therapies for patients
with poor prognosis under chemotherapy.

MATERIALS AND METHODS

We began with an unsupervised clustering analysis using two types
of data: somatic copy number alteration (CNA), and gene
expression levels from RNA-seq measurements. We then
identified differences among the three resulting clusters in their
risk stratification, and in overall survival, using datasets with
information on mutations and putative copy number alterations
from GISTIC (Genomic Identification of Significant Targets in
Cancer), with matched clinical data. Next, we performed pathway
analyses to find differences among the three molecular subgroups
in which molecular pathways they were enriched in. Further
analyses focused on molecular characterization of the one
cluster with the worst prognosis under the chemotherapy.

Dataset Preparation
We downloaded the TCGA adult AML datasets directly from
cBioPortal for cancer genomics (https://www.cbioportal.org/
study/clinicalData?id�laml_tcga_pub) (Cerami et al., 2012).
We used the total of 166 samples with transcriptomic, copy
number alteration, mutation, and clinical datasets. These
samples were obtained from peripheral blood and represented
the major morphologic and cytogenetic subgroups of AML
(Cancer Genome Atlas Research et al., 2013). We used two
different CNA datasets: CNA segmentation and discrete CNA
values datasets. For the CNA segmentation, we estimated gene
level CNA as the segment mean of copy numbers of the genomic
region of a gene by using TCGA-Assembler 2 (Wei et al., 2018)
downloaded from https://github.com/compgenome365/TCGA-
Assembler-2 (version 2.0.6). Degree of CNA was calculated as
log2 (tumor values/normal values). Across samples, CNA of all
genes had a standard deviation greater than the median.
Therefore, to exclude near normal (very low) CNA values,
only genes with a sum of CNA values across samples greater
than zero were used for analysis, resulting in 13,019 genes total.
Hg19 annotation was used to obtain gene position. For the
integration with this CNA expression dataset, we used RSEM
(RNA-Seq by Expectation Maximization) expected raw count
expression dataset. Genes without at least one count-per-million
reads in at least 50% of the total samples were filtered out. The
resulting RNA dataset was log2 transformed and quantile
normalized. A total of 12,934 genes were retained for analysis.
From the discrete CNA values dataset, putative copy-number
calls determined using GISTIC 2.0 were used to obtain the
information. Patients with CNA values greater than or equal
to 1 were classified as copy number amplifications, while patients
with values less than or equal to -1 were classified as copy number
deletions. Patients with zero values were classified as unchanged.
We also used mutation information, to identify differences
among our subgroups, focusing on genes known to be
important in AML: RUNX1, RUNX1T1, CEBPA, NPM1,
DNMT3A, and TP53, as well as the genes coding for the
targets of currently approved targeted drugs for AML: IDH1,
IDH2, CD33, BCL2, and FLT3 (Kantarjian et al., 2021). The
clinical dataset provided information on cytogenetic
abnormalities and on clinical outcomes. Clinical information
on cytogenetic risk and genetic abnormalities is summarized
in Supplementary Table 1.

Pathway Database
To study molecular pathways, we downloaded the gmt file of
MSigDB hallmark gene set collection (version 7.1) from https://
www.gsea-msigdb.org/gsea/msigdb/collections.jsp for
annotation. The 50 hallmark pathways in this collection each
represent a biological state or process (Liberzon et al., 2015).

Multiple Omics Data Integrative Clustering
and Gene Set Analysis (MOGSA)
MOGSA is an R software package for multivariate single sample
gene set analysis (Meng et al., 2019). Using this package (version
1.22.1), we integrated transcriptomic data and gene level copy
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number alterations (CNA) over the same set of samples. Firstly,
we performed multiple factorial analysis (MFA) (Wei et al., 2018)
from MOA function of MOGSA to determine the number of
principle components based on the integration of CNA and
RNA-seq Expression. Next, we used the MOGSA (the
Integrative Single Sample Gene-set Analysis of Multiple Omics
Data) function to identify the MSigDB hallmark pathways’ gene
set scores (GSS). We used these parameter settings: nf � 6 (6
chosen PCs), proc. row � ” center_ssq1″, w. data � “lambda1”,
and statis � FALSE. In order to recognize potential intrinsic
subgroups among the cases, we used ConsensusClusterPlus
(version 1.52.0) (Wilkerson and Hayes, 2010) to identify
clusters. We used correlation between variables from the first
6 PCs derived from MFA (Figure 1) as the distance, and with
these parameter settings: maxK � 6, reps � 10,000, pItem � 0.8,
clusterAlg � ” hc”, finalLinkage � “ward.D2”, distance �
“pearson”. Lastly, to choose representative molecular pathways
from the selected three clusters, we selected the pathways
resulting from the MOGSA function with GSS FDR (false
discovery rate) values smaller than 0.01 in 50% of all samples.
We used the R functions, fitting generalized linear models (GLM)
to calculate the difference of GSSs in each subgroup versus that in
the rest and selected the top five and bottom five representative
pathways ranked by GLM T values, resulting in 16 unique
representative pathways with GLM FDR <0.01. The three
subgroups differ significantly in these representative pathways
with ANOVA test FDR <0.001. We visualized z-score scaled
median GSSs in a heatmap to show the overall pathway
enrichment from both data types as well as the contribution of
each data type to the subgroups (Figure 3B).

Survival Analysis
We used the R modules Survfit and coxph (Therneau and
Grambsch, 2000) to perform overall survival analysis based on
the three subgroups resulting from the total of 166 TCGA adult
samples.

RESULTS

From the MFA analysis, the first 6 PCs were chosen for
unsupervised clustering gene set analysis due to the equal
contribution of CNA and RNA-seq expression (Figure 1)

Through unsupervised clustering, we selected the three
subgroups as the best clustering solution because this number
of clusters gave the greatest area under the CDF curve
(Figure 2A), and the best separation of clusters (Figures
2B,C). We named the three resulting clusters as follows: C1 or
“Intermediate Risk Molecular Subgroup”; C2 or “Low Risk
Molecular Subgroup”; and C3 or “High Risk Molecular
Subgroup”. Descriptive names were based on our survival
analysis (Figure 3A).

The three putative subgroups of cases resulting from our
unsupervised clustering analysis (Figure 2) differed from each
other both in their prognosis (Figure 3A), with p � 2 x 10−8

(adjusted by gender and age), and in their molecular traits, with
ANOVA test FDR <0.001 (Figure 3B).

These three putative AML subgroups also differed in several
other aspects of their molecular makeup (Figure 4).

Among the eleven AML genes we examined, the HRMS
subgroup had significantly fewer gene mutations than the

FIGURE 1 | Distribution of variances explained by the 20 principal components (PCs). The first six PCs were used to identify subgroups by clustering. These
contained a total of 43.6% of total variance, with CNA and Gene expression contributing equally.
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other patients. In contrast, among these eleven AML genes, the
HRMS subgroup had a higher frequency of copy number
alterations (CNAs) (Figure 4). When separated by CNA type,
this difference was statistically significant for copy-number
amplifications (Fisher exact test, p � 0.014), and for copy-
number deletions (p � 0.0001).

The patients in our HRMS subgroup had significantly lower
overall survival than did other patients (Figure 3A). This was
largely consistent with their risk stratification based on cytogenetics
(see Supplementary Table 2). The three new molecular subgroups
were significantly associated with established cytogenetic risk
stratifications from clinical data (Figure 5; Fisher’s exact test, p
value <10−14). Among our samples, most patients with a “poor”

cytogenetic risk classification fell within our multi-omics HRMS,
while all those with a “good” cytogenetic risk classification fell into
other subgroups. As expected, based on this association with
established poor cytogenetic risk stratification, HRMS patients
had poor overall survival. However, HRMS included only a
subset of the poor cytogenetic risk group patients in our dataset
(23 of 35 total, see Supplementary Table 2), and this subset had
even worse survival than did cytogenetic poor risk patients as a
whole set.

In a previous analysis, overall survival of patients in the poor
cytogenetic risk group at 2 years was reportedly about 20%
(Cancer Genome Atlas Research et al., 2013) (we replicated
this result with our subset of 166 of the 200 patients used in

FIGURE 2 | (A)Delta area shows the numbers of clusters (k) (X axis) and their relative change in area under CDF curve (Y-axis). (B) Silhouette plot of chosen clusters
with k � 3. (C) The separation of three subgroups: Low Risk Molecular Subgroup, Intermediate Risk Molecular Subgroup, and High-Risk Molecular Subgroup.

FIGURE 3 | (A)Overall Survival outcomes of our three molecular subgroups differed significantly (p � 2 × 10−8 (adjusted by gender and age) (B) activation levels of
16 pathways (in rows), also differed significantly, as measured by Multi omics Gene set Scores analysis of molecular subgroups with ANOVA test -- false discovery rate
(FDR< 0.001).
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the earlier study, P (adjusted by gender and age) � 9E-09, see
Supplementary Figure 1). In contrast, among the patients in our
HRMS subgroup, overall survival at 2 years was much worse, at
only about 10% (Figure 3A).

Hereafter, we focused on the high-risk molecular subgroup
(HRMS), because patients in this subgroup had significantly
worse clinical outcomes than other patients and did not over-
express the drug-target genes for existing targeted therapeutics
(IDH1, IDH2, CD33, BCL2, and FLT3). We focused on this
molecular subgroup for further molecular characterization in
search of promising new drug targets.

The multi-omics pathway analysis using RNA and CNA
expression data revealed significant differences among the
molecular subgroups in the combined activation gene set
scores of various molecular pathways from both datasets (see
Supplementary Table 3 for the single gene set scores (GSS) of
these pathways). The HRMS subgroup showed higher activation
than other patients of most molecular pathways related to
immune function, cell proliferation, and DNA damage, with
CNA expression contributing more than RNA-seq expression
to this overall GS (Figure 3B).

FIGURE 4 | Summary of molecular differences among the three patient subgroups.

FIGURE 5 | Sankey Diagram: Counts of patients in our three molecular
subgroups (Left), as classified by established cytogenetic risk levels (Right).
Counts of patients can be found in Supplementary Table 2.

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 7770945

Nguyen et al. AML Highest Risk Adult Patients

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Among genes known to be important in AML, mutation
frequencies differed in our HRMS subgroup versus other
patients (Table 1). Among the nine AML genes in our
mutation data set, most (6/9) had lower mutation frequencies
in HRMS than in other patients, but these differences were not
statistically significant. In contrast to the other AML genes, TP53
was mutated in most patients in the HRMS, but not in any other
patients, constituting a highly significant difference (Table 1).

Gene Over-expression
The dataset for RNA-seq included 11 genes known to be
important in AML: IDH1, IDH2, CD33, BCL2, FLT3,
DNMT3A, NPM1, CEPBA, RUNX1, E2F4, and TP53.

Eight of these 11 genes varied significantly among clusters (ANOVA
test, FDR <0.01). The other three genes, including IDH2 and CD33
inhibitors, did not differ significantly among these subgroups. We
observed that BCL2 and FLT3 were elevated in Low-Risk while IDH1
was elevated in the Intermediate-Risk subgroup (Figure 6). Only one of
these genes, E2F4, had elevated expression in the HRMS subgroup
(Figure 7). This difference was highly significant (ANOVA FDR �
8E-06).

In addition to the eleven genes listed above, we compiled
expression data on a total of 135 AML genes involved in

rearrangement, immune interaction, and blast from Mitelman
database, OMIM, and publications (see Supplementary Table 4,
“146 analyzed AML genes”). Altogether, we identified a total of
104 genes that differed significantly among these three molecular
subgroups with Anova FDR <0.01 (see Supplementary Table 5,
“significant AML genes”). We further looked for genes that were
more highly expressed in one subgroup and found that 32 genes
were highly expressed in low Risk, 39 genes were highly expressed
in intermediate risk group, and 21 genes were highly expressed in
high risk (Figure 4 and see Supplementary Table 6, “significant
AML genes in subgroups”).

DISCUSSION

To shed light onwhether currently available drugsmight be well suited
for each of our molecular subgroups, we examined each subgroup for
expression levels of the drug-targeted genes: BCL2 (venetoclax), FLT3
(midostaurin and gilteritinib), IDH1, and IDH2 (enasidenib and
ivosidenib), and CD33 (gemtuzumab and ozogamicin) (Carter
et al., 2020; Kantarjian et al., 2021). For each of these drug targets,
one subgroup showed higher expression than the others. However,
among the three subgroups, the HRMS subgroup did not show the
highest expression of any available drug target (Figure 6). This suggests
a need for new potential drug targets for this subgroup especially. The
HMRS subgroup that we identify here based on molecular markers,
overlaps substantially with the long-established cytogenetic high-risk
subtype (Figure 5), but differs in two important ways. Firstly, after
treatment with chemotherapy, The HMRS had even lower survival
than does the cytogenetic high-risk subtype. Thus, our molecular
subgroup offers a more focused classification of cases that are not
successfully treated with chemotherapy, and that therefore urgently
need new targeted therapeutics. Secondly, unlike cytogenetic features,
which do not offer drug targets, this subgroup is characterized by
molecular traits that do offer potential as new drug targets. Our
findings indicate several candidates for drug targets specific to the
extremely high-risk patients of our HRMS subgroup. These candidate
targets include mutations of gene TP53, which was mutated in most
HRMS patients (Table 1), as well as overexpression of six genes that
were highly over-expressed in the HRMS subgroup, including CD34,

TABLE 1 | Frequencies of mutation in AML genes in HRMS subgroup, versus
other patients. p-values are from Fisher’s exact tests on counts of mutant and
wild-type genes.

Gene Frequency
in HRMS (%)

Frequency outside HRMS p value (<0.01)

RUNX1 0 11% NS
RUNX1T1 0 1.4% NS
CEBPA 8 7.1% NS
FLT3 12 31% NS
NPM1 4 33% 0.003a

DNMT3A 20 24% NS
TP53 56 0 10−10a

IDH1 8 9% NS
IDH2 4 10.6% NS

Note: NS: nonsignificant, and.
asignificant.

FIGURE 6 | BCL2, FLT3, and IDH1 gene expression.
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CD109, CD200, E2F4,MN1, andMLLT3. Other potential targets may
be found in the molecular pathways that are highly activated in our
HRMS subgroup (Figure 3B).

One of the strongest molecular associations with our HRMS
subgroup was mutations in TP53. This is consistent with the fact
that TP53mutations are known to be associated with cytogenetic
abnormalities, and with poor outcomes, as is our HRMS
subgroup. It has long been established that TP53 mutations
are associated with resistance to chemotherapy and short
survival in hematologic malignancies (Wattel et al., 1994). The
importance of TP53 mutations specifically for our HRMS
subgroup is also consistent with the guidelines of the National
Comprehensive Cancer Network, which classify AML patients
with normal cytogenetics into the poor/adverse risk category if
they harbor TP53 mutations (Daver et al., 2020). In AML,
mutations in TP53 are associated with poor responses to
chemotherapy, and with very poor prognosis (Wang et al.,
2020). These authors (Wang et al., 2020) suggested that it was
important to test whether other pathways activated by TP53
mutations could be therapeutically targeted. Our results should
contribute to reaching that goal.

The overexpression of MN1 is known to confer resistance to
chemotherapy, and a worse AML prognosis. Pardee (Pardee, 2012)
investigated the mechanisms for this and suggested that therapies
directed at increasing TP53 function may be useful for such patients.
Another of the genes most over-expressed in our HRMS subgroup
was E2F4. This is unsurprising, as it is known that TP53 mutations
can drive the expression of E2F4 (Blandino and Di Agostino, 2018).
The over-expression of E2F4 in our HRMS subgroup was also
consistent with a recent report that E2F4 over-expression was
associated with poor prognosis in AML patients, and that in a
mouse model, depleting E2F4 inhibited proliferation and suppressed
the growth of AML cells (Feng et al., 2020). These authors suggested

E2F4 as a potential therapeutic target (Feng et al., 2020), and here we
support that suggestion by showing the importance of this gene
specifically in the HRMS subgroup of patients expected to fare worst
under untargeted chemotherapy.

Other molecular characteristics of our HRMS subgroup include
highly activated molecular pathways in the categories of immune
function, DNA damage, and cell proliferation, all three of which are
consistent with previous reports. A high level ofDNAdamage has been
reported for cells of AML patients categorized as having high-risk
cytogenetics and is accompanied by activation of DNA damage
pathway (Cavelier et al., 2009). Our results show that inflammatory
response and IL6 JAK STAT signaling pathways were highly activated
in HRMS. This is consistent with the findings that the inflammatory
pathway leads to an activation of the JAK/STAT signaling in AML
which fosters leukemia proliferation (Habbel et al., 2020).

Our results suggest that pathways activated by mutations in
TP53 might be targeted therapeutically. We found that the
pathways highly activated in our HRMS are in the proliferation
category, including, E2F targets, G2M checkpoint, andMyc targets
V2 (see Supplementary Figure 2). Activation of these proliferation
pathways can be promoted by the overexpression of the E2F4 gene.

Limitation: Our sources provided data on a relatively small sample
of cases representing the HRMS subgroup, comprising only, 25 out of
166 cases, which may limit the power of our statistical results, but is
unlikely to affect the nature of the qualitative results.

CONCLUSION

A distinct subgroup of AML patients is not successfully treated
with chemotherapy, and urgently needs targeted therapeutics.
Potential new drug targets for this subgroup include over-
expressed genes E2F4, and MN1, as well as mutations in TP53,
and over-activation of several molecular pathways.
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