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Research has made clear that neighborhoods impact the health and well-being of
their residents. A related strand of research shows that neighborhood disadvantage
is geographically clustered. Because the neighborhoods of low-income and minority
populations tend to be more disadvantaged, neighborhood conditions help explain
racial and socioeconomic inequalities. These strands of research restrict processes of
neighborhood influence to operate only within and between geographically contiguous
neighbors. However, we are underestimating the role of neighborhood conditions in
explaining inequality if disadvantage extends beyond the residential and extralocal
environments into a network of neighborhoods spanning the urban landscape based on
where residents move within a city. I use anonymized mobile phone data to measure
exposure to air pollution among residents of poor and minority neighborhoods in
88 of the most populous US cities. I find that residents from minority and poor
neighborhoods travel to neighborhoods that have greater air pollution levels than
the neighborhoods that residents from White and nonpoor neighborhoods visit. His-
panic neighborhoods exhibit the greatest overall pollution burden, Black/White and
Asian/White disparities are greatest at the network than residential scale, and the
socioeconomic advantage of lower risk exposure is highest for residents from White
neighborhoods. These inequalities are notable given recent declines in segregation and
air pollution levels in American cities.
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A long line of research from a wide set of disciplines using a variety of methodological
approaches on different kinds of data has demonstrated the negative consequences of
living in disadvantaged neighborhoods on health and well-being (1–3). While debate still
exists as to which neighborhood mechanisms matter, a large number of epidemiological
studies have produced convincing evidence that exposure to environmental toxins in
the neighborhood negatively impacts a variety of health outcomes (4–6). Because the
neighborhoods of low-income and minority populations tend to be considerably more
disadvantaged than those of comparable higher-income and White populations, exposure
to adverse neighborhood conditions helps explain socioeconomic and racial inequalities
(7, 8). For example, studies have found that minority and poor neighborhoods tend to have
higher air pollution levels than White and nonpoor neighborhoods, partially explaining
inequalities in individual health outcomes, including elevated risk of premature mortality
from cardiovascular diseases and lung cancer and decreased cognitive functioning (6,
9–12). Another strand of research shows that neighborhood disadvantage is spatially
clustered, with minority neighborhoods, even if they are relatively advantaged, surrounded
by disadvantaged neighborhoods, further isolating them from opportunity-rich areas (13).
In other words, neighborhoods with large concentrations of poor, Black, or Hispanic
residents not only contain greater environmental hazards but also are surrounded by higher
levels of environmental risks in the “extralocal” setting.

These two strands of research restrict processes of spatial disadvantage to operate only
within neighborhoods and between geographically contiguous neighborhoods, similar to
an infection spreading from a localized point source. The implication is that space matters,
but that influence is constrained by distance and that nearest neighbors matter most.
However, if residents spend significant time outside of their neighborhoods and travel to
neighborhoods beyond those that are geographically adjacent, we are misestimating their
exposure (14–17). Individuals living in neighborhoods with high air pollution levels may
also travel to other high air pollution neighborhoods, thus exacerbating their health risks,
especially if activities in these neighborhoods are done primarily outdoors (e.g., spending
time at a park). Here, residents of racial minority and poor neighborhoods confront spatial
disadvantage at three ecological scales: their residential neighborhood, neighborhoods
adjacent to their residential neighborhood, and the network of neighborhoods connected
by the ways they move around the city for work, errands, and leisure.

Significance

Exposure to air pollution within
one’s residential neighborhood
has detrimental consequences on
health and well-being. Yet, this
effect may be mitigated or
exacerbated because individuals
spend much of their time outside
of their residential neighborhood
to travel to neighborhoods across
a city for work, errands, and
leisure. Using mobile phone data
to track neighborhood mobility in
large US cities, I find that
residents from minority and poor
neighborhoods travel to
neighborhoods that have greater
air pollution levels than the
neighborhoods that residents
from White and nonpoor
neighborhoods visit. These results
reveal that minority and poor
residents face environmental
inequalities at three geographic
scales: the neighborhoods they
live in, their bordering
neighborhoods, and the
neighborhoods they visit.
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Several research perspectives motivate this neighborhood net-
work framework. Most prominent is the work on activity spaces,
which encompass the spatial contexts in which individuals con-
duct their daily activities (18, 19). The activity space framework
recognizes that obligations, tasks, and social engagements may
draw people out of, and potentially far from, their residential
context. Therefore, relevant social spaces often emerge through
the dynamics of individuals’ movement between and among
neighborhoods. The literature on social networks also provides
theoretical motivation for studying neighborhood networks. So-
cial network theory predicts diffusion occurring through social
ties, which may occur between actors spatially distant from one
another (20, 21). The perspective adopted in this study moves
away from the individual-level nodes and ties that social network
and activity space research emphasize toward population-level
flows connecting neighborhoods. Spatial mobility flows, especially
those that are geographically distant, are shaped not just by
individual happenstance or geographic proximity, but also by
institutional ties or meaning frameworks (22), social distance be-
tween areas (23), and meso-level processes such as segregation and
gentrification (24, 25). As flows between neighborhoods persist,
origin and destination become linked, especially if counterflows
exist and residents maintain ties in both communities (17). These
sorts of interactions give the network its form and feed back into
the ways it affects both communities and individuals.

Studies using data on work commuting flows, geolocation
records from social media platforms, and other forms of mobil-
ity have found that urban mobility connects communities both
near and far (17, 26–29). However, only a few of these studies
have examined race or class differences in mobility, finding that
minority and poor neighborhoods are generally isolated from
White and nonpoor areas (28–31). Furthermore, even fewer
studies have examined exposure to other neighborhood conditions
outside of racial and poverty composition and how this exposure
is stratified by race and class (32–34). In other words, although
we know that residents travel to distant neighborhoods and the
socioeconomic and racial compositions of these neighborhoods
follow patterns of social isolation and segregation, we know little
else about their other ecological features. This study fills these gaps
by using anonymized mobile phone data to measure exposure
to environmental toxins among residents of poor and minority
neighborhoods in 88 of the most populous US cities. The study
does not model causal pathways, but instead sheds light on the
racial and socioeconomic neighborhood disparities in exposure
to pollution levels brought about by the day-to-day mobility of
residents within a city. I focus on air pollution because unlike
demographic and socioeconomic conditions such as poverty and
racial composition individuals are more likely to be directly ex-
posed to air pollution, even if they are in the neighborhood for
a brief period. Furthermore, while the mechanisms underlying
the connections between individual health and neighborhood
racial and poverty composition are still debated, the pathways
connecting health and neighborhood exposure to environmental
toxins are better understood (3, 6, 10, 14).

Materials and Methods

All data were collected at the census tract level for the 100 most populated cities in
the United States based on 2018 estimates. As relatively permanent subdivisions
of a county designed to be homogeneous with respect to general population
characteristics, census tracts are the most common proxy for neighborhoods in so-
cial science research (17). Cities are used as the broader geographic container to
align the findings with prior work on neighborhood structural connectedness (27,
28, 34). Recognizing that mobility nontrivially extends beyond city boundaries, I
examine the mobility of city residents to neighborhoods within the city as well as

those located across the city’s wider metropolitan statistical area (MSA). An MSA
represents a core area containing a substantial population nucleus, together with
adjacent communities having a high degree of economic and social integration
with that core.

Cell phone location data rely on numerous smart phone apps and were
aggregated by SafeGraph, a company that builds and maintains anonymized
geospatial datasets for more than 40 million US smartphones. SafeGraph pro-
vides visit patterns to more than 6 million points of interest in the United States
to study mobility patterns and foot traffic. The dataset contains information on the
daily number of pings in a destination block group and the home block group
locations of the pings. SafeGraph defines a person’s “home” to be the location
where the mobile device is detected most at night (from 18:00 to 07:00) over
a 6-wk period. Location is defined at the Geohash-7 level (153 × 153-m grid).
Block groups with fewer than two cell phone devices are excluded from the data
(i.e., there must be at least two visitors). The SafeGraph sample of mobile devices
closely corresponds to US Census population counts by state (correlation of
r = 0.977 between SafeGraph and Census counts across state) and county
(r = 0.966). Similarly, strong correlations appear to exist between Census
counts and the estimated racial/ethnic composition (r = 1.00), education group
(r = 0.999), and income (r = 0.997) (35). The analysis includes pings from
November 2018 to November 2019 aggregated up to the census tract level.

Air pollution data come from the Environmental Protection Agency’s (EPA’s)
Environmental Justice Screening and Mapping Tool EJSCREEN. Following prior
work employing an environmental justice framework, I measure air pollution
exposure using particulate matter (PM2.5) levels (36). PM2.5 (μg/m3) describes
fine inhalable particles, with diameters that are generally 2.5 μm and smaller,
and levels are calculated by the EPA using a fusion of modeled and monitored
data collected from a nationwide network of monitoring sites. The most recent
national data for average annual PM2.5 (2017) were used.

I examined patterns of PM2.5 exposure in the destination neighborhoods
of White, Black, Hispanic, Asian, poor, and nonpoor origin neighborhoods. I
classify neighborhoods as poor and nonpoor based on whether the proportion of
residents living under the federal poverty line was greater than 30%. I classified
tracts as majority non-Hispanic White, non-Hispanic Black, non-Hispanic Asian,
or Hispanic using a threshold of 50%. I tested different thresholds (40% for poor
and 60% for race/ethnicity) and the general patterns do not significantly differ
(SI Appendix, Figs. S1–S5). I run the following fixed-effects ordinary least-squares
(OLS) regression model:

WPMik = β0 + β1Whiteik + β2Blackik + β3Asianik + β4Hispik

+ β5Poorik + β6Popik + αk + εik ,

where Whiteik , Blackik , Asianik , Hispik , and Poorik are dummy variables indicating
whether neighborhood i in city k is White, Black, Asian, Hispanic, or poor; αk is a
city fixed effect, which controls for unobserved city characteristics; and Popik con-
trols for differences in resident total population. Demographic data were obtained
from the 2014 to 2018 American Community Survey. Descriptive statistics of all
variables used in the study are provided in SI Appendix, Tables S1–S3.

The outcome WPMik is the average PM2.5 levels in neighborhood i’s neighbor-
hood mobility network weighted by the proportion of trips to each neighborhood
in a city’s MSA. The matrix W, which has all city tracts represented in rows and
all MSA tracts in columns, quantifies the spatial flows between a city’s neigh-
borhoods and all neighborhoods within a city’s MSA. Cell wij links tract i in the
row to tract j in the column and represents the proportion of i’s total trips going
to j. As a proportion, wij indicates the strength of the association between i and j
relative to all other neighborhoods in the MSA. Trips to the same neighborhood
i (wii = 0) were excluded. As an example of what the spatial distribution of flows
might look like for a particular neighborhood, Fig. 1 shows the number of trips
from single neighborhoods (in blue) in the South Side of Chicago and East Los
Angeles. The city boundaries are in black, and MSA neighborhoods within and
4 miles beyond the city boundary are shown. One can see that trips are concen-
trated in neighborhoods sharing a border, but flows extend to nonadjacent areas
and can reach quite far across the city and extend to neighborhoods outside of
city boundaries within the MSA.

I also examined neighborhood racial and socioeconomic intersectional dis-
parities in pollution exposure risk. Specifically, I ran the same fixed-effects model
specified above but interacted the poverty indicator with each race/ethnicity
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Chicago

0 5 10 mi

0 to 53
53 to 225
225 to 569
569 to 1,070
1,070 to 1,774
1,774 to 3,061
3,061 to 4,051

Los Angeles

0 5 10 mi

0 to 40
40 to 149
149 to 337
337 to 602
602 to 1,086
1,086 to 1,734
1,734 to 8,218

Fig. 1. Neighborhoods shaded by the number of trips from representative neighborhoods (in blue) in Chicago and Los Angeles.

indicator, yielding coefficients for indicators of nonpoor White, nonpoor Black,
nonpoor Hispanic, nonpoor Asian, poor White, poor Black, poor Hispanic, and
poor Asian neighborhoods. I excluded tracts that are missing values on any of
the variables used in the study, have no neighbors sharing a border, have no
trips leaving the neighborhood, and have no reported resident population. I also
excluded cities where 90% or more of their neighborhoods were considered to be
White, Black, Hispanic, Asian, poor, or nonpoor. I tested a threshold of 75% and
results do not significantly differ (SI Appendix, Figs. S6–S12). These filters yielded
a final analytic sample of 14,222 census tracts located in 88 cities.

Results

Prior work has documented the disproportionately higher lev-
els of exposure to environmental toxins in minority and poor
neighborhoods (12). Do these disparities persist in the places
that residents travel to outside of their residential neighborhood?
To answer this question, Fig. 2 presents the regression-adjusted
estimates and their 95% CIs of averagePM2.5 in a neighborhood’s
mobility network weighted by the number of trips coming out
of an origin neighborhood and traveling to a destination neigh-
borhood (see SI Appendix, Tables S4–S8 for estimates, SEs, and
95% CIs). On average the neighborhoods that residents from
non-White communities travel to have higher PM2.5 levels than
the neighborhoods connected to White communities. The PM2.5

levels in Hispanic, Black, and Asian networks are 12.4% (8.78),
11.5% (8.71), and 11.5% (8.71) higher than the levels in White
networks (7.81), respectively. Results also indicate disparities by
neighborhood poverty. The neighborhoods that residents from
poor neighborhoods travel to have average PM2.5 levels that are
6.8% (8.75) higher than those of the neighborhoods that residents
from nonpoor communities visit (8.19).

How do disparities at the neighborhood network level compare
to those at the residential and extralocal levels? Fig. 3 presents
the regression-adjusted estimates of average PM2.5 in a neighbor-
hood (residential), its bordering neighborhoods (adjacent), and
the nonadjacent neighborhoods that residents visit (network).

I examine only nonadjacent neighborhoods to exclude the possi-
bility that the disparities presented in Fig. 2 are mainly driven by
trips to adjacent areas. I find evidence of geographic clustering in
PM2.5, with residential neighborhoods surrounded by neighbor-
hoods with similar PM2.5 levels for all racial/ethnic and poverty
groups. Results indicate that PM2.5 levels are higher in minority
residential neighborhoods compared to White residential neigh-
borhoods. AveragePM2.5 exposures in Hispanic, Black, and Asian
residential neighborhoods are 8.85, 8.72, and 8.74, respectively,
compared to 7.81 in White residential neighborhoods. Neigh-
borhoods adjacent to minority neighborhoods exhibit similar
patterns (8.85, 8.72, and 8.74 in Hispanic, Black, and Asian
adjacent neighborhoods, respectively, compared to 7.81 in White
adjacent neighborhoods). Similar disparities exist between poor
and nonpoor neighborhoods, with higher PM2.5 levels in poor

White

Black

Hispanic

Asian

Non Poor

Poor

7.5 8.0 8. 95 .0
PM2.5

G
ro

up

Fig. 2. Regression-adjusted PM2.5 (with 95% CIs) in the neighborhoods that
residents travel to weighted by the number of trips.
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Fig. 3. Regression-adjusted PM2.5 (with 95% CIs) in residential neighbor-
hoods (residential), adjacent neighborhoods (adjacent), and the nonadjacent
neighborhoods that residents visit (network).

neighborhoods (8.80) and their adjacent neighborhoods (8.79)
relative to their nonpoor counterparts (8.21 and 8.21, respec-
tively).

Comparing average PM2.5 across residential, adjacent, and
network levels, I find that exposure is lowest in the mobility
networks of Hispanic, White, poor, and nonpoor neighborhoods.
Average exposures in Hispanic and White neighborhood mobility
networks are 1.0 and 0.3% lower, respectively, than average expo-
sure in both residential and adjacent neighborhoods. Exposures
in poor and nonpoor neighborhood mobility networks are 0.3
and 0.6% lower, respectively. In contrast, average PM2.5 is similar
across all three levels for Black and Asian neighborhoods. That is,
within-MSA mobility leads to lower pollution exposure for resi-
dents from Hispanic, White, nonpoor, and poor neighborhoods,
but no change for residents from Black and Asian neighborhoods.

As a result of lower PM2.5 exposure in White mobility net-
works but similar exposure in Black and Asian mobility networks,
Black/White and Asian/White disparities are highest at the net-
work level. In other words, not only are residents from Black
and Asian neighborhoods exposed to higher levels of environ-
mental toxins in their residential and extralocal environments
compared to residents from White neighborhoods, but also these
disparities increase in the neighborhoods they visit. In contrast,
Hispanic/White network disparities are lower: Average PM2.5 in
Hispanic neighborhood networks (8.77) is 12.5% higher than in
White neighborhood networks (7.79), whereas the difference is
13.3% (8.85 vs. 7.81) in both residential and adjacent neigh-
borhoods. Similarly, average PM2.5 in poor networks (8.74) is
6.7% higher than in nonpoor networks (8.19), but is 7.2% (8.80
vs. 8.21) and 7.1% (8.79 vs. 8.21) higher at the residential and
adjacent levels, respectively.

I next examine intersectional disparities in pollution exposure
across neighborhood race/ethnicity and class. Results indicate that
averagePM2.5 is lower in nonpoor neighborhoods relative to poor
neighborhoods across residential, adjacent, and network levels for
all racial/ethnic groups (Fig. 4). These results indicate a socioe-
conomic advantage in exposure risk; however, the advantage is
much greater for White neighborhoods. Average PM2.5 levels are
5.9, 5.9, and 5.2% lower in White nonpoor residential, adjacent,
and network neighborhoods, respectively, than in poor neighbor-
hoods. The advantages for minority nonpoor neighborhoods are
considerably lower. For example, averagePM2.5 levels in Hispanic

nonpoor residential, adjacent, and network neighborhoods are
1.8, 1.8, and 1.1% lower, respectively, than in their Hispanic poor
counterparts. This greater White socioeconomic advantage results
in much larger racial/ethnic disparities in exposure risk in nonpoor
settings.

When comparing the exposure risk of poor and nonpoor neigh-
borhoods across the three scales, racial/ethnic patterns resemble
those shown in Fig. 3. Regardless of poverty status, average PM2.5

is similar across Black and Asian residential, adjacent, and net-
work levels. Hispanic mobility networks exhibit lower pollution
exposure than Hispanic residential and adjacent neighborhoods
in both poor and nonpoor settings; however, the decrease is
much larger when the neighborhoods are poor. For example,
the average PM2.5 in Hispanic poor networks is 1.3% (8.83)
lower than in Hispanic poor residential neighborhoods (8.94).
The decreased exposure for Hispanic nonpoor mobility networks
is smaller (0.7%; 8.73 vs. 8.79). In the case of White networks,
I find that their overall lower exposure risk is driven by lower
exposure in poor neighborhoods (0.6%; 8.20 vs. 8.26); there is a
slight increase in average PM2.5 exposure in network compared to
residential and adjacent levels for White nonpoor neighborhoods
(0.2%; 7.79 vs. 7.77).

The study’s findings indicate that racial/ethnic and socioe-
conomic disparities in pollution exposure extend beyond the
residential and extralocal environments to the neighborhoods
that residents visit. Fig. 5A shows that travel to these neighbor-
hoods is substantial. Fig. 5A presents estimates from binomial
regression models of the predicted proportions of visits staying
within the residential neighborhood and going to adjacent and
nonadjacent neighborhoods (OLS models yield similar results;
SI Appendix, Fig. S11). Visits staying within the residential neigh-
borhood include those to any block group within the residential
census tract. Across all racial/ethnic and poverty neighborhood
types, the majority of trips are to nonadjacent neighborhoods.
Furthermore, residents from minority and poor neighborhoods
travel outside of the residential and extralocal environments as
much if not more than residents from White and nonpoor neigh-
borhoods. Travel to nonadjacent neighborhoods is greatest for
residents from Black neighborhoods, a finding that aligns with
prior work using survey and social media data (28, 37). The
proportions of trips that residents from poor Black neighborhoods

Non Poor 
White

Non Poor 
Black

Non Poor 
Hispanic

Non Poor 
Asian

Poor 
White

Poor 
Black

Poor 
Hispanic

Poor 
Asian

7.5 8.0 8.5 9.0

PM2.5

G
ro

up

Residential

Adjacent

Network

Fig. 4. Regression-adjusted PM2.5 (with 95% CIs) in residential neighbor-
hoods (residential), adjacent neighborhoods (adjacent), and the nonadjacent
neighborhoods that residents visit (network) by race/ethnicity and poverty
status.
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Fig. 5. Within-MSA travel patterns by neighborhood racial/ethnic and poverty type (with 95% CIs). (A) Proportion of trips. (B) Average distance traveled.

that are within residential and go to adjacent and nonadjacent
neighborhoods are 7.6, 14.3, and 78.0%, respectively. In compar-
ison, these proportions are 13.3, 20.4, and 66.2%, respectively,
for residents from poor White neighborhoods. Similar differ-
ences exist between nonpoor Black and White neighborhoods.
Residents from Asian neighborhoods, whether poor or nonpoor,
visit nonadjacent neighborhoods as often as residents from White
neighborhoods, whereas residents from Hispanic neighborhoods
travel more often within their mobility network.

Similar patterns hold when examining travel based on average
distance (Fig. 5B), where distance is measured as the average
Euclidean distance between the centroids of origin and destination
neighborhoods weighted by the number of trips and standardized
within MSAs to control for differences in area (full distribution of
travel distances is provided in SI Appendix, Fig. S12). Residents
from minority neighborhoods travel as far as or farther than
residents from White neighborhoods in both poor and nonpoor
settings. Residents from Black neighborhoods, whether poor or
nonpoor, generally travel the farthest. Residents from Hispanic
and White neighborhoods travel similar distances across poor and
nonpoor settings, whereas residents from Asian poor neighbor-
hoods travel similar distances to those of residents from White
poor neighborhoods, but travel farther when their neighborhoods
are not poor.

Conclusion

Researchers studying neighborhood effects have provided con-
vincing evidence that neighborhood conditions matter in an
individual’s health and well-being. In particular, studies have
established that minority and poor neighborhoods are exposed
to higher levels of environmental hazards, which helps explain
racial and socioeconomic disparities in individual outcomes (6,
12). Furthermore, this disadvantage extends to the areas that
border minority and poor neighborhoods. My findings highlight
another source of spatial inequality: the neighborhoods that city
residents travel to within an MSA for work, errands, and leisure.
Results indicate that residents from minority and poor neighbor-
hoods visit neighborhoods that have greater air pollution levels
than the neighborhoods that residents from White and nonpoor
neighborhoods visit. The implications of this finding for health
at the population level may be considerable given the ubiquity of
ambient exposure toPM2.5. For example, a study of a large cohort

of adults in the United States found that an increase of 10 (μg/m3)
PM2.5 is associated with a 15% increase in cardiovascular disease
mortality (38).

Hispanic neighborhoods carry the greatest pollution exposure
burden. Whether poor or nonpoor, they have the highest lev-
els of air pollution, they are next to neighborhoods that are
similarly hazardous, and their residents travel to nonadjacent
neighborhoods with the highest risk of exposure. However, the
pollution levels in the neighborhoods that residents from Hispanic
neighborhoods visit are lower than in the neighborhoods they live
in. In contrast, exposure risk for residents from Black and Asian
neighborhoods is similar across all levels. As a result of this higher
exposure risk for residents of Black and Asian neighborhoods
and lower exposure risk for residents of White neighborhoods,
White/Black and White/Asian disparities are greatest at the net-
work level. Furthermore, although nonpoor neighborhoods have
lower pollution exposure than poor neighborhoods across all
racial/ethnic groups, this decreased exposure is much greater for
White neighborhoods. Overall, the results reveal that residents
living in minority and poor neighborhoods face environmental
inequalities at three scales: the neighborhoods they live in, ad-
jacent neighborhoods, and the neighborhoods they visit. While
prior work has provided extensive evidence of inequality in the
first two settings, this study is one of the few to document it at
the network level for a large sample of cities and to do so for risk
exposure to PM2.5.

Several caveats and areas of future research should be noted.
First, census tracts in some cases may be large enough to have
within-neighborhood differential exposure to air pollution. In
these cases, analyses at a lower geographic level, such as the block
group, are more appropriate. Second, the value of examining an
outcome such as air pollution is that unlike traditional social
metrics of neighborhood disadvantage such as poverty and the
education levels of residents, exposure to pollution is direct (6).
Nevertheless, disparities in associated health impacts could also
reflect racial and socioeconomic variability in mobility, microen-
vironment, outdoor-to-indoor concentration relationships, dose–
response, and access to health care, among other factors. Third, as
the findings pertain to data at the neighborhood level, this study
does not make claims about individuals’ travel patterns based on
their particular race or class. That is, the study makes conclu-
sions about minority and poor neighborhoods, but not minority
and poor individuals. Fourth, the data reflect counts of unique
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devices visiting a location in a single day and capture only trips to
points of interest. Fifth, as my data are measured from mobile
phone usage, between-neighborhood comparisons could reflect
differences in the likelihood that a resident owns and travels with
a smart phone.

Although racial and income segregation and overall exposure to
air pollution levels in the United States have decreased, significant
disparities still exist between racial and socioeconomic groups (39,
40). This study demonstrates that racial and economic disparities
in exposure to environmental hazards reach well beyond one’s
home. That is, environmental inequalities are operating at a
higher-order level than typically recognized: Unequal exposure
is manifest not only where people live and the neighborhoods
surrounding their residential settings but also where they travel
throughout a city. In light of prior research showing that residents
spend large proportions of time outside of their neighborhoods,
this time is spent in distal areas of the city, and residents of poor
and minority neighborhoods travel about as widely across their
cities as those of other groups, the disparities uncovered in this
study emphasize the importance of considering the network of
neighborhoods connected via urban mobility when understand-
ing neighborhood inequality (28, 37). The scholarly implication

here is that by focusing exclusively on the residential neighbor-
hood and its extralocal environs, prior work has largely under-
estimated the levels of spatial racial inequality in neighborhood
disadvantage. The practical implication here is that policymakers
should consider a neighborhood’s larger geographic and network
community in developing interventions to counter the multilayer
nature of urban spatial inequality. For example, practitioners
from network-connected neighborhoods can collaborate to share
and deploy resources across their respective communities such
as increasing public transit between neighborhoods, which will
reduce overall air pollution levels within the existing network
cluster, and to less disadvantaged, low pollution areas outside
of the network, particularly those at longer distances. Adopting
a network perspective can also increase efficiency in resource
allocation by focusing interventions in the most polluted and
visited neighborhoods within a mobility network.

Data Availability. Anonymized comma-separated values data have been de-
posited in https://github.com/nbrazil/envinequality.
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