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Abstract

The transformation of synaptic input into action potential output is a fundamental single-cell

computation resulting from the complex interaction of distinct cellular morphology and the

unique expression profile of ion channels that define the cellular phenotype. Experimental

studies aimed at uncovering the mechanisms of the transfer function have led to important

insights, yet are limited in scope by technical feasibility, making biophysical simulations an

attractive complementary approach to push the boundaries in our understanding of cellular

computation. Here we take a data-driven approach by utilizing high-resolution morphologi-

cal reconstructions and patch-clamp electrophysiology data together with a multi-objective

optimization algorithm to build two populations of biophysically detailed models of murine

hippocampal CA3 pyramidal neurons based on the two principal cell types that comprise

this region. We evaluated the performance of these models and find that our approach

quantitatively matches the cell type-specific firing phenotypes and recapitulate the intrinsic

population-level variability in the data. Moreover, we confirm that the conductance values

found by the optimization algorithm are consistent with differentially expressed ion channel

genes in single-cell transcriptomic data for the two cell types. We then use these models to

investigate the cell type-specific biophysical properties involved in the generation of com-

plex-spiking output driven by synaptic input through an information-theoretic treatment of

their respective transfer functions. Our simulations identify a host of cell type-specific bio-

physical mechanisms that define the morpho-functional phenotype to shape the cellular

transfer function and place these findings in the context of a role for bursting in CA3 recur-

rent network synchronization dynamics.
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Author summary

The hippocampus is comprised of numerous types of neurons, which constitute the cellu-

lar substrate for its rich repertoire of network dynamics. Among these are sharp waves,

sequential activations of ensembles of neurons that have been shown to be crucially

involved in learning and memory. In the CA3 area of the hippocampus, two types of excit-

atory cells, thorny and a-thorny neurons, are preferentially active during distinct phases

of a sharp wave, suggesting a differential role for these cell types in phenomena such as

memory consolidation. Using a strictly data-driven approach, we built biophysically real-

istic models of both thorny and a-thorny cells and used them to investigate the integrative

differences between these two cell types. We found that both neuron classes have the capa-

bility of integrating incoming synaptic inputs in a supralinear fashion, although only a-

thorny cells respond with bursts of action potentials to spatially and temporally clustered

synaptic inputs. Additionally, by using a computational approach based on information

theory, we show that, owing to this propensity for bursting, a-thorny cells can encode

more information in their spiking output than their thorny counterpart. These results

shed new light on the computational capabilities of two types of excitatory neurons and

suggest that thorny and a-thorny cells may play distinct roles in the generation of hippo-

campal network synchronization.

Introduction

Determining how neurons with distinct morphological and physiological phenotypes differen-

tially process information is a critical step towards understanding how the diversity of cell

types in the brain gives rise to the circuit-specific computations that support cognitive func-

tion. Among the most critical single-cell computations is the integrative process by which a

neuron converts synaptic input to action potential (AP) output (i.e., the neuronal transfer

function). Given the breadth of synaptic input patterns each neuron may receive, AP output

patterns have a vast degree of heterogeneity, whose biophysical underpinnings are incom-

pletely understood. Specifically, complex spiking or burst firing is a mode of neural output

exhibited by numerous cell types throughout the brains of many species spanning a broad

range of phylogenetic complexity. This specialized form of information representation and

transmission has been postulated to overcome the unreliability of synaptic transmission [1],

provide a means of selective routing of information through intrinsic resonance mechanisms

[2] and represent a parallel coding dimension relative to single-spike rate coding [3]. Addition-

ally, the biophysical mechanisms of bursting that have been uncovered for mammalian neu-

rons suggest that these events occur in response to conjunctive input to distinct dendritic

domains: these manifest biophysically as a dendritic plateau potential upon which a series of

high frequency APs can be observed. Moreover, bursting has been shown to be a highly effec-

tive means of inducing synaptic plasticity [4–6], which can support information storage and

underlie the acquisition of feature selectivity [7–10].

Despite the physiological importance of burst firing, the biophysical mechanisms underly-

ing this activity pattern can be cell type-specific and are incompletely understood for many

neuronal types. Towards this end, building data-driven models is an attractive way to test

hypotheses about the integrative properties of distinct neuronal cell types that can then be

used to simulate how single-cell computations are implemented across divergent morphologi-

cal and physiological phenotypes. Most previous studies have examined complex spiking

behaviour in computational models where the parameters and conductance levels of the
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biophysical mechanisms were “hand-tuned” [11–15]. While this practice can yield qualitatively

similar characteristics between simulations and experiments over a limited range of stimuli,

parameterizing models in this way can suffer from getting caught in local minima of the

parameter optimization landscape and therefore could potentially display unphysiological

behaviours or have a limited dynamic range. To circumvent this pitfall and expedite the often

arduous hand tuning process, multi-objective optimization strategies paired with genetic algo-

rithms were developed [16,17]. This innovation has enabled a more robust parameter optimi-

zation process that has been widely adopted to generate data-driven biophysical models [18–

20].

Here we employ a data-driven approach to develop cell type-specific multi-compartment

models of hippocampal CA3 pyramidal neurons based on patch-clamp electrophysiology data

and high-resolution morphological reconstructions. We built two distinct populations of indi-

viduals capable of recapitulating the firing phenotypes observed in the two principal cell types

found in the CA3 region of the hippocampus, thorny regular spiking and a-thorny intrinsically

bursting cells [21]. We then demonstrate that the optimized conductance values of the bio-

physical mechanisms in the models correspond to relative gene expression levels in transcrip-

tomic cell types defined by single-cell RNA sequencing (scRNAseq) data. Specifically, we find

concordance between the differentially expressed genes and the cell type-specific ionic con-

ductance values, validating our data-driven approach. We then utilize these biophysically

detailed models to investigate the integrative properties of thorny and a-thorny pyramidal cells

to gain insight into how their cell type-specific properties influence information transfer capa-

bilities. We find that both principal cell types can integrate synaptic inputs to their dendrites

supralinearly, while a-thorny cells display a preference for emitting bursts when stimulated

with spatiotemporally correlated synaptic input. The intrinsic tendency of a-thorny cells to

preferentially emit complex spikes endows them with a greater capacity to encode information

in their firing patterns relative to regular spiking cells. The higher information transmission

capacity of a-thorny pyramidal neurons relates to the previously established role for bursts

emitted by a-thorny cells as triggers for sharp wave (SW) synchronization events [21]. Viewed

within this context, our results shed light on the biophysical mechanisms and integrative pro-

cesses at the cellular level that promote synchronization dynamics in the CA3 recurrent

network.

Results

Physiology of CA3 principal cell types

Previously we identified and characterized a novel pyramidal cell type in the CA3 region of the

hippocampus, a-thorny principal cells. Together with their thorny cell counterparts, these two

principal excitatory cell types comprise the CA3 region of the hippocampus [21]. To further

assess the physiological properties of hippocampal CA3 cell types and obtain a broad reper-

toire of responses to somatic current injection as well as spontaneous synaptic activity, we

obtained whole cell recordings in acute slices from CA3 pyramidal neurons in mice. Neurons

were sampled in an unbiased manner by blind patching 100–200 μm deep within a 400 μm-

thick slice. The intrinsic properties of each cell were characterized by a series of somatic cur-

rent injections delivered in current clamp mode.

Representative cell morphologies and firing patterns for a range of somatic current injec-

tions of each cell type are shown in Fig 1. As shown in panels A and C, several key physiologi-

cal differences exist between CA3 principal cells: most notable is their firing pattern near

rheobase, where thorny cells exhibit a regular spiking phenotype, while a-thorny cells are char-

acterized by an intrinsically bursting phenotype. Importantly, the two distinct firing
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Fig 1. Physiological and morphological phenotypes of CA3 pyramidal neurons. (A) Representative traces from a

series of somatic current injections where a regular spiking firing phenotype was observed. (B) Left, biocytin staining of

the cell recorded in (A) where a full-scale view of the dendrites and their distribution across the laminar structure of the

CA3 region is shown. Inset, high magnification view of the proximal apical dendrite where prominent complex spiny

structures known as thorny excrescences can be observed. Right, 3D morphological reconstruction of the biocytin-
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phenotypes tightly correlate with key morphological differences between cell types, as illus-

trated in Fig 1B and 1D. Specifically, regular spiking cells display prominent thorny excres-

cences, the complex spiny structures where mossy fiber axons from the dentate gyrus form

synapses with mossy cells of the hilus and CA3 pyramidal neurons. On the contrary, intrinsi-

cally bursting cells lack these postsynaptic structures and receive little to no input from dentate

granule cells [21]. The results of a thorough electrophysiological characterization of the two

cell types are reported in S1 Table: additionally, Fig 1E shows violin plots of six electrophysio-

logical features (normalized to their range of variation) that were significantly different

between the two cell types. In Fig 1F these same data are plotted using the UMAP algorithm

[22] for dimensionality reduction, which clearly shows how thorny and a-thorny cells segre-

gate in two distinct clusters of individuals, indicating that these cells constitute two separate

populations of principal neurons in the CA3 region of the hippocampus.

Biophysical models of CA3 pyramidal cell types

CA3 thorny and a-thorny cells are characterized by radically different morphological and

electrophysiological features and play crucially distinct roles in CA3 network dynamics

[21,23]. To capture the defining features of these phenotypes in detailed biophysical models of

these cells, we employed a multi-objective optimization framework paired with a genetic algo-

rithm using BluePyOpt [17]. This open-source Python package enabled us to explore a wide

range of parameter combinations and ultimately tune the parameters of the models such that

the behavior of the model closely matched the features extracted from somatic current injec-

tion experiments. We utilized an array of ionic mechanisms with distributions appropriate for

CA3 pyramidal neurons [20], with two important distinctions aimed at better capturing the

bursting phenotype characteristic of the a-thorny cell type. First, we included a persistent

sodium current located perisomatically [24], and secondly we chose to optimize the parame-

ters in the model that regulate intracellular calcium dynamics—namely the time constant of

calcium buffering and the availability of free calcium inside the cell, yielding a total number of

24 free parameters. The main strength of the multi-objective optimization strategy imple-

mented by BluePyOpt is that it produces a family of solutions, called individuals, rather than a

single optimal value. Individual solutions to the optimization comprise a final population of

models that satisfy the constraints imposed by the target features and occupy the pareto-opti-

mal frontier [16,25]. Since the error on each feature is measured in units of standard deviations

from the experimental mean, this strategy leads to a population of individuals whose intrinsic

variability recapitulates that observed in acute brain slice experiments.

As a component of our optimization workflow, we utilized three reconstructed morpholo-

gies per physiological cell type (Fig 2A) and performed several optimization runs for each mor-

phology. Typically, each run was composed of 128 or 144 individuals and evolved for 100 to

150 generations at which point the reduction in error across subsequent generation plateaus

(Fig 2B). From the final set of solutions of the multi-objective optimization, we selected indi-

viduals whose error for each feature was below 6 standard deviations from the mean, ensuring

stained cell. (C) Representative traces from a series of somatic current injections where a bursting phenotype was

observed. (D) Left, biocytin staining of the cell recorded in (C) where a full-scale view of the dendrites and their

distribution across the laminar structure of the CA3 region is shown. Inset, high magnification view of the proximal

apical dendrite where a clear lack of complex spines (a-thorny) is observed. Right, 3D morphological reconstruction of

the biocytin-stained cell. (E) Summary of physiological features (normalized in the range of variability of each feature

over both cell populations) highlighting several key physiological differences across the populations of regular spiking

and bursting cells. (F) Clustering of physiological features for all recorded cells clearly shows two main cell classes that

correspond to regular spiking (thorny) cells and intrinsically bursting (a-thorny) cells.

https://doi.org/10.1371/journal.pcbi.1010071.g001
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that the behavior of each individual model matched that of the cells used as targets for the opti-

mization. This led to a grand total of 180 and 172 individuals that met the inclusion criterion

for thorny and a-thorny cells, respectively. These individuals were subdivided across the three

morphologies used in the optimization for each cell type. As shown in Fig 2C and 2D, the

Fig 2. Biophysically realistic neuron models recapitulate the distinct electrophysiological phenotypes of CA3 pyramidal cells. (A)

Detailed thorny (top, black) and a-thorny (bottom, red) cell morphologies used in this study. (B) Typical evolution of the population fitness

as a function of optimization epoch for an a-thorny cell model: the grey shaded area represents the range of the 25th and 75th percentile,

the blue trace is the median population fitness, and the orange trace is the fitness of the best individual at each epoch. Similar results were

observed for the optimization of thorny cell models. (C) Representative somatic voltage traces for a thorny regular spiking cell in response

to increasing levels of constant injected current in the model and in the experiment (black and grey traces, respectively). (D) Same as (C),

but for the a-thorny intrinsic bursting cell type (red and pink traces are model and experiment Vm, respectively). In both (C) and (D),

notice how the models are capable of reproducing the firing phenotype both at the onset of the stimulus and for the overall duration of the

stimulation. (E) Static input-output relationships (f-I curves) in the models and in the experiments, computed as the total number of spikes

emitted during stimulation divided by the length of the stimulus, for thorny and a-thorny cells (black and red traces, respectively). Markers

and error bars indicate mean and SEM, respectively. (F) Initial firing frequency as a function of the injected current in the models and in

the experiments. Color code is the same as in (E).

https://doi.org/10.1371/journal.pcbi.1010071.g002
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membrane voltage (Vm) traces obtained with the models in response to the injection of con-

stant steps of current of increasing amplitude (black and red traces for thorny and a-thorny

cells, respectively) are qualitatively very similar to the corresponding experimental recordings

(gray and pink traces for thorny and a-thorny cells, respectively), for both cell types. Impor-

tantly, the thorny cell models (Fig 2C) are typically capable of reproducing both the overall

regular firing phenotype observed in the experiments and the high-frequency AP doublet

observed in most thorny cells at the onset of stimulation for high enough values of injected

current. The a-thorny cell models, on the other hand, display the characteristic high-frequency

bursts observed in the patch-clamp experiments (Fig 2D), with a slight increase in overall fir-

ing rate as the magnitude of the injected current is increased, in agreement with our data.

To more precisely assess the quality of the model responses, we computed the static input-

output relationships (f-I curves) for all individuals that met the quality criterion indicated pre-

viously by injecting 500 ms-long direct current injection steps, similarly to what was done in

the patch-clamp experiments. We then measured the overall firing rate as the number of spikes

during the 500 ms-long interval of current injection and the initial firing rate as the inverse of

the inter-spike interval of the first 2 spikes in the train. Fig 2E and 2F shows the f-I curves of

the models averaged based on the morphology (black and red circular markers and error bars

for thorny and a-thorny cells, respectively). The agreement with the experimentally measured

f-I curves (gray and pink square markers and error bars) is high for both the overall firing rate

(Fig 2E) and for the initial firing rate (Fig 2F). Additionally, the models correctly capture the

difference in terms of rheobase that can be observed experimentally (grand-average rheobase

values for all the individuals obtained with the optimization: 200 ± 4.2 pA vs. 69 ± 1.1 pA for

thorny and a-thorny cells, respectively, p< 10−10, Student t-test). Together these data indicate

that our data-driven approach is a robust method to produce models that faithfully recapitulate

the biological phenotype of the individual cell types.

Comparison between model parameter distributions and scRNAseq data of

CA3 excitatory neurons

Given that the evolutionary optimization we employed produces a set of individuals that meet

the optimization constraints to varying degrees, we investigated the differences in the sets of

parameter values between thorny and a-thorny cells and compared them with scRNAseq data.

The aim of this analysis is twofold: first, it provides a quantification of between- and within-

cell type heterogeneity and of the influence of morphology on firing behavior. Secondly, it elu-

cidates which parameters account for the increased propensity of a-thorny cells to generate

bursts of APs. We started by mapping the parameters of the accepted individuals from the

original 24-dimensional space to a 2-dimensional one by using the UMAP algorithm [22]: as

shown in Fig 3A, a-thorny individuals (red dots) clustered more closely, and no major effect of

the different morphologies was observed. On the other hand, thorny cells (black dots)

appeared as a continuum, with the cell morphology playing a more prominent role in how

individuals clustered. Interestingly, we found a very similar picture when using UMAP to visu-

alize scRNAseq data from CA3 excitatory neurons [26], as shown in Fig 3B. By using all genes

and the Leiden clustering algorithm [27], we obtained a major subdivision in the cell popula-

tion clearly separating CA3 principal cells in two main clusters: a more numerous and more

dispersed one (black dots) and a tightly clustered smaller group (red dots). These results are

consistent with previous evidence for two main morpho-functional cell types corresponding

to thorny and a-thorny cells where the a-thorny neurons are a minority population.

The differences in parameter distributions between the two cell types are shown in Fig 3C,

which displays violin plots of the parameters normalized to their range of variability during
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the optimization process and grouped according to ion channel species. The most prominent

differences can be observed in potassium currents, which are down-regulated in a-thorny cells.

Interestingly, among calcium currents only the T-type one is down-regulated in a-thorny cells,

while the other two calcium conductances are non-significantly different between the two cell

types (two-sample Kolmogorov-Smirnov test). On the other hand, the main (fast) sodium cur-

rent, responsible for AP initiation, is up-regulated in a-thorny cells, indicating an increased

Fig 3. Distributions of model parameters mirror differentially expressed ion channel genes. (A) Bidimensional representation of parameter values

transformed using UMAP: each dot represents one individual, and closed lines indicate the convex hulls associated with all the individuals obtained with a

given morphology (color-coded accordingly to both the convex hull and the points contained in it). (B) UMAP projection and clustering of CA3 excitatory

neurons based on scRNAseq data. Using the Leiden clustering algorithm with a resolution of 0.65 delineated the primary division in the CA3 principal

neuron population. Note that CA3 principal cells are primarily composed of a larger population of cells (cluster 1, black) and a second minority population

(cluster 2, red). (C) Violin plots of the distributions of maximal conductance values for four different classes of ion channels (potassium, calcium, sodium

and hyperpolarization-activated) for the model cells included in the analysis, normalized over the range of allowed variability of each parameter as reported

in S2 Table (black and red indicate thorny and a-thorny cells, respectively). Dashed lines indicate the median of the population, while the upper and lower

dotted lines represent the 25th and 75th percentile of the distributions. Most parameter distributions were significantly different between the two cell-types

(non-parametric Kolmogorov-Smirnov test: � p< 0.05, �� p< 0.01, ��� p< 0.001). For the remaining parameters see S1 Fig. (D) Expression levels for cells

belonging to cluster 1 (black) or cluster 2 (red) for analogous classes of ion channel genes as shown in (C). Note that expression levels for most Na channel

genes were not significantly different while Ca and K channel genes were significantly differentially expressed between the two clusters (non-parametric

Kolmogorov-Smirnov test: � p< 0.05, �� p< 0.01, ��� p< 0.001).

https://doi.org/10.1371/journal.pcbi.1010071.g003
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excitability in this cell type. Calcium dynamics are also significantly different between the two

cell types (see S1 Fig for parameter distributions not shown in Fig 3C): the time constant of cal-

cium buffering is significantly larger in a-thorny cells, while the availability of free calcium is

lower. This interplay of slow and fast variables in the a-thorny cell models is at the basis of

their bursting capabilities [24,28]. This finding suggests that two types of bursting might be

present in CA3 principal cells: on the one hand, a somatically generated bursting that relies on

the relative contribution of sodium and potassium current can be observed in response to the

somatic injection of constant steps of current. On the other hand, dendritic plateau bursting

can be elicited by ongoing synaptic activity, as will be shown in the following sections.

To further validate the optimization results, we performed differential expression analysis

of the scRNAseq data between the cell clusters shown in Fig 3B. While we observed many dif-

ferentially expressed genes at the significance thresholds that we implemented, we chose to

focus specifically on ion channel genes to compare how differential expression of ion channels

relates to the difference in conductance values in our cell type-specific models found by our

optimization algorithm. We found several important consistencies between the conductance

values that impart the cell type-specific firing phenotype in the models we developed and the

expression levels for ion channel genes that correspond to those biophysical mechanisms.

Once again, we focused on the three major conductance types present in our models, namely

sodium, potassium, and calcium. Each of these three classes of conductance types has several

mechanisms in the model corresponding to distinct channel sub-types that in turn are related

to several channel subunit genes. To relate the conductance values in the models to the differ-

ences in expression of ion channel genes between the two main clusters (see S2 Fig), we exam-

ined the expression level for key ion channel genes that correspond to biophysical mechanisms

in our models (Fig 3D). Analogously to what we observed for the distributions of model

parameters, we found significant differences in the expression levels of potassium and calcium

channels, while the expression levels of sodium channels were largely unchanged between the

two cell groups. Together these data provide independent biological validation of the data-

driven approach we have taken, where the critical conductance differences resulting in distinct

physiological phenotypes are found by the optimization algorithm and at the same time corre-

spond to actual gene expression differences between transcriptomic cell types, providing an

example of multi-modal integration between physiology, morphology, biophysical simulation,

and scRNAseq data.

Quantification of dendritic input resistance in active cell models

We then sought to investigate the differences in the biophysical and functional properties

between the two principal cell types found in CA3 utilizing the tuned biophysical models.

First, we analyzed the differences in input resistance (Rin) values throughout the dendritic tree

between thorny regular spiking and a-thorny bursting cells. To this end, we injected 500 ms-

long hyperpolarizing steps of current in each compartment of the dendritic tree to measure its

Rin: as reported previously [29], we found that branch Rin is inversely correlated with the den-

drite diameter and thus increases with the distance of the dendritic branch from the cell body

(Fig 4A and 4C). Fig 4 summarizes the results of these simulations for the three cell morpholo-

gies used in the optimization procedure, where we separated results based on whether the

branch was located on the basal or apical dendrite. As shown in Fig 4E, at the population level

a-thorny cells tend to have slightly thicker basal dendrites with higher Rin, while that measured

on the apical dendrites is comparable between the two cell types (Fig 4F). To compare thorny

and a-thorny cells more precisely, we identified terminal apical branches in the a-thorny cell

morphologies and apical oblique branches in the thorny cell morphologies: the latter are a
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Fig 4. Distinct dendritic properties of cell type specific models. (A) Representative distribution of branch input resistance (Rin) values in one of the thorny

morphologies considered in this study. Top: warmer colors indicate higher values of Rin and black arrowheads indicate the recording locations for the sample

voltage traces shown at the bottom of panels (A) and (B). Bottom: example voltage traces in response to the injection of a 500 ms-long hyperpolarizing current

in the soma and in one compartment of the apical and basal dendrites. (B) Representative distribution of amplitude ratio values in the same individual shown

in (A). Top: warmer colors indicate higher values of amplitude ratio and have an inverse relationship to Rin. Bottom: example voltage traces recorded in the

spine head, dendrite shaft and soma in response to the injection in the spine head of an EPSP-shaped current whose amplitude was dynamically adjusted to

cause a Vm deflection in the spine of approximately 10 mV. (C, D) Same as (A, B), but for a representative individual of the a-thorny cell type. Notice how the

highest values of Rin in the thorny cells are located in the apical obliques while in the a-thorny cells Rin generally increases with distance from the soma. (E, F)

Rin as a function of basal and apical dendrite diameter for the three morphologies shown in Fig 2 for each of the cell types. Dots and bars indicate mean and

standard deviation, respectively. (G) Rin as a function of the distance along distal apical dendrites (i.e., unbranched stretches of dendrites comprised between a

bifurcation and the tip of the dendrite) for thorny and a-thorny cells (black and red markers, respectively). Dots and bars indicate mean and SEM, respectively,

computed over the morphologies shown in Fig 2. (H) Same as (G), but for the amplitude ratio of synaptic inputs.

https://doi.org/10.1371/journal.pcbi.1010071.g004
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prominent feature of the thorny cell type, while being completely absent in the a-thorny mor-

phologies. The reason for this choice is twofold: first, it allows us to compare thorny and a-

thorny cells by looking at terminal unbranched stretches of dendrites, and secondly it makes it

possible to compare thorny cells with results present in the literature about CA1 pyramidal

cells [29]. The Rin of these branches as a function of the distance from the originating branch

point is plotted in Fig 4G: the dependence on the distance along the dendrite for thorny cells is

reminiscent of what has been observed previously for CA1 pyramidal cells [29], while the

higher Rin values observed in the terminal branches of a-thorny cells suggest that these den-

dritic branches might be particularly suited to input compartmentalization and the generation

of nonlinearities by active conductances. We computed dendritic Rin using a model of active

cells in which sodium channel conductances were removed, simulating bath application of

TTX. This was done to have the same experimental condition as the patch-clamp experiments

on the amplitude ratio reported in the next section.

Determination of amplitude ratio for synaptic input onto dendritic spines

Given the differences in dendritic input resistance observed in the two cell type models, we

investigated how synaptic inputs localised on dendritic spines are spatially and electrically seg-

regated from the rest of the dendritic tree. Consistent with previous studies [29], we modelled

spines as two cylindrical compartments representing head and neck (head length and diame-

ter: 0.5 μm, neck length and diameter: 1.58 μm and 0.077 μm, respectively, unless noted other-

wise). Spines had the same axial resistance as their parent dendritic branch and in these

simulations contained only passive channels, whose properties matched those of the dendritic

branch where the spines were connected. To compute the amplitude ratio (AR) between spines

and dendritic tree, we injected an EPSP-shaped current into the spine whose maximum ampli-

tude was dynamically adjusted to elicit a Vm deviation in the spine of approximately 20 mV.

The AR was then defined as the ratio of the EPSP measured in the spine to that elicited in the

dendrite (different values were also tested and did not lead to significant changes in the com-

puted values of AR). Fig 4B and 4D shows the results of these simulations, for one representa-

tive morphology for each cell type, where the AR is correlated with the branch Rin and with the

diameter of the dendrite. By focusing on the subset of apical dendritic branches discussed pre-

viously for the Rin measurements, we found that the amplitude ratio drops with the distance

along the oblique dendrites and the terminal branches for thorny cells and a-thorny cells,

respectively. However, there is a marked difference in the values of AR for the two cell types:

those for the thorny cells are significantly smaller than those observed in CA1 pyramidal cells

(which can be at least partially explained by the fact that the experiments of [29] were carried

out in rat cells), while the AR for a-thorny neurons is about twice as much as that of CA1 pyra-

midal cells and almost one order of magnitude larger (at least close to the branch points) than

the AR in thorny cells. In the same branches, a-thorny cells display larger dendrite diameters

and smaller Rin, which, together with the active ionic conductances, account for the difference

in AR values. This and the higher Rin observed in these same dendrites lend credit to the idea

that a-thorny cells might be better suited than thorny cells at compartmentalizing the synaptic

inputs impinging on their dendritic trees.

Cell type-specific synaptic cooperativity and nonlinear synaptic integration

Following the results demonstrating that dendritic spines in both thorny and a-thorny cells

provide cell type-specific compartmentalization of synaptic inputs, we included AMPA and

NMDA receptors in the spines and simulated the arrival of clustered synaptic inputs on up to

nine neighbouring spines on an apical dendritic branch, as shown schematically in Fig 5A, and
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for the two morphologies considered in Fig 5B. We tuned the weights of the AMPA and

NMDA synapses to have a Vm deflection in the spine head of approximately 20 mV, with a

long tail due to the NMDA component (NMDA decay time constant was set to 50 and 100 ms,

for thorny and a-thorny cells, respectively, to match experimental data, see S3 Fig). The other

synapse parameters for AMPA and NMDA were the same for both cell types (see Materials

and Methods). When only one synaptic input was activated, the cell response was similar to

what we observed in the previous set of experiments with the direct injection of EPSP-shaped

currents in both the spine head and dendritic shaft. Also, we obtained a marked reduction

between the EPSPspine and the EPSPdend. For the representative a-thorny cell shown in Fig 5B

Fig 5. Cooperativity and nonlinear amplification of synaptic input in cell type specific models. (A) Schematic of the experimental setup: 9 spines

were placed on an apical branch and stimulated sequentially by the arrival of presynaptic spikes with a time interval of 0.3 ms. Each spine contained

AMPA and NMDA synapses, whose parameters were adjusted to lead to a voltage deflection at the spine head of approximately 20 mV. The spine

EPSP then propagated to the dendritic trunk and soma (example voltage traces shown on the right) when one or multiple spines were activated. (B)

Location of the spines (red dots) on the apical branch of a thorny (left) and an a-thorny cell (right). (C) Vm traces recorded in the dendritic trunk

(top left) and at the soma (bottom left) and corresponding EPSP peak amplitudes (right, black markers) in response to increasing numbers of

presynaptic inputs in the thorny cell shown in (B, left). Grey markers indicate the linear prediction obtained by multiplying the amplitude of the

EPSP in response to a single input by the number of presynaptic inputs. (D) Same as (C) but for the a-thorny cell shown in (B, right).

https://doi.org/10.1371/journal.pcbi.1010071.g005
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(right morphology), this led to an AR value of approximately 7.3, while the thorny cell shown

in Fig 5B (left morphology) had a slightly higher value of AR of approximately 9.5, indicating a

higher compartmentalization of spine inputs in the more distal branches of thorny cells com-

pared to their a-thorny counterparts.

We then increased the number of concomitant synaptic inputs arriving on neighbouring

spines from 1 to 9 and measured the Vm deflection in the dendrite and at the soma. The dis-

tance between spines was set to 5 μm, although our results are consistent across other values of

inter-spine distance. The time evolution of the Vm for one representative individual is shown

in Fig 5 (on the left of panels C and D for the thorny and a-thorny cell, respectively). For the a-

thorny individual shown in Fig 5D, the arrival of four concomitant presynaptic inputs is suffi-

cient to elicit a supralinear response, while in the case of the thorny cell (Fig 5C), the number

of required presynaptic inputs is equal to five. We remark however that these numbers depend

on the AMPA and NMDA weights and are therefore not indicative of the actual number of

required inputs but rather serve to illustrate the mechanism at the base of the supralinear sum-

mation of inputs likely to be observed in these cells, in agreement with what has been reported

previously for CA1 pyramidal cells [29,30]. We then considered a population of individuals

resulting from one optimization run to plot the mean ± SEM of dendritic and somatic EPSPs

as a function of the number of inputs (on the right of panels C and D for the thorny and a-

thorny cell, respectively). The supralinearity of the response is especially evident in the somatic

EPSPs, which display values in line with the experimentally observed ones [21]. These results

indicate that, when NMDA receptors are present, clustered synaptic inputs on the apical den-

drite can generate supralinear responses in both cell types. However, our results suggest that,

due to the unique morphological differences that determine the dendritic branch input resis-

tance profile, a-thorny pyramidal cells can reach the supralinear regime with proportionally

fewer synaptic inputs. This property can endow this cell types with a lower threshold to reach

the supralinear regime and/or a longer integration time window for the same level of synaptic

drive.

To complete these simulations, we set the sodium conductances to the values provided by

the optimization procedure and stimulated the models while varying the number of incoming

synaptic inputs. The results of this final set of experiments are shown in Fig 6: example Vm

traces recorded in the soma, spine head and dendritic trunk are shown in panels A and B, for

representative thorny and a-thorny cells, respectively. The concomitant arrival of a sufficiently

high number of synaptic inputs causes a pronounced Vm deflection in the spine head, which

propagates towards the soma as a dendritic plateau [30,31]. To dissect the precise contribution

of each ionic current to the somatic and dendritic Vm time course, we plotted the dynamics of

inward and outward currents by means of a “currentscape” [32], which allow visualizing the

relative contribution of each ionic current (and its time course) to the total inward and out-

ward current densities. Notably, thorny and a-thorny cells differ in the amount of dendritic T-

type calcium currents (dark green band in the bottom panels of Fig 6A and 6B), in the relative

contribution of several potassium channels to the total outward somatic current, and in the

amount of persistent sodium currents, which are larger in a-thorny than in thorny cells (mid-

dle panels of Fig 6A and 6B). These results are in line with previous works that have identified

the interplay between potassium and persistent sodium currents as the key mechanism at the

basis of neuronal bursting [24]. Currentscapes also make evident how the somatic depolariza-

tion induced by dendritic currents activates perisomatic currents, which in turn lead to a rapid

burst of APs in a-thorny cells, while in thorny cells the AP output is limited to one. This inter-

action between dendritic and somatic compartments is evident in the relative timing of

somatic APs and dendritic “spikelets”: the first dendritic spikelet precedes the first somatic AP,

indicating propagation from the dendritic domain towards the soma, whereas the subsequent
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Fig 6. Distinct responses of thorny and a-thorny cells to clustered dendritic inputs. (A) Top, simulated Vm dynamics in a thorny

cell in response to the concomitant arrival of 6 presynaptic inputs. The spine and dendrite Vm clearly show the dendritic plateau that

lies at the origin of the AP that is then propagated at the soma. Middle and bottom, visualizations of the dynamics of inward and

outward ionic currents (i.e., “currentscapes”) respectively at the soma and at the dendritic location where the stimulated spine is

connected. In each currentscape, the filled black areas represent the total amount of outward and inward current densities (top and
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spikelets follow the corresponding somatic AP, indicating dendritic backpropagation of

somatically generated APs. In order to test the robustness of this phenomenon, we performed

the same experiment in the population of individuals employed for Fig 5C and 5D, while vary-

ing the (presynaptic) inter-spike interval (ISI) and the distance among spines: the results are

shown in Fig 6C and 6D, where one can clearly see that the average number of spikes in a

burst for a-thorny cells appears as a continuum that depends both on ISI and spine distance,

whereas the response of thorny cells is much more “binary”.

A-thorny cells transmit more information in response to clustered synaptic

input

Given the cell type-specific integrative properties we demonstrated above, we wondered

whether the amount of information transferred to the output spike train might be different

between the two cell types. To test this hypothesis, we employed the experimental protocol

shown schematically in Fig 7A where we injected in the soma of each cell a current modelled

by an Ornstein-Uhlenbeck process [33]. This current is intended to mimic the background

synaptic activity experienced by a cell in vivo [34,35]. We then placed six spines on the den-

dritic tree of each cell (in the same location as shown in Fig 5B) and activated them with brief

bursts of presynaptic APs, whose arrival times (within each burst) were generated by a Poisson

process. The burst times were also Poisson-distributed with a mean burst rate of 2 Hz. We

increased the average firing rate of the within-burst Poisson process from 50 to 250 Hz while

keeping the overall firing rate of the cell approximately constant (around 5 spike/s). As shown

in Fig 7B and 7D, increasing the within-burst presynaptic firing rate from 100 to 200 Hz in a

thorny cell only reduces the delay in response onset, thus making the peri-stimulus time histo-

gram computed over all trials (black traces in the bottom part of panels B and D) steeper.

While this reduction in response onset is present also in the a-thorny cell (Fig 7C and 7E),

higher presynaptic firing rates also cause an increase in the proportion of bursts with 3 or

more APs.

To quantitatively assess whether the different firing patterns produced by the two cell types

have an effect on the amount of information they are capable of transmitting, we computed

both the entropy of the output spike train and the mutual information between the timing of

presynaptic burst onset (i.e., the time of the first AP in each burst) and the output APs using

the context-tree weighting algorithm [36,37]. We found that the entropy of the output spike

trains increases with the presynaptic firing rate in both cell types (Fig 7F): however, to better

discern the contribution of the change in spiking output structure from that of the modest

increase in output firing rate, we normalized the values of entropy to those that would be

obtained with a Poisson process at the same overall firing rate. Indeed, Poisson processes pro-

duce spike trains with maximal entropy that increases with firing rate: the theoretical value of

entropy (measured in bits s-1) is given by r log2ðeÞ
rDt where r is the firing rate of the process, Δt is

the bin size and e is Euler’s number. Interestingly, we found that the increase in normalized

bottom, respectively), while the middle panels quantify the relative contribution of each ionic current to the total. The logarithmic scale

highlights the dynamics of those currents that contribute little to the total. The color bars on the right summarize the percent

contribution of each current type to the total inward and outward current densities, and are shown on a linear scale. (B) Same as (A),

but for an a-thorny cell: the dendritic origin of the somatic burst is evident and accounts for the steep onset of the first AP in the burst,

while the subsequent APs are the result of the interplay between somatic and dendritic ionic currents. Note the different relative

contribution of calcium-activated potassium currents to the total outward current density measured at the soma. (C) Mean number of

spikes emitted by a population of thorny cells in response to a varying number of synaptic inputs (indicated in white in each panel)

arriving at different frequencies (on the x-axis) on spines that are located at different distances (on the y-axis). (D) Same as (C), but for

a population of a-thorny cells.

https://doi.org/10.1371/journal.pcbi.1010071.g006
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entropy is much greater for a-thorny cells than for thorny ones (Fig 7G): the reason for this

mainly resides in the different temporal structure of the spike trains of the two cells. Indeed, in

the absence of clustered synaptic stimulation, a-thorny cells have a high coefficient of variation

Fig 7. Firing patterns of a-thorny cells encode more information about the statistics of presynaptic inputs. (A) Schematic of the

experimental design: left, six spines are placed on the apical dendrite of a cell that is simultaneously stimulated by the somatic injection of an OU

process mimicking the arrival of a large number of asynchronous inputs impinging on the dendritic tree. The magenta and green pipettes

represent the somatic and dendritic recording locations, respectively. Right, example somatic and dendritic Vm traces in response to a volley of

presynaptic spikes arriving at 100 or 200 spikes/s. (B) Spiking dynamics of a thorny cell in response to the injection of both a noisy current at the

soma, mimicking the arrival of a large number of presynaptic inputs, and of 6 additional dendritic inputs whose inter-stimulus intervals are

distributed according to a Poisson distribution at a rate of 100 spike/s. Each dot in the raster plot represents one postsynaptic AP and each row

shows the APs emitted by the cell in response to the arrival of one presynaptic burst, with time being aligned to the arrival of the first presynaptic

AP in the burst. Trials are ordered according to the duration of the presynaptic bursts, with shorter bursts having lower trial numbers. The top

trace shows the dendritic and somatic Vm in response to the arrival of one presynaptic burst. The black trace represents the firing rate of the

thorny cells computed over all trials. (C) Same as (B), but for presynaptic bursts arriving at a mean firing rate of 200 spike/s. (D, E) Same as (B,

C), but for an a-thorny cell. Notice how this cell type preferentially responds with bursts as the presynaptic firing rate increases. (F) Entropy of

the post-synaptic spike train for thorny and a-thorny cells (black and red markers, respectively) as a function of the presynaptic intra-burst firing

rate. The black and red dashed lines represent the theoretically maximal entropy achievable by a point process at the same firing rate as that of

the corresponding cell type. (G) Same data as shown in (F) but normalized to the maximal achievable entropy. (H) Mutual information between

the postsynaptic firing times and the presynaptic burst times (i.e., the time of the first AP in the presynaptic burst), as a function of the

presynaptic intra-burst firing rate.

https://doi.org/10.1371/journal.pcbi.1010071.g007
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of the ISIs (around 1.3), but a low value of entropy (around 0.6 times the entropy of a Poisson

process at the same firing rate, Fig 7G). This can be explained by the fact that in a bursting fir-

ing pattern each spike has a high probability of being followed by one or more additional

spikes, and this reduces the “uncertainty” of the spike train, i.e., its entropy. Thorny cells, on

the other hand, have lower values of CV (around 0.65), but the corresponding values of

entropy are much higher and closer to the maximum achievable entropy (Fig 7G). A direct

consequence of this is that when a-thorny cells are stimulated with an additional synaptic

input, they can substantially increase the entropy of their output spike train and therefore have

a greater capacity to encode additional information in their output spike train. This is con-

firmed by the greater increase in mutual information between the onset times of presynaptic

bursts and the output spike times that can be observed in a-thorny cells (Fig 7H), further indi-

cating that this cell type has a greater capacity for representing in its output spike train the

arrival of correlated inputs. These results indicate that, because of their bursting firing pattern,

a-thorny cells are more suited to transferring information about correlated inputs to their fir-

ing output, potentially operating as “detectors” for the presence of correlated activity in the

CA3 network.

Discussion

Similar to many other regions of the mammalian brain, the hippocampus is characterized by a

striking variety of cell types [26,38,39]. For instance, we have previously shown that principal

neurons in the CA3 area are subdivided in two classes: regular-spiking (RS) pyramidal cells

with thorny excrescences and a previously uncharacterized a-thorny intrinsic-bursting (IB)

cell type [21]. To further support the rationale for this subdivision, here we analyzed single-cell

transcriptomic data from the CA3 region and found that clustering analysis—based on all

genes as well as ion channel genes specifically—supports our hypothesis that there are two

major principal cell types in the CA3 region (see Figs 1F, 3B and 3D). When interconnected in

cell type-specific pathways, hippocampal circuits provide the basis for its rich repertoire of

emergent dynamical patterns supporting cognitive function [40,41]. Among these are SWs, a

network synchronization event implicated in both memory recall and consolidation [42]. SWs

have been shown to originate in the CA3 region of the hippocampus [43,44], where a-thorny

cells burst preferentially at the SW onset [21], thereby promoting synchronization. This raises

an interesting question: which biophysical mechanisms and synaptic input patterns can drive

this form of spiking output? Here, we adopted a data-driven approach employing a combina-

tion of patch-clamp electrophysiology and high-resolution morphological data, to build multi-

compartmental, biophysically detailed models for each of the two CA3 principal cell popula-

tions. To this end, we employed multi-objective optimization methods [16], which have

become the de facto standard for generating biophysically realistic models [17,18,20,45,46].

Compared with a hand-tuned model, a fully agnostic, data-driven approach to optimization

might incur in the risk of choosing parameter values that are not biologically realistic, but that

simply allow the model to achieve an adequate fitness level. This problem can be mitigated by

choosing appropriate, possibly cell-type specific, intervals over which parameters are allowed

to vary: in our case, we used a similar parameter set as the one described in [20] and chose

appropriate intervals to make them suitable for CA3 pyramidal cells. Multi-objective optimiza-

tion generates a set of viable solutions, termed individuals, that satisfy the experimental con-

straints to different degrees: by setting a threshold on the quality of the individuals, we were

able to generate two cell populations that not only quantitatively match the firing phenotypes

observed in individual CA3 RS and IB neurons, but that are also capable of reproducing the

population-level variability in their intrinsic properties (Fig 2). Viewed in this perspective, the
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detailed biophysical models of CA3 principal neurons developed in this study constitute the

first step towards the goal of gaining a mechanistic understanding of the biophysical mecha-

nisms underlying the cellular contributions to network dynamics in the CA3 region.

Distinct physiological and morphological features shape the cell type-

specific phenotype

We compared the distributions of model parameters across the population of individuals gen-

erated by the optimization algorithm with the cell type-specific differences in expression levels

of ion channel genes in our scRNAseq dataset and found several important congruencies, as

shown in Fig 3. In particular, the most prominent differences between RS and IB cells in

parameter distributions are related to K+ channels. Beyond the conventional delayed-rectifier

conductance responsible for AP termination, both A-type and M-type K+ channels are down-

regulated in the IB cell type, indicating a possible mechanism for somatic burst generation in

these cells. These results are consistent with a previous modelling and experimental study [24],

which highlighted the importance of M-type K+ potassium channel in burst generation in CA1

pyramidal cells. Additionally, we found that the parameters regulating intracellular Ca2+

dynamics are also distinct between the two cell types, in agreement with a previous experimen-

tal report [47]. These results constitute a first important step towards incorporating single-cell

and population-level variability of excitatory neurons into detailed network models of the hip-

pocampus, which so far have mostly focused on inhibitory neuron heterogeneity [48]. In addi-

tion to the parameter distribution differences generated by the multi-objective optimization

procedure, thorny and a-thorny cells display several key anatomical differences [21] that con-

tribute to each cell type intrinsic properties. To test the potential functional consequences of

such differences on the processing capabilities of the two cell types, we investigated the effect

of dendritic diameter on Rin and amplitude ratio differences between CA3 principal neurons,

as shown in Fig 4. We found that, for a given dendritic diameter, a-thorny cells have on aver-

age higher Rin and AR than thorny cells; when looking specifically at terminal branches (Fig

4G and 4H), our modelling results indicate that the values of Rin and AR are approximately

twice as large in a-thorny cells, albeit with decreasing separation as the distance from the par-

ent dendritic branch increases. Given that the spine model was the same for the two cell types,

this is largely attributable to the differences in axial resistance (which is greater in a-thorny

cells) and hints at a possible higher compartmentalization of inputs arriving on the synapses of

a-thorny cells. Our results are in agreement with several previous studies that have shown a

high electrical compartmentalization of dendritic spines (see [49] for a review), even though

recent imaging studies have hinted at a much lower degree of compartmentalization [50,51].

Further experimental work is therefore required to assess the true measure of spine head

compartmentalization, given its potentially important functional consequences [49,52].

Synaptic cooperativity

In vivo, neurons are constantly bombarded by synaptic inputs with varying spatio-temporal

patterns. Understanding the basis of how synaptic inputs interact to drive nonlinearities and

action potential output is of critical importance for elucidating the neuronal transfer function.

To better understand how synaptic inputs interact in the two principal CA3 cell types as well

as to maintain a data-driven approach, we used in vitro EPSP statistics recorded with and with-

out Na+ channel blockers to constrain the AMPA and NMDA synapses added to the neuron

models. In this experimental scenario, we investigated the role played by the number of acti-

vated synapses and the temporal patterns of activation [29] and found that, when Na+ chan-

nels’ conductance was set to 0, mimicking the bath application of the sodium channel blocker
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TTX, both cell types display a supralinear increase of the dendritic and somatic EPSPs (see Fig

5), which is a direct consequence of the strong input-output nonlinearity introduced by

NMDARs. Furthermore, when setting the sodium conductances to the values obtained by the

optimization procedure, we found that the concomitant activation of synaptic inputs on the

apical dendrite of a-thorny, but not thorny cells, leads to a dendritic plateau resulting in

somatic bursts, as shown in Fig 6. This occurs despite the fact that the target features used in

the optimization procedure did not include any dendritic stimulus. Therefore, this behavior

emerges “naturally” and points to the interplay between ionic and synaptic conductances in

the dendrites and somatic conductances as a second source of bursting in the a-thorny cells, in

addition to the more established slow-fast basis of bursting observed at the level of somatic

currents [24]. To the best of our knowledge, this is the first time that a data-driven biophysi-

cally-detailed neuron model of a hippocampal cell type is capable of displaying dendritic pla-

teau bursting (but see [53] for a pioneering hand-tuned model incorporating this feature).

Mutual information and correlation transfer

One of the key features of CA3 that differentiates it from the rest of the hippocampus is its

recurrent connectivity (see [54] for a review). In a final set of simulation experiments aimed at

recapitulating spontaneous recurrent network activity observed in vitro and in vivo during

SWs, we injected a fluctuating current into the soma of the simulated cells to mimic the con-

current activation of a large number of (uncorrelated) presynaptic neurons, while delivering

the same synaptic activation pattern described previously, with varying degrees of spatio-tem-

poral correlation. Strikingly, we found that the firing patterns of a-thorny cells have a lower

entropy than their thorny counterparts: in turn, this allows this cell type to encode more infor-

mation about their synaptic input in their spiking output, as quantified in Fig 7 by using the

mutual information measure. This suggests that synapses on a-thorny cells have a higher infor-

mation efficacy [36] thereby enabling this cell type to operate as “correlation detectors” that

use high-frequency bursts of APs to signal the arrival of tightly clustered volleys of presynaptic

inputs on their dendritic trees. It remains to be verified (both in silico and in vitro) whether

there are any differences in “noise” correlation transfer between the two cell types, as has been

shown for various types of neurons in rat somatosensory cortex [55]. Higher information-

transfer capabilities might have profound functional implications for the role played by a-

thorny cells in the hippocampal circuitry, as it could at least partially explain the preferential

involvement of this cell type in the early phases of SWs [21]. It is worthwhile pointing out that

the simulation experiments reported in Fig 7 have been performed at a fixed level of simulated

background synaptic input: given that background synaptic activity is correlated with brain

state (both at the micro- and macro-circuit levels), further work is required to elucidate the

effect of varying degrees of noise on the amount of mutual information both cell types are

capable of transferring by means of an interplay between high-conductance state [34] and sto-

chastic resonance [56].

Correlation transfer driven bursting behavior and CA3 network

synchronization dynamics

Systems memory consolidation involves network oscillations known as sharp-wave ripples.

These LFP fluctuations originate from the synchronization of ensembles of pyramidal cells in

the CA3 region of the hippocampus and then propagate to CA1 and other extra-hippocampal

brain regions. Previously we demonstrated that burst-firing—specifically from a-thorny CA3

pyramidal neurons—was significantly correlated with the onset of sharp-wave synchronization

[21]. Moreover, we demonstrated in a spiking recurrent network model consisting of bursting
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and regular-spiking cell types, that bursts provide the essential nonlinearity around which the

network can synchronize. Within this dynamical systems context, we postulated that informa-

tion present in the correlational structure of the ongoing spontaneous activity in the network

could be selectively amplified by a-thorny cells to promote network synchronization. In the

present study we investigate how this type of nonlinear amplification is achieved and provide

an information theoretic description for how correlation transfer is performed in a cell type

specific manner. Within the context of CA3 recurrent network synchronization dynamics our

results shed light on key biophysical mechanisms and synaptic input patterns that support

complex-spiking output of a-thorny cells thereby providing deeper insight into the mecha-

nisms of hippocampal sharp-wave initiation.

Materials and methods

Ethics statement

Experimental procedures adhered to methods approved by Cedars-Sinai Medical Center Insti-

tutional Animal Care and Use Committee.

Acute brain slice electrophysiology and morphological reconstruction

Acute hippocampal brain slices were prepared from male and female mice (postnatal day (P)

23 to P40) according to [21]. Briefly, after animals were anesthetized with isoflurane, mice

were decapitated and the brain rapidly removed and placed into chilled sucrose cutting solu-

tion consisting of (in mM) 215 sucrose, 2.5 KCl, 20 glucose, 26 NaHCO3, 1.6 NaH2PO4, 1

CaCl2, 4 MgCl2, and 4 MgSO4. Whole hippocampi were dissected out of the brain, embedded

in a preformed agar block (4% agar), cut into 400-μm thick transverse sections on a Leica VT

1200 s vibratome, and transferred to a submersion incubation chamber containing room-tem-

perature artificial cerebrospinal fluid (ACSF) containing (in mM) 124 NaCl, 2.5 KCl, 10 glu-

cose, 26 NaHCO3, 1.0 NaH2PO4, 2.0 CaCl2, and 1.0 MgCl2. Both cutting and ACSF solutions

were saturated with 95% O2 and 5% CO2 (pH 7.2–7.4) throughout slice preparation. The slices

were incubated in ACSF for at least 1 h before recording, and then were transferred as needed

to a submersion-type laminar-flow recording chamber, perfused with ACSF at 5 mL/min.

Whole-cell intracellular recordings were obtained using standard patch-clamp techniques in

current-clamp mode visualized under infrared differential interference contrast (IR-DIC)

optics. The internal pipette solution for all recordings contained (in mM) 135 potassium-glu-

conate, 5 KCl, 1 CaCl2, 0.1 EGTA-Na, 10 HEPES, 10 glucose, 5 MgATP, 0.4 Na3GTP, and

0.5% biocytin, at pH 7.2 and 285–290 mOsm. To maximize cell health, synaptic connectivity,

recording stability, and to obtain an unbiased sampling of CA3 pyramidal neurons, cells 100–

150 μm below the surface of the slice were blind-patched. The recording pipette resistance ran-

ged from 4–6 MO. Bridge balance and capacitance compensation were monitored and manu-

ally adjusted (as needed) throughout each recording. Recordings with> 20% changes in input

resistance (Rin) were systematically excluded from analysis. Resting potential ranged from –79

to –58 mV. Maximal recording time after dissection was 6 h. Recording temperature was set to

32.0 ± 0.1˚C. Recordings were Bessel-filtered at 5 kHz and digitized at 20 kHz and analyzed

using IgorPro or pClamp11 software. In all cases, a series of 500-ms current steps were applied

to each cell, held at –60 ± 1 mV, within 5–10 min after break-in, to determine the intrinsic

properties of the cell being recorded. Cells were classified as regular-spiking or intrinsically

bursting by the initial spike frequency resulting from a suprathreshold current injection 10–

20% above rheobase for regular-spiking cells and at rheobase for intrinsically bursting cells. A

host of physiological parameters in addition to the initial firing frequency, Rin, and rheobase,

were analyzed consistently with previous measurements [21]. Neurons were filled with
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biocytin for at least 20 min, and slices were then fixed for a minimum of 12–24 h with 4% para-

formaldehyde after recording. Fixed brain slices were then washed in 1 × PBS solution before

staining. Biocytin staining was performed with vector PK4000 and SK4100 kits (Vector Labo-

ratories, Burlingame, CA, USA). Digital images (z-stacks; 1-μm intervals) of biocytin-stained

neurons were obtained using a Zeiss Axioimager upright microscope equipped with a 100 ×
(1.4 numerical aperture) objective. The z-stacks were then imported into the ShuTu software

[57] for reconstruction and analysis.

Transcriptomic analysis of single-cell RNA-sequencing data from CA3

excitatory neurons

We utilized scRNAseq data for 314 cells from the CA3 region of the hippocampus from the

Allen institute for Brain Science (2018 Allen Institute for Brain Science. Cell Types Database:

RNA-Seq Data. Available from portal.brain-map.org/atlases-and-data/rnaseq). A keyword

search of “ion channel” for species mus musculus in the PANTHER database [58] yielded 417

relevant genes, 400 of which were mapped to the genome in our dataset. Focusing on this list

of ion channel-related genes, single-cell gene expression analysis was performed using the

SCANPY Python package (v1.7.0) [59] with any non-default parameters shown in Table 1.

After normalizing the raw counts to counts per million (CPM) using the scanpy.pp.normali-

ze_total function, the dimensionality of the data was reduced by running principal component

analysis (PCA) with the scanpy.pp.pca function. Next, the neighborhood graph of cells was

computed using the PCA representation of the data with the function scanpy.pp.neighbors.

Uniform manifold approximation and projection (UMAP) [22] was used to embed the graph

in two dimensions using the function scanpy.tl.umap. Finally, the neighborhood graph was

clustered using the Leiden graph-clustering method through the function scanpy.tl.leiden (Fig

3C). Differential gene expression analysis was performed between these main clusters using

the DESeq2 package in R [60] with default parameters. The most highly differentially

expressed genes were extracted using a -log10(p-value) cut-off of 1e-7 and a log2(fold change)

cut-off of 1.4 determined by inspection of the volcano plot (S2 Fig).

Optimization of biophysical models

In order to optimize the parameters of the models, we employed the BluePyOpt toolbox [17],

which relies on the DEAP Python library [61]. To tune the parameter values, BluePyOpt

implements the Indicator Based Evolutionary Algorithm (IBEA), which has been shown to

perform particularly well on this kind of problem [62]. Briefly, the algorithm consists in solv-

ing a multi-objective optimization problem by evolving a population of solutions (termed

“individuals”) that satisfy to different degrees a set of objectives. Similarly to previous

Table 1. SCANPY parameters used for analysis.

Function name Parameter name Parameter value

scanpy.pp.filter_genes min_cells 3

scanpy.pp.normalize_total target_sum 1e6

scanpy.pp.pca exclude_highly_expressed True

n_comps 50

scanpy.pp.neighbors n_neighbors 10

n_pcs 50

scanpy.tl.umap min_dist 0.05

scanpy.tl.leiden resolution 0.1

https://doi.org/10.1371/journal.pcbi.1010071.t001
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optimization approaches [16,25], BluePyOpt employs as targets for the optimization features

extracted from the Vm recorded in patch-clamp experiments rather than the time series of the

Vm itself. All the models presented in this paper were obtained by using the following set of 12

features in the optimization process, extracted from the experimental data using the open

source Electrophysiological Feature Extraction Library (eFEL, available at https://github.com/

BlueBrain/eFEL): resting Vm, AP amplitude, threshold, half-width and fall and rise rates, coef-

ficient of variation (CV) of the inter-spike intervals (ISI), number of spikes emitted during a

500 ms-long stimulation, inverse of the first ISI, Vm at the after-hyperpolarization (AHP),

times to first and last AP in the train. These were a slightly modified version of the ones

employed in [20], but we found that the optimization results were robust to reasonable

changes in the set of optimization features. Importantly, we used the same set of features for

both cell types and let the optimization procedure choose the appropriate values for the param-

eters. The stimulation protocols consisted in three steps of depolarizing DC currents whose

amplitudes were chosen to span the current range over which the experimental f-I curves were

measured and were therefore different for the two cell types. For each individual in the popula-

tion, BluePyOpt runs the model for the three values of DC current, extracts the feature values

and computes the individual’s fitness value as the sum of the distance of each feature from the

corresponding experimental mean in units of experimental standard deviation. At each opti-

mization epoch, the best individuals (in terms of fitness) are selected and combined to create

the next generation of solutions. The number of free parameters in the models was 24 and con-

sisted of the maximal conductance values associated to each ion channel inserted in the models

(18 total parameters) plus (i) the reversal potential for the leak current (EL), (ii) the axial resis-

tance (Ra), (iii) the time constant of intracellular calcium dynamics and (iv) a parameter deter-

mining the availability of free calcium inside the cell [63]. The EL and Ra parameters were

optimized to have different values in the axon and in the rest of the cell. The set of active con-

ductances used in our models is the same as that described in [20]. Additionally, in order to

minimize the impact of the different degree of detail in axon reconstruction that was present

in our morphologies, we substituted the original axon with a stereotypical one composed of

two 30 μm-long compartments, modelling the axon initial segment [17]. Overall, we used a

total of six morphologies (three per cell type) and, given the vastity of the 24-dimensional

parameter space and the stochastic nature of evolutionary algorithms such as DEAP, we per-

formed several optimization runs for each morphology.

Simulations

Simulations were run in NEURON [64] using its Python interface [65] and the variable time

step (CVODE) method. The fixed parameters were the reversal potentials of sodium, potas-

sium, and calcium currents (set at 50, -90 and 130 mV, respectively), the membrane capaci-

tance (set at 1 mF/cm2) and the simulation temperature (set at 34˚C as in the experiments).

The resting value of [Ca2+]i was set at 50 nM. Optimizations were performed on a cluster of

32- or 48-core Intel Xeon processors running Scientific Linux 7.6 and typically took between 3

and 24 hours to complete, depending on the complexity of the morphology, i.e., on the total

number of iso-potential compartments in which the model was discretized, and typically

included 150 individuals that were evolved for 100 generations.

Individual selection and parameter dimensionality reduction

One of the main advantages of using an evolutionary algorithm is that it provides a family of

solutions, called individuals, that match to different degrees the optimization features (i.e.,

they lie on the Pareto frontier that makes up the optimal trade-off between satisfying different
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objectives [16]. Following each optimization run, we selected only those individuals that had

an error for each feature below 6 units of standard deviation from the experimental mean: this

led to a total of 180 individuals for the thorny cell type and 172 for the a-thorny one. To visual-

ize the similarity across distinct individuals, we performed dimensionality reduction on the 24

parameters using UMAP [22], using the code available at https://github.com/lmcinnes/umap.

Parameter values were converted to their z-score using the StandardScaler of scikit-learn [66]

before applying each dimensionality reduction algorithm.

Spine model

Spines were modelled in NEURON as two cylindrical compartments connected to the den-

dritic tree: the first one, representing the spine neck, had length and diameter of 1.58 and

0.077 μm, respectively, while the second one had both length and diameter equal to 0.5 μm

(corresponding to an external surface equivalent to that of a sphere of 0.5 μm diameter) [29].

The axial resistivity of the spine was the same as that of the compartment to which it was con-

nected and therefore assumed different values depending on the individual that was simulated

(ranging from values around 150 O�cm for the thorny cell type to approximately 340 O�cm for

the a-thorny one). Spines were added only in the experiments related to the computation of

dendritic amplitude ratio and synaptic cooperativity. No modifications to the membrane

capacitance were applied due to the limited number of spines (up to 9, spaced 5 μm apart)

placed simultaneously on the dendritic tree. In the experiments where spines were present, the

distribution of sodium channels in the apical dendrites of the a-thorny cell type was modified

to have an exponential decay from 100% to 50% of the somatic value (in order not to have dis-

continuities), with a length constant of 100 μm.

Dendritic input resistance computation

Dendritic Rin was computed by injecting 500 ms-long hyperpolarizing pulses of current of

amplitude -50 pA and measuring the Vm deflection at the end of the pulse. For the experiments

shown in Fig 4, this was done for every compartment of the model and then plotted with

respect to either the compartment distance on the dendritic branch or the dendrite diameter.

Amplitude ratio computation

To compute the amplitude ratio shown in Fig 4, we injected EPSP-shaped currents (modelled

as a double exponential function with rise and decay times equal to 1 and 10 ms, respectively)

in the spine head and measured the elicited EPSP both in the spine and in the dendrite directly

connected to it (which we term EPSPspine and EPSPdend, respectively). The amplitude ratio AR

is therefore given by

AR ¼
EPSPspine

EPSPdend
ð1Þ

and constitutes a measure of the degree of compartmentalization that spines provide on the

incoming inputs. Following [29], given AR and Rdend, the dendrite input resistance, we esti-

mated the input resistance of the spine neck as

Rneck ¼ ðAR � 1ÞRdend ð2Þ

In the synaptic cooperativity experiments shown in Fig 5, the AR was computed as in Eq 2,

with the only difference that the spine EPSP was elicited by the activation of a presynaptic

event rather than by the injection of an EPSP-shaped current. The range of AR values we
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observed when activating spines is comparable to what is obtained with the injection of EPSP-

shaped currents.

Synapse models

In the synaptic cooperativity and mutual information experiments, spines contained AMPA

and NMDA receptors. Both AMPA and NMDA synapses were modelled as bi-exponential

functions: the former had rise and decay time constants of 0.1 and 1 ms, respectively [29],

while the latter had rise and decay time constants equal to 1 and 50 ms for the thorny cell and

1 and 100 ms for the a-thorny one. This was done to account for the longer decay of EPSPs

observed in the a-thorny cell type (S3 Fig). For NMDA synapses, the removal of the magne-

sium block was modelled according to [67,68] by multiplying the NMDA conductance by the

following coefficient:

1

1þ
½Mg�o
Kd

expðgðsh � VmÞÞ
ð3Þ

where [Mg]o is the external magnesium concentration (set at 1 mM) and Kd = 9.888 mM, sh =

-7.778 mV and γ = 2.222 V-1 are parameters that regulate the Vm dependence of the removal

of magnesium from the synaptic cleft. The synaptic weights were chosen to have a Vm deflec-

tion at the spine head of approximately 20 mV when only one presynaptic event was simulated,

in line with previous modelling studies [29].

Computation of currentscapes

Currentscapes were computed using the algorithm presented in [32]: briefly, positive (out-

ward) or negative (inward) ionic currents were organized as rows in a matrix, with each col-

umn representing a time instant. Total outward or inward currents (filled black areas in the

middle and bottom panels of Fig 6A and 6B) were then computed as the row-wise sum of the

elements in the matrixes, while the percent contribution of each ionic current was obtained by

further dividing each row in the matrix by the corresponding total current and multiplying

this value by 100.

Computation of mutual information

Several works have investigated how to compute the mutual information between spike

trains [36,69–72] and Vm traces [73,74]. Here, we used the same approach employed by

[36], which is based on the context-tree weighting (CTW) method first described in [37,75].

Briefly, having first converted a spike train into a binary string x2{0,1}n of length n using an

appropriate bin size (4 ms in our case), the context-tree weighting method provides an esti-

mate bP of the probability of the string x over all possible independent and identically distrib-

uted (i.i.d.) stochastic sources that can generate it. The estimate of the entropy of the string

x is therefore given by

bHn xð Þ≜ �
1

n
logbP xð Þ ð4Þ

which is measured in bits/symbol or bits/s if the symbol rate is known. The advantage of

using the CTW method is that it provides reliable estimates of the probability of a binary

string even when its length is relatively short (a few hundreds of APs are generally suffi-

cient), in contrast to the direct method, which requires unreasonably long spike trains to

provide a good estimate. The CTW method can also be used to compute the mutual
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information MI between two binary sequences x and y. To do so, one must rely on the well-

known definition of the mutual information:

MIðx; yÞ ¼ HðxÞ � HðxjyÞ ð5Þ

where H(x|y) is the entropy of the sequence x given that the sequence y is known. A detailed

description on how to obtain the MI estimate can be found in the supplementary materials

of [36].

Supporting information

S1 Fig. Violin plots of the distributions of the parameter values not shown in Fig 3 for the

model cells included in the analysis, normalized over the range of allowed variability of

each parameter (black and red indicate thorny and a-thorny cells, respectively). Dashed

lines indicate the median of the population, while the upper and lower dotted lines represent

the 25th and 75th percentile of the distributions (significant differences tested with a non-

parametric Kolmogorov-Smirnov test: � p< 0.05, �� p< 0.01, ��� p< 0.001).

(TIF)

S2 Fig. Volcano plot for gene expression levels of cells in cluster 1 (putative thorny cells)

vs. cells in cluster 2 (putative a-thorny cells). Each marker represents a gene: purple markers

indicate genes with a significantly different gene expression that is above the fold change

threshold level. Among these, genes marked with cyan dots are ion channel genes.

(TIF)

S3 Fig. Left: violin plots of the distributions of amplitude, rise time constant and decay

time constant of spontaneous EPSPs recorded in thorny and a-thorny cells (black and red

violins, respectively) during bath application of the Na channel blocker TTX (one-way

Welch ANOVA with one-step Bonferroni correction for multiple comparisons: � p< 0.05,
��� p < 0.001). Right: voltage traces used for the extraction of EPSP parameters (pink and gray

traces are individual EPSPs, while black and red traces are averages for thorny and a-thorny

cells, respectively).

(TIF)

S1 Table. Electrophysiological properties of thorny and a-thorny cells measured in vitro.

(DOCX)

S2 Table. Parameter names as shown in Figs 3 and S1 with corresponding channel descrip-

tion, location on the cell morphology and allowed bounds of variation during optimiza-

tion.

(DOCX)
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pyramidal neurone. J Physiol. 1994; 481: 79–95. https://doi.org/10.1113/jphysiol.1994.sp020420 PMID:

7853251

54. Le Duigou C, Simonnet J, Teleñczuk MT, Fricker D, Miles R. Recurrent synapses and circuits in the

CA3 region of the hippocampus: an associative network. Front Cell Neurosci. 2014; 7. https://doi.org/

10.3389/fncel.2013.00262 PMID: 24409118

55. Linaro D, Ocker GK, Doiron B, Giugliano M. Correlation Transfer by Layer 5 Cortical Neurons Under

Recreated Synaptic Inputs In Vitro. J Neurosci. 2019; 39: 7648–7663. https://doi.org/10.1523/

JNEUROSCI.3169-18.2019 PMID: 31346031

56. Mitaim S, Kosko B. Adaptive Stochastic Resonance in Noisy Neurons Based on Mutual Information.

IEEE Trans Neural Netw. 2004; 15: 1526–1540. https://doi.org/10.1109/TNN.2004.826218 PMID:

15565779

57. Jin DZ, Zhao T, Hunt DL, Tillage RP, Hsu C-L, Spruston N. ShuTu: Open-Source Software for Efficient

and Accurate Reconstruction of Dendritic Morphology. Front Neuroinformatics. 2019; 13: 68. https://

doi.org/10.3389/fninf.2019.00068 PMID: 31736735

58. Mi H, Ebert D, Muruganujan A, Mills C, Albou L-P, Mushayamaha T, et al. PANTHER version 16: a

revised family classification, tree-based classification tool, enhancer regions and extensive API. Nucleic

Acids Res. 2021; 49: D394–D403. https://doi.org/10.1093/nar/gkaa1106 PMID: 33290554

59. Wolf FA, Angerer P, Theis FJ. SCANPY: large-scale single-cell gene expression data analysis.

Genome Biol. 2018; 19: 15. https://doi.org/10.1186/s13059-017-1382-0 PMID: 29409532

60. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data

with DESeq2. Genome Biol. 2014; 15: 550. https://doi.org/10.1186/s13059-014-0550-8 PMID:

25516281

61. Fortin FA, De Rainville FM, Gardner MA, Parizeau M, Gagne C. DEAP: Evolutionary Algorithms Made

Easy. J Mach Learn Res. 2012; 13: 2171–2175.

PLOS COMPUTATIONAL BIOLOGY Cell type-specific mechanisms of information transfer in CA3 principal neurons models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010071 April 22, 2022 28 / 29

https://doi.org/10.1093/acprof%3Aoso/9780195301069.001.0001
https://doi.org/10.1093/acprof%3Aoso/9780195301069.001.0001
https://doi.org/10.1016/j.neuron.2004.08.028
https://doi.org/10.1016/j.neuron.2004.08.028
http://www.ncbi.nlm.nih.gov/pubmed/15450164
https://doi.org/10.1002/hipo.22488
http://www.ncbi.nlm.nih.gov/pubmed/26135716
https://doi.org/10.1016/s0896-6273%2800%2900135-5
https://doi.org/10.1016/s0896-6273%2800%2900135-5
http://www.ncbi.nlm.nih.gov/pubmed/11144366
https://doi.org/10.1113/jphysiol.2007.138131
https://doi.org/10.1113/jphysiol.2007.138131
http://www.ncbi.nlm.nih.gov/pubmed/17823211
https://doi.org/10.1371/journal.pcbi.1006753
http://www.ncbi.nlm.nih.gov/pubmed/31095552
https://doi.org/10.1101/2020.04.09.030239
https://doi.org/10.1101/2020.04.09.030239
https://doi.org/10.1016/j.ceca.2006.01.004
https://doi.org/10.1016/j.ceca.2006.01.004
http://www.ncbi.nlm.nih.gov/pubmed/16530827
https://doi.org/10.7554/eLife.18566
https://doi.org/10.7554/eLife.18566
http://www.ncbi.nlm.nih.gov/pubmed/28009257
https://doi.org/10.1146/annurev-neuro-062111-150455
http://www.ncbi.nlm.nih.gov/pubmed/23724997
https://doi.org/10.1038/ncomms9436
http://www.ncbi.nlm.nih.gov/pubmed/26436431
https://doi.org/10.1038/nn.3682
http://www.ncbi.nlm.nih.gov/pubmed/24657968
https://doi.org/10.1073/pnas.1321869111
https://doi.org/10.1073/pnas.1321869111
http://www.ncbi.nlm.nih.gov/pubmed/24982196
https://doi.org/10.1113/jphysiol.1994.sp020420
http://www.ncbi.nlm.nih.gov/pubmed/7853251
https://doi.org/10.3389/fncel.2013.00262
https://doi.org/10.3389/fncel.2013.00262
http://www.ncbi.nlm.nih.gov/pubmed/24409118
https://doi.org/10.1523/JNEUROSCI.3169-18.2019
https://doi.org/10.1523/JNEUROSCI.3169-18.2019
http://www.ncbi.nlm.nih.gov/pubmed/31346031
https://doi.org/10.1109/TNN.2004.826218
http://www.ncbi.nlm.nih.gov/pubmed/15565779
https://doi.org/10.3389/fninf.2019.00068
https://doi.org/10.3389/fninf.2019.00068
http://www.ncbi.nlm.nih.gov/pubmed/31736735
https://doi.org/10.1093/nar/gkaa1106
http://www.ncbi.nlm.nih.gov/pubmed/33290554
https://doi.org/10.1186/s13059-017-1382-0
http://www.ncbi.nlm.nih.gov/pubmed/29409532
https://doi.org/10.1186/s13059-014-0550-8
http://www.ncbi.nlm.nih.gov/pubmed/25516281
https://doi.org/10.1371/journal.pcbi.1010071


62. Markram H, Muller E, Ramaswamy S, Reimann MW, Abdellah M, Sanchez CA, et al. Reconstruction

and Simulation of Neocortical Microcircuitry. Cell. 2015; 163: 456–492. https://doi.org/10.1016/j.cell.

2015.09.029 PMID: 26451489

63. Destexhe A, Mainen ZF, Sejnowski TJ. Synthesis of models for excitable membranes, synaptic trans-

mission and neuromodulation using a common kinetic formalism. J Comput Neurosci. 1994; 1: 195–

230. https://doi.org/10.1007/BF00961734 PMID: 8792231

64. Carnevale NT, Hines ML. The NEURON book. Cambridge University Press; 2006.

65. Hines ML, Davison AP, Muller E. NEURON and Python. Front Neuroinform. 2009; 3: 1. https://doi.org/

10.3389/neuro.11.001.2009 PMID: 19198661

66. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine

Learning in Python. J Mach Learn Res. 2011; 12: 2825–2830.

67. Jahr CE, Stevens CF. Voltage dependence of NMDA-activated macroscopic conductances predicted

by single-channel kinetics. J Neurosci. 1990; 10: 3178–82. https://doi.org/10.1523/JNEUROSCI.10-09-

03178.1990 PMID: 1697902

68. Jahr CE, Stevens CF. A quantitative description of NMDA receptor-channel kinetic behavior. J Neu-

rosci. 1990; 10: 1830–7. https://doi.org/10.1523/JNEUROSCI.10-06-01830.1990 PMID: 1693952

69. Dorval AD. Probability distributions of the logarithm of inter-spike intervals yield accurate entropy esti-

mates from small datasets. J Neurosci Methods. 2008; 173: 129–139. https://doi.org/10.1016/j.

jneumeth.2008.05.013 PMID: 18620755

70. Houghton C. Calculating the Mutual Information between Two Spike Trains. Neural Comput. 2019; 31:

330–343. https://doi.org/10.1162/neco_a_01155 PMID: 30576614

71. Houghton C. Calculating mutual information for spike trains and other data with distances but no coordi-

nates. R Soc Open Sci. 2015; 2. ARTN 140391 https://doi.org/10.1098/rsos.140391 PMID: 26064650

72. Paninski L. Estimation of entropy and mutual information. Neural Comput. 2003; 15: 1191–1253.

https://doi.org/10.1162/089976603321780272

73. Fuhrmann G, Segev I, Markram H, Tsodyks M. Coding of temporal information by activity-dependent

synapses. J Neurophysiol. 2002; 87: 140–148. https://doi.org/10.1152/jn.00258.2001 PMID: 11784736

74. Testa-Silva G, Verhoog MB, Linaro D, de Kock CP, Baayen JC, Meredith RM, et al. High bandwidth syn-

aptic communication and frequency tracking in human neocortex. PLoS Biol. 2014; 12: e1002007.

https://doi.org/10.1371/journal.pbio.1002007 PMID: 25422947

75. Willems FMJ. The context-tree weighting method: Extensions. IEEE Trans Inf Theory. 1998; 44: 792–

798. https://doi.org/10.1109/18.661523

PLOS COMPUTATIONAL BIOLOGY Cell type-specific mechanisms of information transfer in CA3 principal neurons models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010071 April 22, 2022 29 / 29

https://doi.org/10.1016/j.cell.2015.09.029
https://doi.org/10.1016/j.cell.2015.09.029
http://www.ncbi.nlm.nih.gov/pubmed/26451489
https://doi.org/10.1007/BF00961734
http://www.ncbi.nlm.nih.gov/pubmed/8792231
https://doi.org/10.3389/neuro.11.001.2009
https://doi.org/10.3389/neuro.11.001.2009
http://www.ncbi.nlm.nih.gov/pubmed/19198661
https://doi.org/10.1523/JNEUROSCI.10-09-03178.1990
https://doi.org/10.1523/JNEUROSCI.10-09-03178.1990
http://www.ncbi.nlm.nih.gov/pubmed/1697902
https://doi.org/10.1523/JNEUROSCI.10-06-01830.1990
http://www.ncbi.nlm.nih.gov/pubmed/1693952
https://doi.org/10.1016/j.jneumeth.2008.05.013
https://doi.org/10.1016/j.jneumeth.2008.05.013
http://www.ncbi.nlm.nih.gov/pubmed/18620755
https://doi.org/10.1162/neco%5Fa%5F01155
http://www.ncbi.nlm.nih.gov/pubmed/30576614
https://doi.org/10.1098/rsos.140391
http://www.ncbi.nlm.nih.gov/pubmed/26064650
https://doi.org/10.1162/089976603321780272
https://doi.org/10.1152/jn.00258.2001
http://www.ncbi.nlm.nih.gov/pubmed/11784736
https://doi.org/10.1371/journal.pbio.1002007
http://www.ncbi.nlm.nih.gov/pubmed/25422947
https://doi.org/10.1109/18.661523
https://doi.org/10.1371/journal.pcbi.1010071

