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Abstract

A variety of methods based on coalescent theory have been developed to infer demographic history from gene sequences
sampled from natural populations. The ‘skyline plot’ and related approaches are commonly employed as flexible prior
distributions for phylogenetic trees in the Bayesian analysis of pathogen gene sequences. In this work we extend the classic
and generalized skyline plot methods to phylogenies that contain one or more multifurcations (i.e. hard polytomies). We
use the theory of K-coalescents (specifically, Betað2� a; aÞ-coalescents) to develop the ‘multifurcating skyline plot’, which
estimates a piecewise constant function of effective population size through time, conditional on a time-scaled multifurcat-
ing phylogeny. We implement a smoothing procedure and extend the method to serially sampled (heterochronous) data,
but we do not address here the problem of estimating trees with multifurcations from gene sequence alignments. We vali-
date our estimator on simulated data using maximum likelihood and find that parameters of the Betað2� a; aÞ -coalescent
process can be estimated accurately. Furthermore, we apply the multifurcating skyline plot to simulated trees generated by
tracking transmissions in an individual-based model of epidemic superspreading. We find that high levels of superspread-
ing are consistent with the high-variance assumptions underlying K-coalescents and that the estimated parameters of the
K-coalescent model contain information about the degree of superspreading.
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1. Introduction

The field of phylodynamics is concerned with the study of how
processes acting at the population-level shape the genetic di-
versity of gene or genome sequences sampled from natural pop-
ulations. Phylodynamic methods are frequently applied to
pathogen populations and used to test hypotheses concerning
the epidemiology and transmission of infectious disease (e.g.
Pybus and Rambaut 2009). Viruses in particular have been the
subject of great attention, since their high mutation rates rap-
idly generate genetic diversity, even on short time scales, and
because increasingly large numbers of virus genome sequences
from viral epidemics are available for analysis (e.g. Biek et al.
2015). Phylodynamic approaches are also used in other fields,
such as macroevolution, anthropology, and ancient DNA re-
search (e.g. Drummond et al. 2003), in order to understand how

dynamical processes gave rise to the patterns of ancestry and
diversity observed in biological systems.

Phylodynamic analysis of sampled gene sequences relies cru-
cially on ‘tree-generating models’, which describe how phyloge-
nies, genealogies or trees (we use these terms interchangeably)
are related to the population dynamic processes that generated
them. Among these models, coalescent approaches are widely
used because they provide a mathematically simple framework
that is capable of relating the demography of a viral population
to its sample genealogy. Mathematically, coalescent theory relies
on asymptotic properties of Wright–Fisher reproduction models
that represent large, constant-sized populations. The distribu-
tion of sample genealogies from such populations is described
by the so-called Kingman coalescent process (Kingman 1982).
The Kingman coalescent has been shown to describe the
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genealogy of many models in population genetics and has been
extended to incorporate a number of biological processes, in-
cluding population size change (Griffiths and Tavare 1994), selec-
tion (Kaplan, Darden, and Hudson 1988), recombination (Hudson
and Kaplan 1988), longitudinal sampling (Rodrigo et al. 1999),
and population structure (Takahata 1988).

The Kingman coalescent has been used to develop a variety
of statistical methods that aim to infer the history of population
size from an observed sample phylogeny. One such approach
that is commonly used is the ‘skyline plot’ and related methods
(Ho and Shapiro 2011), which model population size change as a
piecewise constant function through time. In this paper, we ex-
tend and generalize the skyline plot family of methods beyond
the Kingman coalescent.

The standard Kingman coalescent (Kingman 1982) describes
the genealogy of n individuals sampled at random from a popu-
lation of size N� n, using a bifurcating ultrametric tree Tn with
n leaves (tree tips). In this paper, we will consider genealogies
obtained by sampling from large populations whose sizes vary
over time. In contrast to standard Kingman coalescent theory,
we will consider populations with high variance in the number
of offspring per individual (sometimes called the offspring dis-
tribution) which may lead to multifurcations (i.e. nodes with de-
gree >3) in the sample genealogy that can no longer be ignored.
To achieve this we consider a more general class of models
called K-coalescent processes, a family of random trees discov-
ered by Sagitov (1999) and fully described by Pitman (1999). In
contrast to the Kingman coalescent, under which trees are
binary and strictly bifurcating, K-coalescent trees can contain
multifurcations. This has led to their application to genetic data
from populations undergoing high-variance reproduction
(sometimes called sweepstakes reproduction), such as the Atlantic
cod Gadus morhua (Birkner, Blath, and Eldon 2013) or Pacific oys-
ters Crassostrea gigas (Sargsyan and Wakeley 2008). Beyond
high-variance reproduction, many other phenomena can lead
to multifurcations in the ancestral process of a sample, such as
repeated selective sweeps (Durrett and Schweinsberg 2004),
strong selective pressure (Neher and Hallatschek 2013), or over-
sampling (Bhaskar, Clark, and Song 2014). Using classical meth-
ods to analyze such datasets can lead to systematic biases
(Hallatschek 2018; Sackman, Harris, and Jensen 2019).

Most work in this area has been focused on finding
statistical signatures of multiple-merger coalescences, and dis-
tinguishing them from confounding factors such as population
growth (Eldon et al. 2015; Koskela 2018). The statistics most
commonly used are based on the site-frequency spectrum
(Spence, Kamm, and Song 2016) and, as such, are nonphyloge-
netic in nature.

Here we show how to calculate the likelihood of multi-
furcating genealogies under K-coalescent models, given a
function describing effective population size. We derive a new
estimate of effective population size, which we call the multi-
furcating skyline plot, and extend this to longitudinal (serial)
sampling. Using simulated data, we show that, in the case of
Betað2� a; aÞ -coalescents, we can estimate the key a parameter
that describes the propensity of the sample genealogy to
contain multifurcations (a¼ 2 corresponds to the Kingman
coalescent, whilst a¼ 1 represents the Bolthausen–Sznitman
coalescent). Our analyses include data simulated under an em-
pirically informed model of epidemiological super-spreading.
We also show that effective population sizes can be estimated
accurately. Note that this study aims to undertake inference
from a single, pre-specified multifurcating genealogy. We
leave for future work the problem of statistically inferring

such multifurcating trees from an empirical gene sequence
alignment.

2. Methods
2.1 Mathematical properties of K-coalescents

Coalescents are random trees that describe the genealogy of a
small number of individuals sampled from a larger population.
The class of K-coalescents is parametrized by a probability mea-
sure K(dx) on the interval [0, 1]. In most cases, these probability
measures will be absolutely continuous with respect to the
Lebesgue measure, i.e. K(dx)¼ k(x)dx, for some non-negative
function k(x) such that

Ð 1
0 KðdxÞ ¼

Ð 1
0 kðxÞdx ¼ 1.

Under the Kingman coalescent, sample trees are almost
surely binary, However, trees under the K-coalescent are
in general multifurcating (i.e. contain at least one node
with degree larger than 3). The distribution of such trees can
be described as follows: start with n sample lineages at time 0.
Note that time is represented backwards hence time 0 repre-
sents the present (or, more generally, the time of the most re-
cent tree tip). Consider, for each k-tuple of lineages with
2� k�n, an independent exponential random variable with
parameter

kn;k ¼
ð1

0
xk�2ð1� xÞn�kKðdxÞ: (1)

Then, if Tn is the minimum of these random variables, Tn is

exponentially distributed with parameter
Pn

k¼2
n
k

� �
kn;k. At time

Tn, choose the number K of coalescing lineages with probability

P K ¼ kð Þ ¼

n
k

� �
kn;k

Pn
i¼2

n
i

� �
kn;i

: (2)

Finally, choose K lineages at random from the set of n extant
lineages, and collapse them into a single lineage. Continue this
process with the remaining n – Kþ 1 lineages until only one line-
age is left. In other words, each k-tuple of lineages coalesces at
rate kn,k, independently of all other tuples. To better understand
the role played by the K measure in the distribution of multifur-
cations, Equation (2) can also be interpreted in the following
way: assume that l�2 ¼

Ð 1
0 x�2KðdxÞ < 1, so that F1ðdxÞ ¼

x�2KðdxÞ=l�2 is a probability measure. Then, at coalescence
time Tn, let p 2 ð0; 1� be sampled according to F1; select coalesc-
ing lineages from the n extant lineages independently with
probability P. For more details on this construction (sometimes
dubbed the paintbox construction by analogy with the construc-
tion used by Kingman) see Pitman 1999.

In Equation (1), it is easy to see that when K¼ d0, the Dirac
mass at 0, then kn,k¼ 0 for 3 � k � n, and kn,2 ¼1. Thus, if the
probability measure K is concentrated solely at 0, then the K-co-
alescent process is strictly binary and identical to the Kingman
coalescent. However, the paintbox construction scheme does
not apply to this case, since

Ð 1
0 d0ðdxÞ=x2 ¼ 1.

2.2 Variable population size

For a given set of n individuals sampled from a large popula-
tions, we can define the coalescent effective population size, Ne,
which is the size of an ideal population exhibiting the same
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amount of genetic diversity under the Wright–Fisher reproduc-
tion model as the population under study. Indeed, one can re-
cover a Kingman coalescent from the genealogy of n individuals
in a Wright–Fisher model of size N by rescaling time by a factor
of Ne ¼ N (Wakeley 2009). For more details on the different
notions of effective population size see Sjödin et al. 2005.

For K-coalescents, the analog of the Wright–Fisher model is
the Cannings model (Cannings 1974). In the Cannings model, all N
individuals in one generation reproduce according to the same
offspring distribution (see Fig. 1). If m1; . . . ; mN are the number of
offspring of individuals 1,. . ., N, respectively, we need to have
m1 þ . . .þ mN ¼ N in order to keep population size constant. A fur-
ther condition is exchangeability, meaning that the distribution
of the vector ðm1; . . . ; mNÞ is invariant under permutations. This
implies in particular that all individuals have the same off-
spring distribution (i.e. the same propensity to reproduce).
Hence, their common expectation is E½m1� ¼ . . . ¼ E½mN� ¼ 1. Let
r2(N) be their common variance. We can recover the Wright–
Fisher model as a specific case of the Cannings model by taking
ðm1; . . . ; mNÞ to be the multinomial distributions with parameters
ðN; 1=N; . . . ; 1=NÞ.

Suppose that the population size is large (N!1). If the vari-
ance in offspring number converges to a fixed finite value as N
increases (r2ðNÞ ! r2 < 1), then the genealogy of n lineages
randomly sampled from the Cannings model of size N, rescaled
by Ne ¼N=r2, still converges to the Kingman coalescent as in the
Wright–Fisher case. If we relax this convergence condition, but
still keep r2(N) ¼o(N), under some additional technical
conditions (see Theorem 3.1 in Sagitov 1999), then the sample
genealogy converges to a K-coalescent when rescaled by the
factor N=r2(N). By analogy with the Wright–Fisher case, we can
call this the K-effective population size. Since the Cannings
model counts time in units of generations, this means that,
when dealing with a real population that exhibits Cannings-like
reproduction, it is necessary to count time in units of Ne ¼
N=r2ðNÞ generations in order to observe K-coalescent-like
behaviors. We can thus define a K-coalescent process in contin-
uous time, given an effective population size function
ðNeðtÞ; t � 0Þ by analogy with the variable population size coa-
lescent described in (Griffiths and Tavare 1994).

Given a tree T with n tips we define cðT Þ as the number of
coalescences, that is, the number of internal nodes of T . If T is a
binary tree, then cðT Þ ¼ n� 1. We denote the coalescence times
as 0 < t1 < . . . < tcðT Þ. For convenience, we denote present as
t0 ¼ 0. During the interval ½ti�1; tiÞ, with 1 � i � cðT Þ, let ni be the
number of extant lineages. By definition, we always have n1 ¼ n.
Finally, for each 1 � i � cðT Þ, let ki be the number of lineages
involved in the coalescence at time ti (see Fig. 2 for an example
of this notation). Again by definition, we have niþ1 ¼ ni � ki þ 1.

The likelihood of a tree under the K-coalescent model, given
the K distribution, is easy to write down thanks to the
Markovian description of the process given above. It can in fact
be decomposed in product form, since the waiting times be-
tween coalescent events are conditionally independent. Given
the number of lineages ni on an intercoalescent interval ½ti�1; tiÞ,
the waiting time is distributed as an exponential random vari-
able with parameter

Xni

j¼2

ni
j

� �
kni ;j; (3)

hence the likelihood of observing an interval of length ðti �
ti�1Þ is

Xni

j¼2

ni
j

� �
kni ;jexp �

Xni

j¼2

ni
j

� �
kni ;jðti � ti�1Þ

0
@

1
A:

Then, at each coalescent time, the likelihood of seeing ex-
actly ki of the ni lineages coalesce is, according to (2),

P K ¼ kijKð Þ ¼

ni
ki

� �
kni ;ki

Pni
j¼2

ni
j

� �
kni ;j

:

This gives, for the complete likelihood:

PðT jKÞ ¼
YcðT Þ
i¼1

ni
ki

� �
kni ;ki

� exp �
Xni

j¼2

ni
j

� �
kni ;jðti � ti�1Þ

0
@

1
A; (4)

with the kn;k depending on K as in (1). Note that when taking
K ¼ d0 (i.e. the Kingman coalescent) the kn;k are all zero except
k2;2 ¼ 1, so that, as expected, we get a zero likelihood for nonbi-
nary trees (i.e. trees with at least one ki > 2) under the Kingman
coalescent. Following Griffiths and Tavare (1994), we can now
take into account the effective population size as a time-change
of the K-coalescent, and write the likelihood of the tree given an
effective population size function ðNeðtÞ; t � 0Þ under a K-coa-
lescent model:

P T jNe;Kð Þ ¼
YcðT Þ
i¼1

ni
ki

� �
kni ;ki

NeðtiÞ
� exp �

ðti

ti�1

Pni
j¼2

ni
j

� �
kni ;j

NeðsÞ
ds

0
B@

1
CA
: (5)

Figure 1. An ancestral genealogy (in red) of n¼4 lineages sampled from a

Cannings model with constant population size N¼8 (black dots). The horizontal

axis represents time and the lines indicate ancestry.
Figure 2. A multifurcating, ultrametric sample tree with n¼10 tips. In this case,

the number of lineages involved in each coalescence event is k1 ¼ 2,

k2 ¼ 4; k3 ¼ 3; k4 ¼ 2; k5 ¼ 3. The number of extant lineages is n1 ¼ 10 during

½0; t1Þ; n2 ¼ 9 during ½t1 ; t2Þ,. . ., n5 ¼ 3 during ½t4 ; t5Þ.
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In this formula, the population size function ðNeðtÞ; t � 0Þ is
assumed to be deterministic (see Kaj and Krone 2003) for a treat-
ment of Kingman coalescents with stochastically varying popu-
lation size). The continuous-time model defined by (5) can be
obtained as scaling limit of a Cannings model with variable pop-
ulation size, as shown in Theorem 2.2 of Möhle (2002). Indeed,
this result, as in the constant population size case, shows that
the effective population size function Ne is related to the param-
eters of the offspring distribution of a Cannings model through
NeðtÞ ¼ NðtÞ=r2ðtÞ, where N(t) and r2ðtÞ are the census population
size and the offspring variance, respectively, of the Cannings
model at time t in the coalescent timescale. This relationship
will be used later when considering the interpretation of esti-
mated effective population sizes. Under the variable population
size model, the change in timescale necessary to transform
from generation counts to coalescent time is a little more
involved than that for constant population size; details can be
found in Möhle (2002) and Freund (2019).

3. Results

Using the likelihood formula (5) and given a time-scaled nonbi-
nary tree T , we will now show how to estimate certain features
of the process that generated it using maximum likelihood. In
Section 4, we will explore other uses of this likelihood, for in-
stance its use as a tree prior in Bayesian phylogenetic inference
frameworks, such as that implemented in BEAST (Drummond
and Rambaut 2007).

3.1 Maximum-likelihood estimation of the K measure

We first consider the problem of estimating the K parameter di-
rectly from an observed genealogy. In the general case the rele-
vant parameter space (i.e. the space of probability measures on
½0; 1�) is too large to enable direct inference of K (see Koskela,
Jenkins, and Spanò 2018) for more advanced techniques).
Therefore, we will limit ourselves here to the one-parameter
family of Betað2� a; aÞ-coalescents, with a 2 ð0; 2Þ. This corre-
sponds to the case of K-coalescents where the K measure is the
Beta distribution with parameters 2� a and a, with a 2 ð0; 2Þ:

K dxð Þ ¼ x1�að1� xÞa�1

Bð2� a; aÞ dx;

where Bðx; yÞ ¼ CðxÞCðyÞ=Cðxþ yÞ is the Beta function. By conti-
nuity, this can be extended to a¼ 2, in which case the Beta dis-
tribution collapses to the Dirac measure at 0, thus recovering
the Kingman coalescent. For a 2 ð0; 2Þ, the coalescence rates are
given by:

kn;k ¼
Bðk� a;n� kþ aÞ

Bð2� a; aÞ ; 2 � k � n: (6)

We show in Fig. 3 how the a parameter influences the coa-
lescence probabilities, going from strictly binary coalescence
events (for a¼ 2) to having coalescence events involving a high
number of lineages with high probability when a! 0. Indeed,
the limit a ¼ 0 corresponds to the star-shaped coalescent, which
has only a single coalescence event involving all lineages.

Beta-coalescent processes have been extensively studied for
a 2 ½1; 2�, starting with Schweinsberg (2003), who described how
they can be recovered from the genealogy of certain supercriti-
cal branching processes. Similarly, the connection with the so-
called a-stable continuous-state branching processes (Birkner,

Blath, and Eldon 2005) has enabled the study of many features
of the family of Beta-coalescents (Berestycki, Berestycki, and
Schweinsber 2007, 2008; Kersting, Schweinsberg, and
Wakolbinger 2014). For a 2 ð0; 1Þ, the coalescent loses the so-
called coming down from infinity property, which makes its math-
ematical analysis more difficult. For more details see e.g.
Berestycki, Berestycki, and Limic 2010.

We investigated the problem of inferring the a parameter by
using trees simulated under the Betað2� a; aÞ-coalescent pro-
cess with constant effective population size, for three different
a values, specifically a ¼ 1:2; a ¼ 1:5; a ¼ 1:8. In each case, we
simulated 1,000 trees with n ¼ 100; 500; and 1,000 simulta-
neously sampled tips. We then estimated the a parameter inde-
pendently for each tree by maximizing the likelihood (5):

âðT Þ ¼ argmax
a2½0;1�

PðT jNe ¼ 1;K ¼ Betað2� a; aÞÞ: (7)

The results of this maximum-likelihood estimation are sum-
marized in Table 1 and shown in Fig. 4. The procedure yields an
effectively unbiased estimator, with decreasing variance as the
number of tips increases. Furthermore, for a fixed number of
tips, the lowest variance was obtained for true values of a close
to 2, since the likelihood of trees with nonbinary nodes con-
verges to 0 as a! 2, so that likelihood surfaces become more
peaked. These results are encouraging because they indicate
that features of the K measure might be identifiable from
phylogenies.

3.2 Demographic inference using the skyline plot

We now turn to the problem of estimating ancestral effective
population size, using a sample tree as data. Following the ‘clas-
sic skyline plot’ estimator (Pybus, Rambaut, and Harvey 2000), we
assume that the duration of inter-coalescent intervals are known
without error. We further assume that the degree of each internal
node is known precisely. Although both of these variables are un-
certain when trees are estimated from empirical data, we leave
for future work the problem of incorporating uncertainty in node
degree into phylodynamic inference (see Section 4).

It is possible, for a given probability measure K, and assum-
ing that population size is constant between coalescent events,
to maximize the likelihood function (5). This is made easy by
the product form of the likelihood and yields the multifurcating
skyline plot estimator:

Figure 3. Probability of a coalescence event involving k lineages among n ¼ 10

extant lineages in a Betað2� a; aÞ-coalescent.
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N̂eðtÞ ¼
Xni

j¼2

ni
j

� �
kni ;j

� �
ðti � ti�1Þ; t 2 ½ti�1; tiÞ: (8)

Note that when K ¼ d0, the Dirac measure at 0, all the kni ;j are
equal to 0, except for j¼ 2, for which kni ;2 ¼ 1, so that we recover
the ‘classic skyline plot’ estimate (Pybus, Rambaut, and Harvey
2000) for binary trees:

N̂eðtÞ ¼
ni
2

� �
ðti � ti�1Þ; t 2 ½ti�1; tiÞ:

Finally, note that Equation (8) implies that the skyline plot
estimator is expressed in the same units as the intercoalescent
lengths ti � ti�1. Hence, if the underlying tree is scaled in real
time units, it is necessary to divide the skyline plot estimate by
the generation time to recover an estimate in population size
units. For a detailed analysis of how varying generation time
can affect skyline estimates see Volz 2012.

3.3 Composite internode intervals

The multifurcating skyline plot (8) is a piecewise constant function
on inter-coalescent intervals and there can be a large number of
such intervals when the number of tips is large, potentially lead-
ing to very noisy estimates. To mitigate this over-fitting, we can
use the same interval-merging technique as that employed by the
‘generalized skyline plot’ (Strimmer and Pybus 2001). Given a
threshold parameter e > 0, we consider all inter-coalescent inter-
vals with length smaller than e. We then join those intervals with
their neighboring intervals earlier in time (closer to the root), start-
ing with the interval closest to the tips. If the ensuing interval is
still of length smaller than e, we continue this procedure until
there are no more intervals with length smaller than e. Note that
the degree of internal nodes is unchanged. This yields an interval
partition of ½0; tcðT ÞÞ which we denote by I1;‘1 [ . . . [ IceðT Þ;‘ce ðT Þ

. With
this notation, ceðT Þ � cðT Þ is the number of such composite inter-
vals, and for 1 � i � ceðT Þ; ‘i is the number of inter-coalescent
intervals joined together to form Ii;‘i

.

(a)

(b)

(c)

Figure 4. Empirical probability density of maximum-likelihood estimates of a 2 ½1;2� for 1,000 trees simulated under Betað2� a; aÞ-coalescents, with (a) a ¼ 1:2, (b)

a ¼ 1:5, and (c) a ¼ 1:8, respectively. The color of the density plots corresponds to the number n of tips in the simulated trees.

Table 1. Empirical mean, bias and variance of maximum-likelihood
estimates of the a parameter of the Beta-coalescent process.

Number of tips Mean Bias Variance

a¼1.2 100 1.2004 –4�10–4 2.6�10�3

500 1.1999 –4.8�10�5 2.8�10�4

1,000 1.1995 –4.7�10�4 1.2�10�4

a ¼ 1.5 100 1.499 –1.3�10�2 1.7�10�3

500 1.499 –1.7�10�4 1.7�10�4

1,000 1.500 1.7�10�4 6.3�10�5

a ¼ 1.8 100 1.797 –2.5�10�3 1.1�10�3

500 1.800 4.2�10�4 1.1�10�4

1,000 1.799 –2.0�10�4 4.0�10�5

P. Hoscheit and O. G. Pybus | 5



For each 1 � i � cðT Þ, we then independently estimate a
single effective population size value for the whole composite
interval Ii;‘i

, using (5). Due to the product form of the likelihood,
it is easy to see that the maximum-likelihood estimator for the
composite interval Ii;‘i

is the mean of the maximum-likelihood
estimators (8) for each of the ‘i inter-coalescent intervals (note
that the original ‘generalized skyline plot’ of Strimmer and
Pybus (2001) uses a method-of-moments estimator, which leads
to a harmonic mean rather than an arithmetic mean).

Thus this composite-interval approach can compute an esti-
mate of effective population size change with fewer parameters.
As suggested in Strimmer and Pybus (2001), we can then opti-
mize over e � 0 by a model selection statistic such as the cor-
rected Akaike Information Criterion (Hurvich and Tsai 1989):

AICc �ð Þ ¼ 2c� Tð Þ � logL� þ
2c�ðT Þðc�ðT Þ þ 1Þ

n� c�ðT Þ � 1
(9)

where Le is the likelihood of the tree given the composite inter-
val skyline estimate with parameter e, as computed by (5).

3.4 Serially sampled trees

In some biological contexts, such as rapidly evolving pathogens or
ancient DNA, sequences are sampled at different times and mea-
surable amounts of sequence change occur between the sampling
times (Drummond et al. 2003). As described in Rodrigo et al. (1999),
coalescent estimates can be extended to this framework, by mak-
ing the assumption that the sampling process is independent of
the population dynamics. For the purpose of simplicity, in this pa-
per we also make this independence assumption. We further as-
sume that effective population size does not change at sampling
times and that sampling never occurs at coalescence times.

To be precise, let us consider an inter-coalescent interval
½ti�1; tiÞ, and assume we have ni extant lineages at time ti�1.
Assume we have sampling times ti�1 ¼ si

0 < si
1 < . . . < si

k < ti,
and for 1 � j � k, let n(j) be the number of extant lineages on
the interval ending with si

j (with nð1Þ ¼ ni). Finally, let nðkþ 1Þ be
the number of lineages on the coalescence interval ½sk; tiÞ.
Figure 5 provides a graphical example of a serially sampled tree
and its associated indices.

When computing the likelihood of a serially sampled tree
under a specified K-coalescent model, given an effective popu-
lation size function, we need to take into account the intervals
of the form ½ti�1; si

1Þ and ½si
j; s

i
jþ1Þ that end with a sampling event.

On those intervals there are no coalescences, hence we need to
consider the likelihood of no coalescences occurring during that
time. The contribution to the likelihood of the inter-coalescent
interval ½ti�1; tiÞ is then:

nðkþ 1Þ
ki

� �
knðkþ1Þ;ki

Ne
� exp �

Pnðkþ1Þ
p¼2

nðkþ 1Þ
p

� �
knðkþ1Þ;p
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Again, maximizing this in Ne gives the maximum-likelihood
skyline estimator on the interval ½ti�1; tiÞ:
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3.5 Inference using the multifurcating skyline plot

We evaluated the ability of the multifurcating skyline plot to es-
timate Ne by applying it to trees simulated under the Beta-
coalescent process. We considered two different demographic
histories (constant population size and exponential growth) and
two values of the interval length threshold parameter e. We
used the same a parameter in both cases, namely a¼ 1.5. The
results are shown in Fig. 6.

The results are in line with well-known properties of skyline
estimators (Strimmer and Pybus 2001; Drummond et al. 2005):
they recover fluctuations in effective population size reasonably
well, at the cost of being quite noisy. As expected, noise
decreases as the interval-merging parameter e increases (Fig. 6).

Figure 5. A serially sampled multifurcating tree, with 10 tips in total. There are cðT Þ ¼ 5 coalescent events. During the inter-coalescent interval ½t2 ; t3Þ, the number of ex-

tant lineages is (going back in time) n2 ¼ nð1Þ ¼ 3;nð2Þ ¼ 4; and nð3Þ ¼ 5. Using the composite-interval notation, assuming for example that t4 � t3 < � < t2 � t1, the en-

suing interval partition would have a I4;‘4 component, with ‘4 ¼ 2 corresponding to the two intervals ½t3; t4Þ and ½t4; t5Þ having been joined together. There would be

c�ðT Þ ¼ 4 intervals in the merged interval partition.
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3.6 Estimation of superspreading parameters

To demonstrate the potential usefulness of the multifurcating
skyline framework, we generated phylogenetic trees using a
previously published individual-based simulation model (Li,
Grassly, and Fraser 2017) that implements a well-known model
of epidemiological superspreading (Lloyd-Smith et al. 2005).
These simulated trees were then analyzed using the K-coales-
cent model presented above.

The Lloyd-Smith superspreading model assumes that each
infectious individual i gives rise to a Poisson-distributed number
Zi of secondary infections, with random parameter �i. These �i

are in turn distributed according to a Gamma distribution with
shape R0=k and scale k, where R0 > 0 is the population-level ba-
sic reproductive number, and k> 0 is a parameter characterizing
the degree of superspreading prevalent in the epidemic. This
gives rise to the following (negative binomial) individual trans-
mission distribution:

P Z ¼ nð Þ ¼ nþ k� 1
n

� �
1� R0

R0 þ k

� �k R0

R0 þ k

� �n

; (12)

for n � 0. As a consequence, each infectious individual trans-
mits the infection to an average of E½Z� ¼ R0 individuals, with a
variance VarðZÞ ¼ R0ð1þ R0=kÞ. Hence, for a given value of R0,

low values of k correspond to highly variable onward transmis-
sion, such that some individuals (the so-called superspreaders)
are responsible for a disproportionate number of transmission
events. The Lloyd-Smith model has been fitted to observed sec-
ondary cases obtained from real epidemics using contact trac-
ing. Estimated parameter values range from
ðR0 ¼ 1:63; k ¼ 0:16Þ for the 2003 SARS outbreak in Singapore to
ðR0 ¼ 1:5; k ¼ 5:1Þ for an Ebola outbreak in Uganda. Generally, k
values lower than 1 are considered to be evidence of high levels
of superspreading.

In order to explore the effect of superspreading dynamics on
multifurcating sample phylogenies, we simulated trees under
the Lloyd-Smith model using the EpiGenR R package1 (Li,
Grassly, and Fraser 2017). This package tracks the transmission
history of an infected population within a host population of
constant size N. Each infectious individual remains infectious
for an exponentially distributed time, then gives rise to a num-
ber of secondary cases distributed according to (12). Details of
the implementation can be found in the Supplementary Data
section of Li, Grassly, and Fraser (2017).

We investigated three superspreading scenarios, namely
k¼ 0.15, k¼ 0.37, and k¼ 5, which represent high, moderate, and
low levels of superspreading, respectively. These values are
consistent with the published parameter estimates for SARS

Figure 6. Top row: individual trees simulated with 100 tips under a Betað0:5; 1:5Þ-coalescent, under constant (left) and exponential population size (right). Red lines rep-

resent the true effective population size function. Middle row: multifurcating skyline plots of the trees, with fixed a ¼ 1:5 and with � ¼ 0. Bottom row: generalized mul-

tifurcating skyline plots, with threshold length parameter � ¼ 100 (left) and � ¼ 10 (right). Time is expressed in number of generations, and the estimated effective

population size is in population size units.
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and Ebola outbreaks (Lloyd-Smith et al. 2005; Lau et al. 2017).
We chose the same value of R0 ¼2.5 for all three scenarios. In
each scenario, we simulated 100 epidemics in a host population
of size N¼ 10,000. A fraction s of the tips in the resulting simu-
lated complete transmission trees were then subsampled ran-
domly to generate sample phylogenies. This sampling was
undertaken uniformly across all tips of the tree, so that most
tips were sampled during the times where prevalence is high.
We explored four values of sampling intensity; s¼ 0.01, 0.05, 0.1,
and 0.5.

We then estimated the a 2 ð0; 2Þ parameter of the Betað2�
a; aÞ -coalescent using maximum-likelihood estimation, ac-
counting for demographic variation by using the multifurcating
skyline plot as introduced above.

The results of this simulation analysis are shown in Fig. 7. In
all sampling regimes, we find a positive relationship between
the superspreading parameter k and the a parameter of the
Beta-coalescent. Even for low sampling (s¼ 0.01, corresponding
to trees with �100 tips), estimated a was significantly higher
when k¼ 5 than when k¼ 0.15 and 0.37. This shows that the
timing of coalescent events in multifurcating K-coalescent trees
contains information about the extent of superspreading in an
infectious population. This is consistent with the findings of Li,
Grassly, and Fraser (2017), who used particle filtering techni-
ques to show that there is information about transmission het-
erogeneity in estimated phylogenies that is not present in the
time series data alone. Furthermore, Fig. 7 shows the multifur-
cating phylogenetic models used here perform adequately un-
der high levels of sampling. Indeed, by sampling a large portion
of the infectious population, there is an increased probability of
seeing deep and large multifurcations in the phylogeny, which
likely drives down estimates of a.

4. Discussion

We have shown that K-coalescents can be used to infer demo-
graphic trends from multifurcating trees, extending the range of
‘skyline plot’-like estimators beyond binary trees and the

standard Kingman coalescent. Using simulated data, we
showed that the a parameter of the Betað2� a; aÞ family of K-
coalescents can be accurately estimated, which interpolates be-
tween the Kingman coalescent (a¼ 2) and the Bolthausen–
Sznitman coalescent ða ¼ 1Þ. We introduce the multifurcating
skyline plot, which estimates effective population size from
time-scaled nonbinary trees, the tips of which may be sampled
either longitudinally or concurrently. We validated this estima-
tion method on simulated trees.

We applied the framework of K-coalescents to trees simu-
lated using two different approaches, including an individual-
based simulation of epidemic superspreading. Crucially, we
demonstrated that the temporal distribution of bifurcations and
multifurcations in a sample tree contains information about the
extent of superspreading. However, the simulation studies pre-
sented here neglect the role played by phylogenetic uncertainty,
as we assumed perfect knowledge of the transmission trees.
Further work is required to implement the inference of multi-
furcating trees from sequence alignments in Bayesian phyloge-
netic frameworks such as BEAST. This will necessitate the
definition of tree operators capable of exploring the larger space
of nonbinary trees; whether this can be done without affecting
computational performance remains an open question. Joint
evaluation of molecular clock phylogenetic likelihoods and mul-
tifurcating tree prior probabilities has the potential to discrimi-
nate between genuine multifurcations, and short tree branches
on which no mutations are observed.

Several popular Bayesian implementations of the skyline plot
approach exist, which treat the skyline plot likelihood as a ‘prior
distribution’ on trees. These methods include the ‘Bayesian sky-
line plot’ (Drummond et al. 2005), which uses the composite-
interval procedure described in this paper to reduce noise, and
the skyride (Minin, Bloomquist, and Suchard 2008) and skygrid
(Gill et al. 2013) plots, which use sophisticated, time-aware,
smoothing procedures to penalize population size changes. We
expect similar approaches could be applied to the multifurcating
skyline plot. Recent work (Möller, du Plessis, and Stadler 2018)
has illustrated that mis-specification of the tree prior during

(a) (b)

(c) (d)

Figure 7. Estimated a 2 ð0;2Þ for phylogenies simulated under the Lloyd-Smith superspreading model, for R0¼2.5 and k¼0.15, 0.37, and 5, respectively. Increasing levels

of tip sampling are shown: (a) s¼ 0.01, (b) s¼0.05, (c) s¼ 0.1 and (d) s¼0.5.
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Bayesian phylogenetic inference may lead to erroneous estima-
tion of other parameters, highlighting the need to implement a
wider range of computationally tractable tree priors. The multi-
furcating skyline plot may help to address this deficit. We hope it
will prove useful in the analysis of populations that exhibit pat-
terns of propagation leading to true polytomies in their phylog-
eny, such as superspreading (as presented here), strong selective
regimes (Neher and Hallatschek 2013), oversampling (Bhaskar,
Clark, and Song 2014) or even adaptive radiation (Schluter 2000).
The estimated parameters of the K distribution might be infor-
mative about these propagation processes, which are not taken
into account in current phylodynamic approaches. However, we
accept the possibility that the Beta-coalescents used here are not
the best models for multifurcating phylodynamic inference and
that other K-coalescent families can be potentially used to esti-
mate parameters of epidemiological interest.

Although skyline plot methods based on the Kingman coales-
cent are commonplace in phylodynamic analysis, the actual val-
ues of estimated effective population size are not often
interpreted directly. In some cases, ‘true’, census population size
and effective population size are related only through nonlinear
relations. For example, it was shown (Frost and Volz 2010; Volz
2012) that under SIR-type epidemiological models (Kingman) coa-
lescent effective population size through time NeðtÞ evolves pro-
portionally to I2

t =fSIðtÞ, where fSIðtÞ is the rate at which susceptible
individuals become infected (typically, fSIðtÞ / StIt=N). In this case,
the relationship between effective population size NeðtÞ and dis-
ease incidence It at time t is different at the beginning and end of
the epidemic. The multifurcating skyline methods will pose simi-
lar problems for interpretation: the actual value of the estimate is
affected by the K distribution in a nonlinear (and not completely
understood) way. It is thus necessary to caution against improper
interpretations of the K-effective population size, as defined in
this paper and as computed by the multifurcating skyline plot.
Other authors (Hall, Woolhouse, and Rambaut 2016) have already
pointed out the dangers of thinking about effective population
size as a number of individuals and have advised to use it as a
measure of genetic diversity of the population instead. Such ad-
vice should also be heeded in the context of multifurcating coa-
lescents, for which the relationship between census population
size and effective population size is even more complicated.
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