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a b s t r a c t

Infectious and epidemic diseases induced by bacteria have historically caused great distress to people,
and have even resulted in a large number of deaths worldwide. At present, many researchers are working
on the discovery of viable drug and vaccine targets for bacteria through multiple methods, including the
analyses of comparative subtractive genome, core genome, replication-related proteins, transcriptomics
and riboswitches, which plays a significant part in the treatment of infectious and pandemic diseases. The
3D structures of the desired target proteins, drugs and epitopes can be predicted and modeled through
target analysis. Meanwhile, molecular dynamics (MD) analysis of the constructed drug/epitope-protein
complexes is an important standard for testing the suitability of these screened drugs and vaccines.
Currently, target discovery, target analysis and MD analysis are integrated into a systematic set of drug
and vaccine analysis strategy for bacteria. We hope that this comprehensive strategy will help in the
design of high-performance vaccines and drugs.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1526
2. Target discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1527
2.1. Comparative subtractive genome analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1527

2.1.1. Getting the complete sequences of bacteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1527
2.1.2. Removing paralogous or duplicate sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1527
2.1.3. Eliminating host-homologous sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1527
2.1.4. Screening the essential proteins in bacteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1527
2.1.5. Metabolic pathway analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1527
2.1.6. Subcellular localization analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1527
2.2. Core genome analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1528
2.3. Chromosome replication-related proteins analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1529
2.4. Transcriptomics analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1529
2.5. Riboswitches analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1530
3. Target analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1530

3.1. Prediction of vaccine candidates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1530
3.1.1. Vaccine target prioritization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1530
3.1.2. Prediction of B- and T-cell epitopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1530
3.1.3. Interaction network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1531
3.1.4. Homology modelling and epitope topology analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1531
3.1.5. Molecular docking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1531
3.2. Prediction of drug candidates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1531

http://crossmark.crossref.org/dialog/?doi=10.1016/j.csbj.2020.06.008&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.csbj.2020.06.008
http://creativecommons.org/licenses/by/4.0/
mailto:fgao@tju.edu.cn
https://doi.org/10.1016/j.csbj.2020.06.008
http://www.elsevier.com/locate/csbj


1526 F. Yan, F. Gao / Computational and Structural Biotechnology Journal 18 (2020) 1525–1538
3.2.1. Drug target prioritization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1531
3.2.2. Interaction network, homology modelling and 3D structure assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1531
3.2.3. Predicting the binding site of target proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1531
3.2.4. Virtual screening of ligands, evaluating the properties of ligands and molecular docking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1532

4. MD analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1532

4.1. System preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1533
4.2. Root-mean-square deviation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1533
4.3. Conformation analysis of proteins, and assessment of binding affinity and binding mechanism between inhibitors/peptides and

proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1533

4.3.1. Conformation analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1533
4.3.2. Binding affinity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1533
4.3.3. Binding mechanism analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1534

5. Summary and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1535
CRediT authorship contribution statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1535
Declaration of Competing Interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1535
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1535
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1535
1. Introduction

Human health is continuously threatened by various infectious
diseases and large-scale epidemics caused by bacteria, medicines
and vaccines are important means for the treatment of human dis-
eases. In the past, owing to the fact that technology and resources
still had not matured sufficiently, effective drugs or vaccines could
not be developed promptly to cure the diseases under pressing epi-
demic situations and therefore epidemics or infectious diseases
always cause a panic. With developments in medicine and technol-
ogy, several vaccines and drugs were gradually developed. How-
ever, a few of them failed to achieve the desired effect, or
potentially interfered with other normal functions and produced
certain adverse effects [1]. Even presently, the development of
innovative drugs still poses great challenges, such as extreme com-
plexities, high risk, long development cycle and huge investment
[2–4]. Thus, ensuring rapid, safe and effective development of
drugs and vaccines has always been an urgent problem. The devel-
opment of vaccines and drugs can be roughly divided into preclin-
ical and clinical development, in which preclinical development
plays a dominant role in the whole process [5]. If a candidate vac-
cine/drug is not proven to be safe and effective in preclinical stud-
ies, no further clinical studies are required. In preclinical studies,
drug discovery is the first step in the drug development, which
aims to achieve breakthrough progress. Therefore, we pay extra
attention to the discovery of new drugs and vaccines in this review.

Investigation of new drugs and vaccines has continued through-
out the history of human development. Initially, researchers iso-
lated and identified the effective components to treat various
diseases mainly from natural products [6]. However, employing
natural products has certain challenges in practical applications,
such as their low solubility and stability. Therefore, it is necessary
to structurally modify the effective natural components. In 1796,
Edward Jenner was successful in preventing a smallpox virus infec-
tion using a vaccinia vaccine. This achievement was the first vic-
tory in the history of vaccine development, and the beginning of
vaccinology and immunology. Unfortunately, no new vaccine has
emerged in the more than 100 years since the discovery of the first.
At the end of the 19th century, Louis Pasteur et al. developed the
anthrax vaccine and proposed the principle of vaccinology [7],
which was a big step in the study of vaccines, and led to the devel-
opment of a variety of vaccines to resist the corresponding patho-
gens [8–10]. Until 1932, the structural modification of drug
molecules was first guided by a theory proposed by Erlenmeyer,
which opened the way for further development in drug theories
[11]. Subsequently, a quantitative structure-activity relationship
(QSAR) was developed by Hansch et al. in 1964 [12]. QSAR can
improve the success rate of candidate drugs in clinical experience,
and lays a theoretical and practical foundation for quantitative
drug design. Simultaneously, the development of bacterial vaccines
had also progressed further before the mid-20th century. Since the
late 20th century, bioinformatics, molecular biology, pharmacy,
immunology, microbiology, and other related disciplines have
developed rapidly, which has allowed new opportunities in the
development of bacterial vaccines and drugs. Techniques for pro-
teomic and genomic analyses have been further developed, and a
large number of proteins and their coding genes have been discov-
ered. At present, the designing of proteome- or genome-based bac-
terial drugs and vaccines has emerged as the new direction [13].

According to the published literature [14–16], the genome/
proteome-based drug and vaccine design mainly involves four
steps: selection and identification of drug target, optimization of
the target molecules, discovery of compounds and peptide epi-
topes, and optimization of the compounds and peptide epitopes.
The generation and availability of a large amount of genomic data
have enabled the identification of effective targets through compu-
tational genomics methods, and completely changed the threat of
pathogens to humans [17]. Among these genomics methods, the
comparative subtractive genome approach has laid the foundation
for target discovery and become an extensive tool for mining
promising therapeutic targets [18,19]. Other methods, including
core genome [20], replication-related proteins [21], transcrip-
tomics [22] and riboswitches analyses [23] have also garnered
increasing attention for exploration of drug targets. Furthermore,
target prioritization is an indispensable step in the design of drugs
and vaccines. A three-dimensional (3D) model [24] for the target
proteins, epitopes and drugs can be successfully predicted and con-
structed based on an in-depth analysis of the drug/vaccine targets.
In addition, MD analysis of these modeled drug/epitope-protein
complexes is a necessary standard for testing the effectiveness of
drugs and vaccines. By MD simulation, the binding ability of inhi-
bitors/peptides to proteins and the conformational changes of tar-
get proteins will be well reflected [25,26].

Therefore, this review focuses on a combination of three impor-
tant sections (target discovery, target analysis and MD analysis) to
discover the preclinical inhibitors and vaccines that target
bacteria-related diseases. First, we introduce five universal meth-
ods for exploring the targets: comparative subtractive genome,
core genome, replication-related proteins, transcriptomics, and
riboswitches analyses. Then, we summarize the basic process of
the drug and vaccine design, which mainly includes target opti-
mization, screening of drugs and vaccines, and optimization of
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drugs and vaccines. Finally, MD simulation and some advanced
methods based on MD trajectory are described in detail.
2. Target discovery

Exploring the therapeutic targets in bacteria is the first and cru-
cial step in developing efficient vaccines and drugs. Certain essen-
tial proteins and proteins involved in basic cellular processes can
serve as potential targets for novel antimicrobial agents. In this
section, we summarize five analytical methods for exploration of
drug targets (Fig. 1).
2.1. Comparative subtractive genome analysis

For the actual target selection, the potential candidate targets
should be necessary for bacterial growth and reproduction, non-
homologous to the host proteins, and have a unique metabolic
pathway different from the host. With the aim of finding essential
and non-homologous targets with unique metabolic pathways,
subtractive genome analysis is selected to analyze the bacterial
proteome through layers of screening. Since Sakharkar et al. first
proposed the subtractive genome approach [1], many researchers
have used this method to analyze drug and vaccine targets, which
has immense potential for future experimental design of novel
drugs and vaccines. For example, Sharma et al. revealed the target
candidates for Lymphatic filariasisin in 2016 [18], and Sudha et al.
investigated the drug targets and vaccine candidates for Clostrid-
ium botulinum in 2019 [19] using this method. In the following sec-
tions, we summarize the target screening process using the
subtractive genome method. The detailed and complete workflow
is shown in Fig. 2.
2.1.1. Getting the complete sequences of bacteria
According to published studies [19,27], the complete sequences

of bacteria for subtractive genome analysis are mainly retrieved as
files in FASTA format from the National Center for Biotechnology
Information (NCBI) [28] and Universal Protein (UniProt) [29] data-
bases (Fig. 2I), which are the most informative and extensive pro-
tein databases.
Fig. 1. Multiple ways for drug discovery.
2.1.2. Removing paralogous or duplicate sequences
The rapid emergence of next generation sequencing (NGS) tech-

nology has led to an explosive growth in biological sequence data,
and the removal of redundant or duplicate sequence data has
become one of the significant challenges to subsequent bioinfor-
matics analyses [30]. Luckily, Li et al. created a fast online program
CD-HIT [31] to search representative protein sequences based on
the possible correlation and homology of certain sequences
(Fig. 2II), alleviating the problem of calculation and analysis to
some extent. To date, CD-HIT has been widely used to discard
redundant or duplicate sequences by comparing the similarities
between two sequences with expected threshold values.

2.1.3. Eliminating host-homologous sequences
Eliminating sequences that are homologous to the host, is a cru-

cial operation in this process. If the target protein is homologous to
the one in the host, the designed drug may produce nonspecific
interactions with the host protein, resulting in certain negative
effects [32]. Therefore, selecting proteins that are non-
homologous to those in the host is necessary. Basic local alignment
search tool (BLAST) [33] is the best choice for this requirement. In
this section, BLASTp is applied by numerous researchers to perform
a similarity search by comparing non-paralogous proteins with the
entire host proteome (Fig. 2III), with the expectation value (e-
value) set to widely used threshold 0.0001 [14,34,35]. Finally, the
sequences that are homologous to those in the host are deleted.

2.1.4. Screening the essential proteins in bacteria
Choosing the essential proteins in bacteria, is another crucial

step in this process. The essential proteins in the bacterial pro-
teome are crucial for maintaining their life activities under specific
conditions and vital importance for their survival, and any blocking
of their functions will lead to cell death [36]. Hence, inhibiting the
activity of such essential proteins can greatly improve the thera-
peutic effect in bacterial diseases. To select the essential proteins
in bacterial proteome, an essentiality analysis is conducted on
the non-homologous proteins. In subtractive genome analysis, it
is common for users to perform a BLAST search against the Data-
base of Essential Genes (DEG) [37] to remove non-essential pro-
teins (Fig. 2IV) [38–40]. Since the DEG database was developed
by Zhang et al. in 2004 [37], the content of this database has been
updated continually and a large number of essential genes in
prokaryotes and eukaryotes have been included [41]. Collection
of a larger amount of essential gene data and availability of flexible
BLAST tools [42] would contribute even more to the prediction of
essential genes or proteins.

2.1.5. Metabolic pathway analysis
A metabolic pathway analysis [43] is performed on the non-

homologous essential proteins by utilizing the Kyoto Encyclopedia
of Genes and Genomes (KEGG) [44] Automatic Annotation Server
(KAAS) [45] to identify the metabolic pathway of the targets, and
similarity searches with BLASTp are conducted for all existing pro-
teins against the latest KEGG database (Fig. 2V). Meanwhile, the
metabolic pathways of the bacteria and their hosts also need to
be compared. If the protein is involved in a unique metabolic path-
way, it is marked for subsequent analyses; otherwise, the protein is
removed from the proteome under consideration. Through this
comparative pathway method, the non-homologous essential pro-
teins following unique metabolic pathways can be mapped, and
these proteins can be key targets for the treatment of diseases.

2.1.6. Subcellular localization analysis
Predicting the subcellular localization of bacterial proteins is

critical to the identification of target proteins, and can quickly pro-
vide information about the protein function [46,47]. An ideal can-
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respectively.
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didate protein for a vaccine should interact with the extracellular
environment and trigger the immune system of the host effec-
tively; therefore, proteins distributed on the extracellular and
outer membranes are considered effective vaccine candidates
[48]. Meanwhile, it has been demonstrated that cytoplasm-
related proteins can be effective drug targets [49]. At this stage,
the remaining therapeutic targets are subjected to subcellular
localization analysis to identify potential drug and vaccine candi-
dates by using the most accurate and user-friendly PSORTb server
[50] (Fig. 2VI). Besides, some other verified methods (CELLO [51],
PA-SUB [52], SignalIP [53], Phobius [54] and ngLOC [55]) can be
combined with PSORTb to achieve a more precise prediction of
subcellular localization for predicted targets.

After subtractive genome analysis, the putative drug and vac-
cine targets have been identified separately, which is the corner-
stone of future drug and vaccine design.
2.2. Core genome analysis

Studies have confirmed that the bacterial core genome plays an
important role in their growth, and is also related to the essence of
the species [56,57]. The core genome dataset comprises the com-
mon genes in all the available strains of species, and the genes that
belong to the core genome are closely related to the nature of the
species [58], which makes core genome analysis a reasonable
method to address the difficulty in obtaining therapeutic targets.
Therefore, comparative subtractive genome analysis based on the
core genome of bacteria is another method used to detect targets.
In contrast to the subtractive genome method based on essential
genes, the first step in core genome analysis is obtaining the com-
plete sequences of all strains for a particular species (Fig. 2).
According to recently published works [59–61], the core genome
can be probed by Pan-Genome Analysis Pipeline (PGAP) [62],
EDGAR tool version 2.0 [63], etc.
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2.3. Chromosome replication-related proteins analysis

Chromosome replication-related proteins can also be used as
potential targets for exploring novel and effective antimicrobials.
It is well known that all bacterial cells undergo chromosome
replication before they can be split into two identical daughter
cells. Chromosome replication-related proteins are essential for
maintaining cellular activity and the replication process of chro-
mosomes, and represent a promising target class [21,64]. Unfortu-
nately, other than nonsteroidal anti-inflammatory drugs [65] and
aminocoumarin [66], there are few available antimicrobials for tar-
geting the bacterial chromosome replication. Therefore, identifying
potential proteins that can interfere with or block bacterial chro-
mosome replication through drug inhibition can be of great help
in designing efficient drugs targeting a range of diseases caused
by bacteria. In almost all bacterial species, chromosomal replica-
tion is triggered by the binding of the primary initiator protein
(DnaA) to chromosomal replication origin (oriC), thus, DnaA and
oriC are the main forces behind the formation of multimeric com-
plexes required for the initiation of DNA replication [67]. The con-
trol of DnaA, which has multifunctional proteins required for
chromosome replication, is the most prominent goal for inhibiting
chromosome replication [68]. The four domains of DnaA have
Fig. 3. Target analysis flowchart for target optimization and construction of 3D epitopes
drug target.
already been well summarized in literature, especially the N-
terminal domain [69,70]. To date, researchers have made consider-
able efforts to understand bacterial replication-related proteins,
and the replication initiation of many bacterial species, including
Escherichia coli, Bacillus subtilis, and Caulobacter crescentus, has
been well studied [21,68,70,71]. Meanwhile, the replication-
related proteins are always present as a cluster aroud oriC. We
have massively updated the information about the oriCs of bacteria
in the online database DoriC 10.0 [72] based on the predicted
results of Ori-Finder [73,74], which can provide excellent opportu-
nities to better explore the replication-related proteins of more
bacteria.

2.4. Transcriptomics analysis

According to the genetic ‘‘central dogma”, transcription plays an
important role in controlling the transmission of genetic informa-
tion, which is the first key step in gene expression [75]. At present,
transcriptomics has emerged as the leading and exciting topic in
the life science field [76]. Transcriptomics is the study of cellular
gene transcription and transcriptional regulation at the RNA level,
and can provide a comprehensive and rapid understanding of the
molecular mechanism of diseases and drug action at the transcrip-
structures, target proteins and drugs: (A) Analysis of vaccine target, (B) Analysis of
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tome level [77]. Therefore, transcriptomics analysis has developed
into a useful tool for acquiring novel antimicrobial targets [22,78].
To better assist in the discovery of drug targets and drug design in
different ways, a few technologies for transcriptomics studies, such
as RNA-sequencing (RNA-seq) method for gene expression [79]
and gene microarray or chip technology [80] have been developed
and widely used to quickly search the transcriptomics. Practical
applications of NGS-based RNA-seq method and microarray analy-
sis in predicting genetic targets have been well reviewed [22,75].
Recently, detailed target analyses of Escherichia coli, Clostridium dif-
ficile, Mycobacterium tuberculosis, Mycobacterium smegmatis and
other pathogenic bacteria [81–88] have been performed using bac-
terial transcriptomics, relevant techniques, and transcriptomics
experiments. These successful cases of transcriptomics analyses
again demonstrate that transcriptomics is a promising approach
for predicting bacterial drug targets.

2.5. Riboswitches analysis

Riboswitches can mediate the expression of crucial and essen-
tial genes that are critical to the survival and virulence of bacterial
pathogens [89,90], and inhibiting the synthesis of bacterial riboso-
mal proteins can achieve antibacterial purposes [91]. Hence, bacte-
rial riboswitches are considered as promising and capable
antimicrobial targets for new drugs. In fact, riboswitches are
widely found in the bacteria genomes and absent in human gen-
ome, which will reduce the probability of potentially harmful
effects in humans and is one of the advantages of riboswitches as
a useful tool for exploring bacterial drug targets [92]. In addition,
riboswitches can bind to small molecules with high selectivity
and are controlled by simple metabolism [93]. Given these advan-
tages, the use of riboswitches as drug targets has attracted increas-
ing attention, and some riboswitches-related work can provide
valuable clues for future research [23,94,95]. It has been proven
that few of the most widespread riboswitches, including lysine,
cobalamin, SAM, and SAH, are useful antibacterial drug targets. In
addition, certain methods for exploring potential riboswitches,
such as Riboswitch Scanner [96] and drug design including high-
throughput screening method have been well summarized [97].
Based on a powerful covariance model (CM), a comprehensive
online database (RiboD) has recently been developed as a useful
resource for predicting ribosomes in bacteria [98]. Using existing
methods or developing new ones to dig deeper into
riboswitches-related targets in bacteria will greatly help in the
treatment of diseases associated with bacteria.
3. Target analysis

Once we have identified the vaccine and drug targets, the next
important thing is to search for novel inhibitors and vaccines based
on these possible targets. Notably, there are still considerable dif-
ferences in the design of vaccines and drugs because of their
unique properties, and the screening of vaccine targets is more
complicated than that of drug targets. In this section, we present
a detailed and systematic summary of the fundamental processes
of target analysis, which are presented as flowcharts in Fig. 3.

3.1. Prediction of vaccine candidates

3.1.1. Vaccine target prioritization
Virulence is an important factor in the study of pathogenesis.

Compared with non-virulent proteins, virulent proteins are more
likely to cause serious infections and promote the survival of
pathogens in the host, making it an attractive target for vaccine
design [99,100]. Therefore, virulence analysis has been incorpo-
rated into the flowchart as a necessary step (Fig. 3A-I). Currently,
a few free databases, such as the Virulence Factor Database (VFDB)
of pathogenic bacteria [101] and the Microbial Virulence Database
(MvirDB) [102] are available that can be used to gain information
on the virulence of proteins. In addition to these two databases,
Garg et al. also performed protein virulence prediction using the
Virulentpred server [103] with a threshold of �1. These selected
virulent proteins are then subjected to antigenicity evaluation
using the online VaxiJen server [104], where proteins with anti-
genicity scores �0.4 are marked as potential antigens that can
effectively stimulate the human immune system.

Meanwhile, the physiochemical properties of all potential tar-
gets, including molecular weight, transmembrane helices, adhe-
sion probability and allergenicity, are analyzed to assist in
experimental validation. These factors may improve the vaccine
prediction accuracy and reduce any negative effects. For ensuring
purification during the experiment, the focus in a majority of stud-
ies has been concentrated on only selecting proteins with molecu-
lar weight � 110 kDa as effective drug targets [105,106], and these
shortlisted proteins measured by freely available ExPASy server
[107] will simplify the purification and development process. Fur-
thermore, the number of transmembrane helices in the proteins
can affect the cloning and expression of the target, and their pres-
ence in large quantities may lead to the failure of experimental val-
idation; thus, selecting proteins with fewer transmembrane helices
is more feasible [108]. For this purpose, two popular servers,
TMHMM [109] and HMMTOP [110] are widely used to evaluate
the number of transmembrane helices [106,111,112]. In addition,
it has been reported that the interaction between the bacterial sur-
face proteins known as adhesions and the host receptors con-
tributes greatly to the bacterial attachment, and the antibodies
generated due to these adhesive proteins can prevent infections
and diseases [113]. Therefore, the adhesion probability of the pro-
teins should be taken into account, which can be effectively pre-
dicted using the data available on the Vaxign [114] or SPAAN
server [115]. Finally, the allergenicity analysis of all filtered protein
is performed by accessing the Allertop server [116], online AlgPred
[117] or SORTALLER [118] to reduce the allergic reactions, and pro-
teins that could cause allergic behavior are removed.

In this section, virulent and antigenic proteins with prospective
physiochemical characteristics are scanned for subsequent
analysis.

3.1.2. Prediction of B- and T-cell epitopes
Since Barh et al. proposed the peptide vaccine design for Neisse-

ria gonorrhoeae in 2010 [119], epitope-based vaccine design
(EBVD) has emerged as the most popular and effective strategy
in vaccine design [120–122]. Epitope vaccines have several advan-
tages over traditional vaccines, such as atoxicity, safety, stability
and easy production. They can also directly stimulate the host to
create a specific immune response, thus confirming the suitability
of EBVD for future development directions [119]. It is known that
the antigen specificity and diversity are determined by B- and T-
cell epitopes. Therefore, discovering the B- and T-cell epitopes cap-
able of stimulating B- and T-cell immune responses is an impera-
tive step in the development of such vaccines. In the following
section, we summarize the prediction process of B- and T-cell epi-
topes in detail.

The proteins retained in the prioritization process are ideal vac-
cine candidates for the preparation of epitope-based vaccines, and
these proteins are used to conduct an epitope analysis to predict
the B-cell epitopes by employing the software BCPreds [123] or
recent BepiPred-2.0 [124]. The selected B-cell epitopes with a
BCPreds threshold score > 0.8 are then subjected to membrane
topology analysis to determine their exposed topology by TMHMM
(Fig. 3A-II).
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The T-cell epitopes are then screened from B-cell epitopes with
exposed surface based on the principles put forward by Barh et al.
[119]. It has been affirmed that the binding affinity of reactive pep-
tides to both classes of major histocompatibility complex I and II
(MHC-I and II) molecules plays a vital role in immune response
[125]. For the selection of an efficient T-cell epitope (Fig. 3A-III),
the first step is to identify the binding epitope alleles to MHC-I
and MHC-II by using the Propred1 [126] and Propred [127] servers,
respectively. T-cell epitopes that can bind to more than fifteen
MHC molecules simultaneously, especially to HLA-DRB1*0101,
are cataloged. It is worth noting that DRB*0101 is the most fre-
quent MHC-II allele, and an antigen can produce a more effective
immune recognition and immune response when bound to
DRB*0101 instead of other alleles. Next, calculation of the half-
maximal inhibition concentration (IC50) for all probed T-cell epi-
topes is performed utilizing MHCPred [128] and the epitopes with
an IC50 score < 100 nM are considered. Then, the virulence, anti-
genicity, adhesion probability, and allergenicity of the B-cell-
derived T-cell epitopes are re-confirmed using VirulentPred, Vax-
iJe, Vaxign and Allertop servers, respectively. Meanwhile, Prot-
Param, Comprehensive Antibiotic Resistance Database (CARD)
[129] and CLC Sequence Viewer are separately chosen to further
estimate the chemical stability, resistance sequence, and conserva-
tion of the final selected epitopes.

Finally, ideal T-cell epitopes are successfully selected from a
large number of vaccine targets.

3.1.3. Interaction network
This work extends further to the selection of epitope proteins

with strong cellular interactions (Fig. 3A-IV). Proteins with strong
connections to neighboring proteins are regarded as hub proteins,
which contribute greatly to the protein-protein interaction (PPI)
network and have a direct relationship with the lethality of the
pathogen [130]. If the activity of the hub proteins in the PPI net-
work is inhibited, the entire network will be affected. Given the
importance of key proteins, understanding the PPI network of the
target candidates at the cellular level is also crucial, and has impor-
tant implications for future vaccine and drug development [131].
The interaction analysis of all remaining epitope proteins can be
achieved by searching a large number of protein relationships with
the Search Tool for the Retrieval of Interacting Genes (STRING)
[132], and the output results contain direct and indirect interac-
tions from different sources. In the protein interaction network,
proteins with the highest confidence score (0.9) are selected for
further analysis [105,112].

3.1.4. Homology modelling and epitope topology analysis
With the aim of visualizing the topology of the predicted epi-

topes, the 3D structures of the epitope proteins need to be known
(Fig. 3A-V). As the initial step, a BLASTp search against Protein Data
Bank (PDB) [133] is performed to seek structural information about
the epitope proteins or suitable structural templates for epitope
proteins that are unidentified to date, which is important for the
prediction of immunogenic domains. For protein structures that
are unavailable in the PDB library, the corresponding structures
can be constructed by homology modeling. Online available ser-
vers, including I-TASSER [134], Phyre2 [135], Modweb [136], Rap-
torX [137], Modeler [138], M4T [139] and Swiss-Model [140] can
help predict the 3D structure of the vaccine candidates. Subse-
quently, common web servers RAMPAGE, ProSA [141] verify 3D
[142], ERRAT algorithm [143], WHAT_CHECK [144] and PROCHECK
program [145] can be combined to accurately validate the 3D
structure. Using the Ramachandran plot and Z-score analyses, the
structure with the most residues mapped in favorable regions
and a few residues in disallowed regions are selected as the best
structure for each protein. In addition to the tools described above,
PEPFOLD [146] can also be utilized to design the 3D structures of
the epitopes according to amino acid sequence.

Once we know the 3D structure of the epitope proteins, this
information can help us to calculate and predict the corresponding
epitope topology (Fig. 3A-VI) [147]. To ensure the epitopes that
effectively trigger the host immune system have exposed surfaces,
the Pepitope server [147] is used to perform an exomembrane
topology analysis on the shortlisted epitopes and their respective
folded proteins.

3.1.5. Molecular docking
A promising molecular docking method is subsequently per-

formed to view the binding affinity and binding modes of epitopes
to the MHC alleles [119] or Toll-like receptor 4 (TLR4) (Fig. 3A-VII)
[105,112,148]. The precise epitope-protein docking can be
achieved by ClusPro 2.0 [149], or a combination of PatchDock
[150] and FireDock [151], or a combination of Autodock Vina
[152] and GalaxyPepDock [153]. The detailed binding information
of the peptide-protein complex can be viewed through UCSF Chi-
mera [154] and LigPlot [155].

3.2. Prediction of drug candidates

3.2.1. Drug target prioritization
As depicted in Fig. 3B-Ⅰ, the overall prioritization of predicted

drug target is mainly considered from three factors: druggability,
virulence factor (VF) and broad spectrum. The ideal drug target
should integrate closely with drug-like molecules to make the drug
more effective, and the binding affinity of the target proteins to the
drug-like molecules can be reflected by druggability [156]. To find
the proteins that can develop into potential drug targets, all puta-
tive proteins undergo the BLASTp similarity analysis against the
bacterial drug targets in the DrugBank database [157] to assess
the druggability of each protein, and predicted proteins with a high
similarity to the bacterial drug targets are regarded as druggable
targets for subsequent analysis.

Virulent proteins can regulate the infection pathway and play a
decisive role in the survival of the pathogens in the host [99]. Thus,
VF analysis has been proven as a promising approach for identify-
ing therapeutic drug targets. To probe the virulence-related pro-
teins, VFDB is applied for similarity comparison using the BLAST
tool with a bit score > 100, and the output data will contain multi-
ple types of virulence factor, such as adherence and protease.

Bacterial pathogens can generate different simultaneous infec-
tions in the host, thus, screening for broad-spectrum targets is
now considered preferable. In this step, a broad-spectrum search
of predicted proteins is conducted to investigate the potential
broad-spectrum targets by BLASTp against bacterial pathogen pro-
teomes with an e-value of 0.005 [14,16].

After this progressive evaluation, the non-homologous and
essential proteins that pass successfully through these filtration
conditions and demonstrate unique metabolic pathways to the
host are listed as prospective drug targets.

3.2.2. Interaction network, homology modelling and 3D structure
assessment

The PPI network analyses, homology modeling and 3D
structural assessment of the drug candidates are similar to the
corresponding analyses used for the prediction of vaccine targets
(Fig. 3B-II and III).

3.2.3. Predicting the binding site of target proteins
Once the final model of the predicted proteins is established,

the next step is to predict the binding site of the proteins, which
is essential for understanding the protein function (Fig. 3B-IV).
Proteins contain a large number of residues, whereas the binding
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site is composed of those residues that can bind specifically to the
drug. Therefore, understanding the interactions between the inhi-
bitors and the proteins is crucial in drug design. Candidate
interaction-based binding sites can be forecasted with the follow-
ing programs: COACH [158], Computed Atlas of Surface Topogra-
phy of proteins (CASTp) [159], Active Site Finder tool,
DoGSiteScorer [160], fpocket [161], MetaPocket [162], and GHE-
COM [163].
3.2.4. Virtual screening of ligands, evaluating the properties of ligands
and molecular docking

Virtual screening (VS), also known as computer screening, is
one of the latest advances in drug discovery (Fig. 3B-V). Generally
speaking, VS involves screening candidate ligands through ligand
databases and investigating the possibility of these molecules
binding or docking with the target proteins. ZINC is a broad plat-
form for drug screening, and can accomplish a multi-method
molecular search according to structure, properties, targets, etc.
Initially, small molecules in the MOL2 format are downloaded from
the ZINC database [145]. Then, the selected ligands are converted
into the PDBQT format and undergo VS using the AutoDock Vina
or AutoDock software tools [164], and these two software tools
can realize the batch docking of molecules. The docking results
are sorted in ascending order based on the binding free energy
(DGbind) between the inhibitor and the receptor, and the first ten
candidates are generally selected as the ideal inhibitors.

Molecular properties of the ligands are important for every step
of the design, synthesis and clinical application of an effective drug.
For the purpose of minimizing the negative effects of the selected
ligands, the absorption, distribution, metabolism, excretion and
toxicity (ADMET) characteristics that can influence the pharma-
cokinetics of the designed drugs are further evaluated by employ-
ing the SwissADME program [165] or the PreADMET server. The
DrugBank database can also be used to assess the pharmaco-
chemical properties of the drugs. Ultimately, the best predicted
ligands with better pharmacokinetics and pharmaco-chemical fea-
tures are acquired.

The docking between an inhibitor and a target protein is more
complicated than the binding between two proteins, and their
docking relationship is similar to that of a lock and key (Fig. 3B-
VI). The inhibitor and the target protein should be paired comple-
mentarily, and the attachment of the inhibitor to the binding
pocket should be as close as possible. Once the receptor proteins
and inhibitors are ready, flexible molecular docking can be done
through AutoDock, AutoDock Vina, GOLD [166] software, etc.
Structures with the lowest binding free energy during molecular
docking are considered the best and most stable initial structures
for MD studies.
4. MD analysis

MD analysis is a computer-based simulation method used
widely in several fields, such as physics, chemistry, and biology.
With the development of computer simulation technology, MD
simulation [167–170] has become a common tool for studying
the binding mechanism of the inhibitors/peptides to the proteins
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and conformational changes of target proteins based on equilib-
rium MD trajectories. MD simulation can respond well to the
dynamic characteristics of biomolecules, which helps provide a
better theoretical basis for efficient vaccine and drug design. At
present, existing mature software packages such as AMBER [171]
and GROMACS [172] can provide strong technical support for MD
simulations. To understand MD simulation better, we now summa-
rize the basic MD simulation process and the advanced methods
used for analyzing the conformation of target proteins and the
binding affinity between the protein and the drug/vaccine (Fig. 4).

4.1. System preparation

Prior to the MD simulation, the selected systems should be
properly prepared by applying the following four steps: adding
missing hydrogen atoms to their respective heavy atoms; setting
force fields for the proteins, inhibitors, or peptide epitopes; adding
a certain amount of Na and Cl ions to neutralize the system; and
immersing all the systems into a water box (Fig. 4II).

After the systems are well prepared, three critical operations
(energy optimization, heating, equilibrium) are executed stepwise
to ensure that the MD simulations are performed in an ideal exper-
imental environment (Fig. 4III). First, the energy of all the studied
models is optimized to eliminate any possible adverse effect on the
structural deformation and simulation stability by combining the
steepest descent and conjugate gradient methods. Subsequently,
the system is gradually heated until the expected temperature of
300 K is reached. In the next step, the simulation is continued at
the same temperature and characteristics including pressure,
energy, and structure are evaluated. The simulation continues until
these characteristics stop showing any changes over time. Finally,
long-time MD simulation is performed at room temperature
(300 K) and atmospheric pressure (1 atm). To better understand
the universality of MD simulations and the various analytical
methods based on the MD trajectories, we arbitrarily selected an
example (PDB ID: 3P6F) to simulate the MD of 150 ns and the cal-
culated results are presented in Fig. 4.

4.2. Root-mean-square deviation

The root mean square deviation (RMSD) value represents the
deviation of backbone atoms in the proteins relative to their
respective initial optimized structures, and is a commonly used
method to evaluate the stability of the system. Smaller the RMSD
value, the more stable the system is during the simulation. Gener-
ally, the equilibrium MD trajectories are selected for later analysis
(Fig. 4IV).

4.3. Conformation analysis of proteins, and assessment of binding
affinity and binding mechanism between inhibitors/peptides and
proteins

To be effective, a drug must reach the binding site of the target
protein and generate a strong interaction with the residues at the
active site to form a stable complex. Meanwhile, proteins binding
with the inhibitors/peptides will cause changes in their conforma-
tion. Therefore, a deeper understanding of the binding affinity and
binding mechanism of inhibitors/peptides to the proteins and the
conformation changes in the proteins induced by the binding will
be of great help in the design of effective drugs and vaccines.

4.3.1. Conformation analysis
The most popular tool for performing conformation analysis is

the principal component analysis (PCA) [173]. Fundamentally, this
method constructs a covariance matrix based on the coordinates of
Ca atoms using a dimensional reduction method, which can then
reflect the deviations of the Ca atoms from their respective average
positions. Thus, cross-correlation matrices (Fig. 4V-1) correspond-
ing to the correlated motion between residues can be constructed.
In a diagonalized covariance matrix, the eigenvalues and the eigen-
vector plot (Fig. 4V-2) representing the motion intensity and direc-
tion of the residues, respectively, can be obtained, and then a
porcupine plot (Fig. 4V-3) can be established to characterize the
movement of the residues. By projecting MD trajectories onto the
first and second principal components (PC1 and PC2), the binding
free energy landscapes (Fig. 4V-4) of the proteins can also be con-
structed to better reflect their conformational distribution. Existing
work has shown that a combination of RMSD and gyration radiuses
(GR) can also be used to construct the free energy landscapes [174].

In addition to PCA, a few other methods are also used to analyze
the protein structure based on the equilibrium MD trajectories. For
example, the root mean square fluctuation (RMSF) of Ca atoms can
be used to indicate the flexibility of the protein during the MD sim-
ulation (Fig. 4V-5). The stability, continuity, correlation and vol-
ume of the binding pocket for each protein can also be separately
evaluated by employing the D3Pockets server [175] and the
POVME procedure [176] to characterize the structural changes in
the proteins.
4.3.2. Binding affinity analysis
The binding ability of inhibitors/peptides to proteins can be

confirmed by calculating the DGbind between the inhibitors/pep-
tides and the proteins (Fig. 4VI). Numerous methods have been
developed to predict the DGbind, including molecular mechanics
Poisson Boltzmann/generalized Born surface area (MM-PB/GBSA)
[177], thermodynamics integration (TI) [178], and free energy per-
turbation (FEP) [179]. Considering the computational resources
and time, MM-PBSA and MM-GBSA have been the most widely
used methods in recent years. In this method, the DGbind between
inhibitor and protein can be determined by the following formula.
DGbind ¼ DEele þ DEvdw þ DGpol þ DGnonpol � TDS ð1Þ
The items on the right side of the equation represent the contri-

butions of the electrostatic interaction (DEele), van der Waals inter-
action (DEvdw), polar interaction (DGpol), nonpolar interaction
(DGnonpol) and entropy change (DS) to DGbind, respectively. Notably,
the calculation of entropy is time-consuming; therefore, only 50–
100 conformations are generally calculated by normal mode
method [180]. In addition, the new interaction entropy (IE) method
proposed by Duan et al. can also help in the calculation of entropy
[181].

To further understand the influence of key residues on binding
affinity, a computational alanine scanning method [182] based on
MM-PBSA and MM-GBSA methods can also be applied to estimate
the change in DGbind and binding mechanism caused by the muta-
tion of residues. Alanine mutant structures are generated by alter-
ing the coordinates of the wild-type (WT) residues, and the alanine
residue parameters then replace all the parameters of the WT resi-
due in the topology file. Subsequently, computational alanine scan-
ning is performed based on the same snapshots as implemented in
the MM-PBSA method. The difference in DGbind can be determined
by the following equation.
DDGala¼DDGwt
bind-DDG

mut
bind ð2Þ
where the first two terms (DGwt
bind, DG

mut
bind) are the binding free ener-

gies of WT and mutant complexes. The measurement unit for terms
DGbind, DEele, DEvdw, DGpol, DGnonpol, DDGala, DGwt

bind, and DGmut
bind is

kcal/mol.



Table 1
Online software and corresponding websites used in each step.

Software/database Website

Target Discovery NCBI https://www.ncbi.nlm.nih.gov
UniProt https://www.uniprot.org
CD-HIT http://cd-hit.org
BLAST https://blast.ncbi.nlm.nih.gov/Blast.cgi
DEG http://tubic.tju.edu.cn
KAAS http://www.genome.jp/kegg/kaas
PSORTb http://www.psort.org/psortb
PGAP http://pgapx.ybzhao.com
EDGAR http://edgar.computational.bio
DoriC http://tubic.tju.edu.cn/doric
Ori-Finder http://tubic.tju.edu.cn/Ori-Finder
RiboD http://ribod.iiserkol.ac.in

Target Analysis VFDB http://www.mgc.ac.cn/VFs/main.htm
MvirDB http://mvirdb.llnl.gov
Virulentpred https://www.bibsonomy.org
VaxiJen http://www.jenner.ac.uk/VaxiJen
ExPASy http://www.expasy.org
TMHMM http://www.cbs.dtu.dk/services/TMHMM
HMMTOP http://www.enzim.hu/hmmtop
Vaxign http://www.violinet.org/vaxign
SPAAN ftp://203.195.151.45
Allertop http://www.pharmfac.net/allertop
AlgPred http://www.imtech.res.in/raghava/algpred
SORTALLER http://sortaller.gzhmu.edu.cn
BCPreds http://ailab.ist.psu.edu/bcpred/predict.html
BepiPred http://www.cbs.dtu.dk/services/BepiPred
Propred1 http://www.imtech.res.in/raghava/propred1
Propred http://www.imtech.res.in/raghava/propred
MHCPred http://www.jenner.ac.uk/MHCPred
ProtParam http://web.expasy.org/protparam
CARD https://card.mcmaster.ca
CLC https://www.clcbio.com
STRING http://string-db.org
PDB http://www.rcsb.org
I-TASSER http://zhang.bioinformatics.ku.edu/I-TASSER
Phyre2 http://www.sbg.bio.ic.ac.uk/phyre2
Modweb http://salilab.org/modweb
RaptorX http://raptorx.uchicago.edu
Modeller https://salilab.org/modeller
M4T http://www.fiserlab.org/servers/m4t
Swiss-Model http://swissmodel.expasy.org
RAMPAGE http://mordred.bioc.cam.ac.uk/~rapper/rampage.php
ProSA https://prosa.services.came.sbg.ac.at
Verify 3D http://nihserver.mbi.ucla.edu/Verify_3D
ERRAT http://nihserver.mbi.ucla.edu/ERRAT
WHAT_CHECK https://swift.cmbi.umcn.nl/gv/whatcheck
Pepitope http://pepitope.tau.ac.il
PEPFOLD http://bioserv.rpbs.univ-paris-diderot.fr/PEP-FOLD
ClusPro https://cluspro.org
PatchDock http://bioinfo3d.cs.tau.ac.il
FireDock http://bioinfo3d.cs.tau.ac.il/FireDock
Autodock Vina http://vina.scripps.edu
GalaxyPepDock http://galaxy.seoklab.org/pepdock
UCSF Chimera http://www.cgl.ucsf.edu/chimera
LigPlot http://www.ebi.ac.uk/thornton-srv/software/LigPlus
DrugBank http://www.drugbank.ca
COACH http://zhanglab.ccmb.med.umich.edu/COACH
CASTp http://sts.bioe.uic.edu/castp
ActiveSite Finder http://www.scfbio-iitd.res.in/dock/ActiveSite.jsp
DoGSiteScorer http://dogsite.zbh.uni-hamburg.de
fpocket http://fpocket.sourceforge.net
MetaPocket http://projects.biotec.tudresden.de/metapocket
GHECOM http://strcomp.protein.osaka-u.ac.jp/ghecom
ZINC http://zinc.docking.org
AutoDock http://autodock.scripps.edu
SwissADME http://www.swissadme.ch
PreADMET https://preadmet.bmdrc.org

Molecular Dynamics Analysis D3Pockets http://www.d3pharma.com/D3Pocket/index.php
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4.3.3. Binding mechanism analysis
Through continuous efforts of a large number of researchers,

the binding mechanism between drugs/peptides and proteins has
been extensively studied (Fig. 4VII). With the calculation of DGbind,
analyses of DEele, DEvdw, DGpol and DGnonpol interactions between
inhibitors/peptides and proteins have been performed
[168,169,183]. In these analyses, as the electrostatic and van der
Waals interactions play a major role in the binding of drugs/pep-
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tides with proteins, further research on these two interactions has
also been performed. Presently, the energy contributions of indi-
vidual residues in proteins and individual atoms on residues to
electrostatic and van der Waals interactions have also been calcu-
lated [184]. Simultaneously, detailed analyses of the hydrogen
bonding (Fig. 4VII-1) and hydrophobic interactions (Fig. 4VII-2)
between residues and inhibitors/peptides have also been per-
formed to reveal the source of these two interactions. Furthermore,
the radial distribution function (RDF) (Fig. 4VII-3) can partially
contribute to the analysis and identification of hydrogen bonds
[185]. Recently, a comprehensive method of axial frequency distri-
bution (AFD) has also been proposed. This method can not only
reflect the conformational characteristics, such as structural stabil-
ity and flexibility, but also be used to analyze bi-molecular interac-
tions including hydrogen bonds, van der Waals, and polar or ionic
interactions [186]. We believe that due to long-term efforts, the
prediction of binding affinity and binding mechanisms between
inhibitors/peptides and proteins is no longer a puzzle.

After an in-depth analysis of the interaction mechanism, the
optimal pharmacophore model [169,187] is generated, as shown
in Fig. 4VII-4. Generally speaking, the red-labeled region indicates
that this region is easy to produce hydrogen bonding interactions
with drug, while the green-labeled region make hydrophobic inter-
actions with drug. Once the theoretical pharmacophore models of
the relevant drugs are identified, pharmacophore-based VS can be
performed to explore additional drugs, as proved by the great suc-
cess of this method [188,189].
5. Summary and outlook

Developing drugs or vaccines for highly contagious bacterial
diseases in a short period of time can be challenging, and some
drugs/vaccines can also show adverse effects during clinical treat-
ment, which poses a great challenge to the clinical treatment, and
necessitates a strict and careful monitoring of each step of the
drug/vaccine design.

In this review, the methods for target discovery, target analysis,
and MD analysis are summarized to present a complete and sys-
tematic scheme for the design of effective drugs and vaccines. In
the first step, five common analytical methods, including compar-
ative subtractive genome, core genome, replication-related pro-
teins, transcriptomics, and riboswitches analyses are used to
obtain promising drug and vaccine targets. Then, an in-depth anal-
ysis of selected targets is performed to minimize the negative
effects of drugs and vaccines. Finally, each model is analyzed and
verified by MD simulations to facilitate a deeper understanding
of the binding mechanism of inhibitors/peptides to proteins and
the structural changes in the proteins caused by the binding of
inhibitors/peptides. We have also summarized the online soft-
ware/database and corresponding websites used in each step to
facilitate the readers to use and consult them, and the results are
listed in Table 1.

The development and application of effective drugs still need to
undergo long-term and numerous clinical trials, and researchers
have performed numerous clinical investigations on vaccines and
drugs [190–192].We expect that this review will provide useful
ideas and guidance for the clinical development of effective drugs
or vaccines to cure potential infectious diseases or epidemics
caused by bacteria.
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