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COMMENTARY

Better agonist for the opioid receptors
Syed Lal Badshah1* , Asad Ullah1, Salim S. Al‑showiman2 and Yahia Nasser Mabkhot2*

Abstract 

This commentary highlights the recent work published in journal Nature on the structural based discovery of novel 
analgesic compounds for opioid receptors with minimal effects. Manglik et al. selectively targeted the Gi based μOR 
pathway instead of the β‑arrestin pathway of the opioids. The computational screening of millions of compounds 
showed a list of several competent ligands. From these ligands they synthesized the compounds with the best 
docking score, which were further optimized by adding side residues for better interaction with the μOR. A promis‑
ing compound, PZM21, was a selective agonist of μOR. It has better analgesic properties with minimal side effects of 
respiratory depression and constipation. This work is a step towards better drug designing and synthesizing in terms 
of efficacy, specificity with least side effects of targeted GPCR proteins present in the human proteome.
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Introduction
Morphine is the natural alkaloid present in opium and it 
is obtained from poppy plant. Opium has been used as an 
analgesic and as a recreational drug since ancient times. 
Other common analgesics used include natural alkaloids 
like codeine, oxycodone, etc. where addiction and other 
side effects are an increasingly apparent social prob-
lem. Current progress in the discovery of different opi-
oid receptors has helped the search for receptor specific 
drugs without adverse side effects. The protein data bank 
now contains high resolution structures of the μ, δ, к and 
nociception opioids receptor proteins [1–5]. The opi-
oid receptors are G-protein coupled receptors (GPCRs), 
whose signaling is mediated through the G proteins [1]. 
In the last few years, there has been a surge in high reso-
lution X-ray crystallographic structures of GPCRs; par-
ticularly from the Kobilka research group at Stanford 
University. Whose work resulted in the Nobel Prize of 
Physiology in 2012 [6, 7].

The GPCR proteins are important players in eukaryotic 
signaling mechanisms [8, 9]. They transfer the message 
from extracellular side to the intracellular side of the cell 
across the plasma membrane [8, 9]. The common ligands 

for GPCRs includes lipids, fatty acids, neurotransmitters, 
photons, cytokines, hormones and metal ions [8, 9]. They 
transduce the signal across the plasma membrane by 
binding with these ligands that causes certain conforma-
tional changes into the seven trans-membrane alpha heli-
ces of GPCRs [8, 9]. The GPCR proteins are important 
drug targets and it is estimated that around 30% or more 
of the available marketed drugs are for GPCR related dis-
eases [9]. There is a general consensus that around 350 
GPCRs are involved in various human diseases. Another 
~ 100 GPCRs (called orphan GPCRs) have little informa-
tion available about their natural ligands or physiological 
function [10]. In the last few years several structures of 
GPCRs were computationally explored through molec-
ular docking approaches to find suitable agonist and 
antagonist compounds that have no adverse effects [9, 11, 
12]. Similarly, those GPCR whose X-ray crystallographic 
structures are not available were studied using the 
homology modeling techniques, where suitable ligands 
were docked with them based on virtual screening meth-
ods [9, 12].

In a recent study, Manglik et  al. search for ideal opi-
oid ligands that have lower  side effects [13]. They took 
around three million compounds from the ZINC data-
base library [14, 15] and docked them with the orthos-
teric site of the μOR [13]. Each compound has more than 
a million different configurations in the binding site that 
were considered. Most of the ligands interacted with the 

Open Access

*Correspondence:  shahbiochemist@gmail.com; yahia@ksu.edu.sa 
1 Department of Chemistry, Islamia College University, Peshawar 25120, 
Pakistan
2 Department of Chemistry, College of Sciences, King Saud University, 
Riyadh, Saudi Arabia

http://orcid.org/0000-0002-0229-1425
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13065-018-0383-8&domain=pdf


Page 2 of 3Badshah et al. Chemistry Central Journal  (2018) 12:13 

Aspartate147 of the orthosteric site of the protein [13]. 
The top 2500 ligands were evaluated for their novelty 
and interaction with various internal residues. The new 
ligands selected have binding affinities in the micromo-
lar (μM) range. These newly predicted ligands are cati-
onic amines that mostly bind with μOR and show unique 
interactions of hydrogen bonding with Asp147, which 
was not reported before in the literature [13]. For better 
binding affinity and selectivity, new analogues of these 
ligands were made. They retained the parent compound 
interaction with the receptor; however the additional side 
groups made new interactions in the binding site. The 
analogues that make several interactions in the molecu-
lar docking studies were synthesized in the laboratory for 
further studies [13].

From the series of synthesized stereoisomeric com-
pounds, compound 12 (Fig. 1), expressed better binding 
affinity with μOR and resulted in the specific activation 
of  Gi/o and very low initiation of β-arrestin-2 pathway 
[13]. To increase interaction in the binding pocket, 
they introduced a hydroxyl group in this compound at 
the para position on the benzene ring (Fig. 1). The new 
potent synthetic (S, S)-21 compound is named as PZM21 
[13]. It makes nine interactions within the allosteric site 
with the μOR and more favorable binding free energy. 
The  Gi/o activation assay showed an  EC50 value of 4.6 nM 
and 76% efficacy [13]. The analgesic efficiency of PZM21 
is higher than that of morphine [13]. The PZM21 is a 
highly selective agonist of μOR while it has no agonist 
activity for other opioid receptors or neurotransmitter 
transporters [13]. The PZM21 possess the concentration 
dependent analgesic effects in a mouse hotplate assay 
[13]. Its metabolism in mice liver is quite slow, and 8% of 
the drug is metabolized in 1 h. Its analgesic time in mice 
is 180 min which is longer than both morphine and TRV 
130 [13]. In her news and views published in Nature, Bri-
gitte Kieffer showed the comparison between PZM21 
and TRV130 [16]. The TRV130 is specific pain relieving 

analgesic that has lower side effects, similar to PZM21 
[16]. The TRV 130 drug is currently in the third phase 
of its clinical trials though it also has some side effects 
like respiratory depression [13]. Experiments on mice 
showed that PZM21 provided relief in pain for which 
the response is mediated through the CNS only while 
responses mediated through that of the spinal nerves are 
ignored [16]. Further experiments on mice showed that 
PZM21 did not result in addiction, making it a more suit-
able analgesic as compared to other available drugs [13]. 
Further studies are required to determine the metabolic 
stability and pharmacokinetics of PZM21 and its deriva-
tives [13]. PZM21 can be synthesized from the method 
presented by Manglik et al. from (S)-amino acid amides 
and thiophene-3-carbaldehyde in few steps or it may be 
synthesized through other simple routes and can be eas-
ily commercialized [13].

Now with more powerful femtosecond serial X-ray 
crystallography, a number of high resolution crystal 
structures of GPCRs are available [17–19]. In the next 
few years we likely will have hundreds of high resolu-
tion structures of GPCRs from all of its different classes. 
Computational molecular docking approaches with 
highly selective agonists and antagonists will be available 
for each protein that will have minimal side effects [20]. 
In crystal form, most GPCRs have an inactive state and 
there are always ambiguities in the interaction of agonist/
antagonist with the protein. Molecular dynamics simula-
tions should always be performed to get a more flexible 
and active state of GPCRs. The main advantages of struc-
tural based optimization and selection of ligands are that 
it saves both time and money in order to choose the best 
ligand for specific GPCR that work only through a single 
sided pathway in a biological system.

Authors’ contributions
SLB and YNM wrote the manuscript while AU and SSA took part in discussion, 
suggestions and grammatical corrections for improvement of the manuscript. 
All authors read and approved the final manuscript.

Acknowledgements
We extend our sincere appreciation to the Deanship of Scientific Research at 
the King Saud University, Saudi Arabia for funding this work through Research 
Group No (RGP‑007).

Competing interests
The authors decalre that they have no competing interests.

Ethics approval and consent to participate
Not applicable.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

Received: 18 November 2016   Accepted: 30 January 2018

Fig. 1 Chemical structure of compound (S, S)‑12 and PZM21 [13]
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