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Summary:

When faced with unfamiliar reaction space, synthetic chemists typically apply reported conditions 

(reagents, catalyst, solvent, additives) from closely-related reactions to new substrate types. 

Unfortunately, this approach often fails due to subtle, albeit important, differences in reaction 

requirements. Consequently, a significant goal in synthetic chemistry is the ability to transfer 

chemical observations from one reaction to another, quantitatively. Here, we present such a 

platform by developing a holistic, data-driven workflow for deriving statistical models for one set 

of reactions that can be applied to predict out-of-sample examples. As a validating case study, 

published enantioselectivity data sets that employ BINOL-derived chiral phosphoric acids for a 

range of nucleophilic addition reactions to imines were combined and statistical models 

developed. These models reveal the general interactions imparting asymmetric induction and allow 

the quantitative transfer of this information to new reaction components. The disclosed techniques 

create opportunities for translating comprehensive reaction analysis to diverse chemical space, 

streamlining both catalyst and reaction development.

Methods Summary:

After the database of the reactions is constructed, the experimental output, enantiomeric ratios, 

were mathematically modelled through linear regression techniques to reveal which of the 

proposed parameters allow for the prediction of new outcomes. The detailed acquisition of 

parameters can be found in the Supplementary Information and the descriptor tables attached as an 

accompanying spreadsheet. The models produced were evaluated for their goodness of fit, R2, and 

their robustness is demonstrated by external validations’ goodness of fit, predR2. The nearer the R2 

and slope values are to one (indicating a tight, one-to-one correlation between predicted and 

measured outcomes) and the nearer the intercept is to zero (indicating minimal systematic error), 

the more robust the model. Potential models were refined through number of parameters, because 

this allows for a mechanistically informative interrogation and cross-validation scores. Leave one 

reaction out (LORO) analysis was performed to probe general mechanistic principles, which 
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provides the basis for mechanistic transfer of experimental observations and tested further by 

predicting out-of-sample.

The efficacy of a catalytic process is dictated by the possible transition states (TS), which 

feature core non-covalent interactions that determine their geometries and energies.1–2 Such 

interactions are often difficult to identify and define since they are energetically weak and 

sensitive to the molecular properties of every reaction component (catalyst, substrate(s), 

reagents, solvent, etc.).3–4 This overarching issue in reaction optimization is often 

exasperated by subtle connections across several reaction variables, wherein modest 

structural changes to any or a few of these can have a profound effect on the experimental 

outcome.5–6,7 These factors combined with the number of dimensions under study in most 

reactions, are the underlying reasons for why optimization is decidedly empirical.8–9 This 

situation is particularly common in the area of asymmetric catalysis, wherein seemingly 

minor structural variations to any reaction component can have acute and non-intuitive 

influences on the observed enantioselectivity.10 However, it is possible that such mechanistic 

outliers may be concealed within larger data sets as our pattern recognition skills do not 

perceive pivotal generalities when reaction situations change. On this basis, we hypothesized 

that connecting common mechanistic features through the simultaneous interrogation of all 

reaction components would provide a holistic view of the key non-covalent interactions 

responsible for reaction performance. This would enable the transfer of experimental 

observations to genuinely different substrate combinations with unique catalysts. Herein, we 

develop and deploy a workflow to parameterize all reaction variables of >350 distinct 

reaction combinations, which allows development of comprehensive correlations with the 

ultimate ability to predict reaction performance for entirely different structural motifs. The 

workflow includes techniques to probe general mechanistic principles, which provides the 

basis for transfer learning or generalized identification of the key interactions imparting 

asymmetric induction.

Asymmetric catalysis is replete with examples of catalysts that can promote disparate 

reactions through a common mode of activation.11,12–13,14 However, when one surveys 

“similar reactions”, many changes to the precise reaction conditions are often required to 

obtain the desired reaction performance.15–16 In many cases, these changes can be subtle 

(i.e., one aromatic solvent for another) or more profound (one catalyst class for another). 

This leads to the questions: 1) is mechanistic insight truly transferrable to a new reaction in 

the same subclass considering that a standard mechanistic paradigm may exist with a general 

mode of activation? 2) if so, how can a workflow be used in a quantitative manner for 

diverse and multiple reaction profiles? And 3) if achievable, can the observations of one or 

more reactions be deployed to predict the performance of another? Such analysis strategies 

could provide mechanistic understanding to why certain conditions are effective for a 

general reaction type and the ability to quantitatively transfer this information to out of 

sample predictions streamlining reaction optimization.17–18

To vet a specific workflow required to probe the questions posed above, it would be 

pragmatic to compare transformations within a reaction class facilitated by a single catalyst 

chemotype. Although multifarious reports of the same catalyst class for different 
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transformations exist in enantioselective catalysis, comparative studies – even in a 

qualitative manner – have been sparse. Such an interrogation would be challenging as a 

consequence of incomplete datasets generated under non-uniform conditions and the 

development of readily comprehensible descriptors for each varying reaction component. To 

address this correlation challenge, we envisioned a strategy for the interrogation of 

enantioselective catalysis involving the application of modern data-analysis methods and 

advanced parameter sets. In this approach, integrated descriptor sets (Quantitative Structure 

Activity Relationships (QSAR), Molecular Mechanics (MM), and Density Functional 

Theory (DFT) derived),19 are related to a relatively large library of outputs collected from a 

general reaction and catalyst type, which are data-mined from multiple literature sources. By 

combining the appropriate data-organization and trend analysis techniques, general 

relationships between reactions can be established. The statistical models ability to predict a 

new reaction type performance is used as a validation of mechanistic transferability (Fig. 1).

Reaction Platform Selection:

As a proof of concept reaction class, the addition of various nucleophiles to imines was 

identified owing to the ubiquity of this type of transformation in asymmetric catalysis.20–21 

The commonality of this reaction is due to both the simplicity of accessing imine starting 

materials and the broad applicability of the resulting amines in both synthetic and 

biosynthetic settings.22–23 The second criteria in reaction selection is determining a catalyst 

chemotype that has been widely used for these processes such that significant data exists and 

provides diversity in data range and structure from published sources. Considering these 

constraints, we selected the field of chiral phosphoric acid catalysis, particularly, the 

addition of protic nucleophiles to imines catalyzed by chiral 1,1’-Bi-2-naphthol (BINOL)-

derived phosphoric acids bearing aromatic groups at the 3 and 3’ positions (Fig.1).24

To initiate this workflow, an expanded inventory of 367 reactions with varied components 

was curated from multiple reports (for list of references see SI). From this survey, we 

categorized the dataset by imine TS geometry (E or Z) wherein E-imine TS are grouped by a 

+ee value and Z-imines as a -ee value. Imine stereochemistry was determined by the 

enantiomer of the product formed if the imine was derived from an aldehyde. However, if 

ketimines (imines derived from ketones) were employed substituent size must also be 

considered if the smaller C-substituent has higher Cahn-Ingold Prelog (CIP) priority.25–26 

For the reactions under study, this only effects ketimines that have either a trifluoromethyl or 

ester C-substituents in which they are considered to have lower priority for the purpose of 

assigning E or Z-TS. This is important in understanding product enantioselectivities, 

because nucleophile addition to the same face will yield opposite enantiomers for E and Z 
configurations. Therefore, developed models will not be capable of predicting product 

stereochemistry but can be deployed to predict whether a reaction will proceed via an E or Z 
type mechanism and this information can be used to determine absolute configurations.

Simultaneously, a diverse array of molecular descriptor values was collected from DFT 

optimized geometries to describe the structural features of each imine, nucleophile, catalyst, 

and solvent. Unfortunately, the lack of structural commonality for particular molecular 

subsets creates a challenge in identifying readily comprehensible and extensive parameter 
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sets for each component. For example, on comparing substrates and catalyst structures, it is 

apparent that they have overlapping and distinctive features likely required for determining 

selectivity patterns (Extended Data Fig. 1). In contrast, the solvents do not have common 

substructures, yet are critical for enantioselectivity. To address this limitation two 

approaches were explored: (1) parameters derived from DFT calculations were collected, 

which have proven well-equipped to describe molecules containing common structural 

features including Sterimol parameters, bond lengths, angle measurements, molecular 

vibrations and intensities, Natural Bond Orbitals (NBO) charges, polarizabilities, Highest 

Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbitals (LUMO) 

energies.27–28 This array was collected for the reaction partners and the catalysts. (2) 2D 

descriptors (e.g., topological and connectivity as exemplified by molecular shape, size and 

number of heteroatoms) are used as this is a traditional method to assess structurally 

disparate molecules such as solvents.29–30 Other reaction variables, such as concentration of 

reagents/catalysts and inclusion of molecular sieves, were also included as categorical 

descriptors (see SI).

Comprehensive Model Development:

Linear regression algorithms (see SI) were then applied to the entire dataset (367 reactions) 

to identify correlations between the molecular structure of every reaction variable defined by 

the parameters collected in the previous step of the workflow and the experimentally 

determined enantioselectivity. ΔΔG⧧ (where ΔΔG⧧ = —RTln(e.r.) and T is the temperature 

at which the reaction was performed) was regressed to an equation to reveal a surprisingly 

good correlation despite the significant structural variance included in the training set. Both 

cross-validation analysis (Leave-one-out (LOO) and k-fold) and external validation, in 

which the dataset is partitioned pseudorandomly into 50:50 training:validation sets suggests 

a relatively robust model (see SI). The model emphasizes solvent (black), imine (blue), 

nucleophile (green) and catalyst (red) terms distributed over six parameters, as contributors 

to the enantioselectivity across these seventeen reaction types (Fig. 2A). A slope 

approaching unity and intercept approaching zero over the training set indicates an accurate 

and predictive model with an R2 value of 0.88 demonstrating a high degree of precision. The 

largest coefficients in this normalized model belong to the imine NBO descriptors indicating 

the significant role of the imine substrate in the quantification of enantioselectivity as 

highlighted by the formation of both enantiomeric products, a consequence of active E and Z 
configurations (vide infra). Comparing two Strecker reactions performed under uniform 

conditions, results in values ranging from +99% ee for the enantiomer that proceeds through 

the E-imine TS and −80% ee for the Z. Remarkably, this represents a 3.5 kcal/mol range 

based solely on imine structure.

We postulated that the ability to correlate and predict using a singular model for an array of 

reactions suggests that the transition state features are fundamentally similar within this 

reaction range. Perhaps, the best test of this hypothesis could be achieved by a “leave one 

reaction out” (LORO) analysis. In this statistical evaluation, the catalyst, imine, and 

nucleophile structures are varied as a validation set and assessed through the ability of the 

model to predict with sufficient accuracy. This would report on the model’s capacity to 

match patterns across a general reaction type. Using this analysis, each distinct reaction (as 
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determined by individual publications) in the data field was evaluated with most predicted 

well (see SI). As an illustration of model robustness, we could exclude up to seven reactions 

with little change in the correlation statistics (Fig. 2B). However, not surprisingly, some 

reactions were poorly predicted in the LORO protocol, which can be attributed to the 

model’s inability to capture specific structure changes if they are not adequately expressed in 

the training set. In sum, the descriptor definitions coupled to the model and validation 

strategies showcase that patterns can be matched. This is consistent with the hypothesis that 

a defined set of key non-covalent interactions impart asymmetric induction across a general 

reaction type. Essentially, this workflow provides evidence that one reaction can be used to 

predict the results of another, quantitatively.

Trend analysis:

Although the comprehensive model in Fig. 2 establishes the capacity of the selected 

parameters to describe general aspects of this system, the ultimate goal of our workflow is to 

discern subtle underlying mechanistic phenomena. This objective could not be achieved by 

using the above correlation because it was produced by using the entire dataset, which 

provides only an overview of the mechanistic patterns. We hypothesized that a series of 

focused correlations, coupled with an evaluation of the overall trends, might serve to reveal 

fundamental features of the systems. To this end, we truncated the dataset into subsets, 

categorized by imine TS geometry (E or Z) determined by the relative sign of the ee 

determined previously, as these are hypothesized to lead to structurally distinct interactions 

with the other reaction components. This organizational scheme was viewed as a means to 

facilitate the identification of catalyst features that affect particular mechanistic pathways 

and therefore, reactant combinations (and vice versa). Linear regression algorithms were 

then applied to this data classification to identify correlations between molecular structure 

and the experimentally determined enantioselectivity. Subsequently, analysis and refinement 

of the resultant models were used to produce explicit mechanistic hypotheses (Fig. 3).

The correlation depicted in Fig. 3 was identified from a set of 204 reactions (evenly split into 

training and validation sets) that proceed via E-imine TS. The relationship includes two 

solvent, two imine, one nucleophile and three catalyst terms. Overall, the statistical model 

suggests a mechanistic scenario in which the imine adopts an arrangement that minimizes 

energetically penalizing repulsion interactions with reasonably large catalyst substituents.31 

Perhaps most telling is that the steric profile of the nucleophile does not impart a significant 

impact on the stereoselectivity prediction, despite the large structural variance. The included 

parameters (LUMO and the P‒O asymmetric stretching intensity, iPOas) suggest that H-

bonding contacts between catalyst and nucleophile play a minor role and the use of 

essentially any nucleophile should be compatible with the reaction if the imine and catalyst 

are matched.

In evaluating the model for Z-imines determined by 147 reactions, a number of overlapping 

terms reinforce the notion that similar interactions between catalyst and substrates remain 

within the two geometric imine stereoisomers. Two of these terms, the size of the catalyst 

aryl substituent as measured by Sterimol B1 term, B1cat, and the imine NBOPG parameter 

essentially describes the repulsive interactions between proximal sterics and the imine N-
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substituent, a common critical catalyst-substrate interaction with both TS imine 

configurations. The most significant contrast in the two models is that the Z-imine model 

includes a significant nucleophile steric descriptor, B5Nu, which is the most highly weighted 

term in the equation. This suggests that larger nucleophiles introduce enhanced repulsive 

interactions with the catalyst substituents in the TS, leading to the competing product, which 

ultimately favors the observed enantiomer. This claim is further supported by the 

observation of higher enantioselectivities when using catalysts with smaller substituents 

(e.g., Ar = 3,5-CF3). The proposed physical meaning behind each term in the mathematical 

equations have been summarized in Fig. 3.

Evaluation of prediction capabilities:

As a final step in the workflow, we evaluated the ability to transfer the mechanistic 

principles leading to enantioselective catalysis captured by the statistical models to 

genuinely different structural motifs not contained in the training dataset. If effective out-of-

sample prediction were possible, the model could predict the impact of a new imine, 

nucleophile, and/or catalyst. Initially, reaction performance was evaluated using the 

comprehensive model to determine the mechanistic pathway under operation, these 

predictions could then be further refined with the specific models (E or Z). This two-tiered 

workflow is imperative as the process avoids mechanistic assumptions regarding whether the 

reaction proceeds via an E or Z TS and therefore ensuring that the results of the test 

reactions are unknown. The comprehensive model does not immediately allow prediction of 

stereochemistry however, product configuration can be assigned from the simple models 

shown in Figure 4. These are based on the amine product yielded from a reaction proceeding 

via an E or Z TS and catalyzed by the (R)-CPA. The opposite enantiomer will be formed if 

the (S)-catalyst is employed. As a first case study, we evaluated fifteen additional reactions 

involving enecarbamates, a nucleophile not contained in the training set, and benzoyl imines, 

an imine subclass that is part of our initial training set (Fig. 4).32 Each result was predicted 

using the comprehensive model, with an average absolute ΔΔG⧧ error of 0.37 kcal/mol (13 

examples within 5% ee) and correctly assigned the absolute stereochemistry as R, 

demonstrating the ability of the model to extrapolate effectively to a new nucleophile. A 

slightly improved outcome is observed using the E-imine mechanistic model with a 0.24 

kcal/mol average error (all examples within 5% ee).

As the second case study, the hydrogenation of alkynyl ketimines catalyzed by H8-BINOL 

where the 3,3’ groups = 3,5-CF3(C6H4) was predicted.33 This is a more challenging scenario 

as both imine and catalyst components are not included in the training set. Again, accurate 

prediction of the outcomes was construed using the Z-imine mechanistic model, with an 

average absolute error of 0.30 kcal/mol and 13 examples predicted within 2% ee (Fig. 4). 

The stereochemical outcome was correctly determined to be R with the (S)-catalyst. 

Although the comprehensive model assesses the mechanistic scenario and therefore assigns 

the stereochemical outcome, it was not as accurate since the nucleophile information was 

categorical (symmetrical or displaced). Thus, the beneficial effect of a large nucleophile for 

a Z reaction was not adequately captured. These examples showcase that the model’s 

predictive capabilities are not limited to classifying the vast literature, but can be applied to 

analyze and predict new reactions even in situations where multiple components are varied.
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As a final case study, we evaluated a recently reported reaction that was rendered highly 

predictable by application of machine learning (ML) algorithms. The study reported by 

Denmark and coworkers involved the addition of thiols to benzoyl imines, a distinct reaction 

included in our training set.34 To utilize ML approaches, they performed 2,150 separate 

experiments using 43 catalysts to yield 25 different products (5×5 nucleophile/electrophile 

matrix). We postulated that our approach could reliably predict their results including the 

best catalyst, TCYP, which has cyclohexyl groups at the 2,4,6 positions of the aromatic ring 

and is not in our training set. To test this hypothesis, all experimental results of this reaction 

type were removed from our original training data, the model was retrained, and deployed to 

predict their new dataset (34 reactions) collected with the best catalyst, TCYP. We conclude, 

that our model, with no experimental data on this reaction can also predict the 

enantioselectivities (average absolute ΔΔG⧧ error = 0.65 kcal/mol comprehensive model (26 

examples within 5% ee), 0.67 kcal/mol E-imine only model (25 examples within 5% ee)) 

confidently determining the stereochemical outcome to be R and TCYP as a highly selective 

catalyst. Overall, through the combination of results generated from the out-of-sample 

prediction platforms, we can conclude that the E and Z focused correlations generate more 

accurate predictions but the comprehensive model is valuable as it determines which 

equation should be deployed.

In this report, we have introduced a workflow to model enantioselectivity in assorted 

catalytic systems. The value of this approach is that complicated reaction conditions can be 

accounted and successfully evaluated for multiple and diverse reactions. The ability to 

correlate and predict using a single model for many reactions suggests that general transition 

state features are fundamentally similar across the reaction range, allowing the transfer of 

observations from one reaction to another. This finding highlights a likely general 

phenomenon in asymmetric catalysis, whereby various transformations may be found to 

perform in the same manner when exposed to similar reaction conditions. However, such 

reaction similarities may be unmasked, and reaction-specific mechanistic principles emerge 

from the development of focused correlations.

Extended Data
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Extended Data Figure 1 |. Reaction component comparison.
Parameterization challenges for the identification of numerical descriptors in reaction 

dimension, demonstrated using two reactions representing the extremes of multidimensional 

feature space. DCM, dichloromethane; MS, molecular sieves; ee, enantioselectivity.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1 |. Workflow for interrogating and applying mechanistic transferability.
(A) BINOL-based phosphoric acid catalyzed nucleophilic additions to imines as a general 

reaction for workflow development. (B) Streamline reaction performance predictions by 

employing a mechanistic transferability strategy implemented through correlation of all 

reaction variables to enantioselectivity. General correlations can be built to reveal the 

interactions between any reaction component in the relevant TS and enantioselectivity. The 

mechanistic principles leading to enantioselective catalysis captured by the statistical models 

can be transferred to genuinely different structural motifs not contained in the training 

dataset.
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Figure 2 |. Comprehensive model development.
(A) Regression model containing 367 data entries facilitated by parameterization of every 

reaction variable. A positive %ee value indicates E-imine TS, a negative %ee Z-imine TS. 

LOO, leave-one-out cross-validation score; k-fold, average fourfold cross-validation score. 

(B) Illustration of mechanistic transferability in the data set via “leave one reaction out” 

(LORO) analysis. In which distinct reactions (as determined by individual publications) are 

defined as the validation set. (C) Visual analysis and interpretation of the model terms.
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Figure 3 |. Development of focused correlations.
(A) Regression model containing 204 entries data-mined from nine literature sources. (B) 

Model emphasizes the importance of both steric and electronic factors. Reasonably large 

catalyst and imine substituents lead to high-levels of enantioselectivity, if these two 

components are matched any nucleophile should be compatible. (C) Regression model 

containing 147 entries data-mined from eight literature sources. (D) Overlapping steric terms 

describing catalyst and imine reinforce the notion that similar interactions remain within the 

two geometric imine stereoisomers. However, this model emphasizes the importance of 

steric contributions predominantly from the nucleophile for high enantioselectivities.
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Figure 4 |. Out-of-sample predictions using two-tiered prediction workflow.
Comprehensive model first determines E or Z TS, configuration specific models are then 

utilized to refine predictions. A generic amine product denotes the stereochemical outcome 

predicted if the reaction proceeds via the E or Z TS and catalyzed by an (R)-CPA. Product 

stereochemistry is reversed if the (S)-catalyst is used. (A) Application to addition of 

enecarbamates to benzoyl imines and transfer hydrogenation of alkynyl ketimines. (B) 

Prediction of TCYP which has cyclohexyl groups at the 2,4,6 positions of the aromatic ring, 

as a highly selective catalyst for the addition of thiol to benzoyl imines.
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