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ABSTRACT
  DNA methylation biomarkers are increasingly utilized for the detection, 

prognosis and monitoring of cancer. Here we use publicly-available whole genome 
bisulfite sequencing data to identify differentially methylated regions (cDMRs) in 
diverse tumor types and further define a set of genomic target regions that have 
optimal characteristics for Methylation Sensitive Restriction Enzyme-PCR (MSRE-
PCR)-based detection: conserved hypermethylation in tumors, abundant MSRE sites 
and low methylation levels in normal tissues. The identified MSRE-PCR target regions 
(n = 1,294) were primarily encompassed within CpG islands (97%) and promoters 
(81%) with 39% of the target regions overlapping the transcription start site. Gene 
set enrichment analysis of the target regions identified significant enrichment of 
genes involved in neuronal development. A multiplexed MSRE-PCR assay was 
developed interrogating 47 target regions and was tested on a set of genomic DNAs 
(n = 100) from diverse tumor and normal tissue types including colon, breast, lung, 
stomach and blood. A logistic regression model containing seven target region 
amplicons distinguished between tumor and normal tissue in the training (n = 50) 
with a ROC AUC of 0.97 (95% CI [0.92, 1]) and independent test set (n = 50) with 
an AUC of 0.93 (95% CI [0.84, 1]). These findings show that genomic regions with 
conserved hypermethylation across diverse tumor types, abundant MSRE sites and 
low methylation levels in normal tissues provide target regions for the detection 
of tumor DNA via MSRE-PCR. The selective amplification of tumor-derived DNA via 
MSRE-PCR may have utility in the development of non-invasive cancer detection and 
surveillance strategies.

INTRODUCTION

Global epigenetic changes, including DNA 
methylation, are widely regarded as a hallmark of 
cancer [1]. Alterations include a decrease in overall 
CpG methylation levels coupled with discrete regions of 
hypermethylation, typically localized in the promoter-
associated CpG islands. Hypermethylation has been 
associated with cancer progression [2] and the silencing 
of growth regulating genes and tumor suppressor genes 
[3]. As a result, a growing number of DNA methylation 
biomarkers are being utilized in the development of novel 

assays for monitoring cancer progression [4, 5], treatment 
response [6] and early detection [7].

Multiple methods to detect DNA methylation 
of CpG dinucleotides have been described. Bisulfite 
treatment of DNA converts unmethylated cytosines to 
uracil, a property that can be used to detect genome-
wide CpG methylation at single nucleotide resolution via 
Whole Genome Bisulfite Sequencing (WGBS) [8]. PCR 
methodologies such as Methylation Specific PCR (MSP) 
also employ bisulfite conversion as well as two sets of 
PCR primers that distinguish between methylated and 
unmethylated version of a selected amplicon [4, 9]. 
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Alternatively, without employing bisulfite 
conversion, selective amplification of differentially 
methylated regions can be achieved by Methylation 
Sensitive Restriction Enzyme PCR (MSRE-PCR) [10]. 
PCR primer-binding sites are designed to flank genomic 
regions that have a differentially methylated CpG 
encompassed within a methylation-sensitive restriction 
site. Methylated DNA is protected from MSRE digestion, 
thereby allowing selectively amplification. Additionally, 
MSRE-PCR can be multiplexed to interrogate multiple 
target regions simultaneously [11] and applications of 
this technology are being explored for colorectal cancer 
detection [12] and lung cancer detection [13]. For clinical 
applications, MSRE-PCR is a desirable strategy in that 
it avoids bisulfite conversion, a chemical treatment that 
can result in DNA damage and loss [11]. Preserving the 
integrity and complexity of the DNA in clinical samples 
is particularly relevant in the analysis of cfDNA, where 
sample quantities are low and the fraction of tumor-
derived DNA can be limiting. 

The selective amplification and detection of tumor-
derived DNA via MSRE-PCR requires the targeted 
amplicon to have MSRE site(s) and to be hypermethylated. 
In theory, the most optimal amplicons for a highly 
specific MSRE-PCR assay would be fully unmethylated 
in normal DNA, and thus a complete digestion would 
preclude amplification of the normal tissue-derived DNA, 
facilitating the selective amplification of tumor-derived 
DNA. 

Here we describe a bioinformatics strategy 
identifying genomic regions that incorporate these criteria 
to optimize MSRE-PCR assays. We identify amplicons 
with extremely low methylation levels < 2.5% in normal 
tissues, conserved hypermethylation in diverse tumors 
and abundant MSRE sites. Furthermore, we demonstrate 
the feasibility of using these identified target regions in a 
multiplexed MSRE-PCR assay in an independent cohort 
of genomic DNAs from diverse tumors and normal tissues 
derived from lung, breast, stomach, colon and blood. This 
strategy may provide a path for sensitive and specific 
assays for non-invasive cancer diagnostics.

RESULTS

Identification of cDMRs

To identify cancer-associated Differentially 
Methylated Regions (cDMRs), publicly available WGBS 
datasets from a diverse cohort of normal tissues and 
tumors were analyzed (Table 1). The normal samples used 
in this analysis were comprised of 5 different tissue types 
(liver, lung, breast, colon and blood-derived B-cells) in an 
effort to simulate the epigenetic diversity in methylation 
patterns that would be seen in normal DNA. The cancer 
samples were equally diverse representing lung, liver and 

colon primary tumors as well as cell lines derived from 
prostate and breast tumors. In total, 18 WGBS samples 
representing normal tissues (n = 9) and diverse primary 
tumors and tumor cell lines (n = 9) were obtained from 
the NCBI Sequence Read Archive (SRA) database. In an 
effort to maximize sequencing coverage and interrogate 
as much of the genome as possible, multiple runs for 
individual biological samples were combined to yield 
an average coverage that exceeded 11-fold. The 48 
SRA runs encompassed in this analysis are detailed in 
Supplementary Table 1.

Global CpG methylation characteristics

The global genomic CpG methylation levels and 
patterns in this cohort were characterized to understand 
the context of differential methylation. Comparing global 
CpG methylation levels between the cancer and normal 
samples, the percent methylation in the cancer samples 
was significantly lower and more variable than the 
normal sample group (p = 0.005). The normal samples 
had a mean CpG methylation of 67.4%, compared to 
54.5% in the cancer samples (Figure 1A). Consistent with 
the variability observed in the global CpG methylation 
levels in the cancer samples, principal component 
analysis (PCA) and Pearson’s correlation analysis also 
indicated that the cancer samples were more diverse, 
with the normal samples having an average Pearson’s r 
= 0.77 versus 0.67 in the cancers (Figure 1B and 1C). 
Despite the diversity of tissue and tumor types in this 
WGBS discovery cohort, clustering based on global CpG 
methylation grouped the majority of the cancer samples 
together (Figure 1D).

Identification of cDMRs

Identification of cDMRs was conducted with 
Metilene [14] using parameters optimized for the 
identification of regions that would be in a size range 
suitable for PCR and have multiple differentially 
methylated CpGs. This analysis yielded 195,590 cDMRs, 
the majority of which were hypomethylated in cancer 
(95%), consistent with the lower overall level of CpG 
methylation observed in the cancer sample group relative 
to normal (Figure 2A). The genomic location of both the 
hypermethylated and hypomethylated cDMRs appeared 
relatively evenly distributed across the chromosomes 
(Figure 2B). The average size of the identified cDMRs 
was 885 nt with a mean of 33 CpGs, although some 
regions exceeded 5 kb with over 200 CpGs (Figure 2C). 
The more prevalent hypomethylated cDMRs also had 
a greater maximum methylation difference, with some 
cDMRs exceeding a mean methylation difference of 60%, 
compared to a maximum of 48% for the less abundant 
hypermethylated cDMRs (Figure 2D). 
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Identification of target regions for MSRE-PCR

The optimal target region for selective amplification 
of tumor-derived DNA via MSRE-PCR is a a region 
methylated in cancer and unmethylated in normal, as this 
allows for the selective digestion of normal DNA with 
restriction enzymes that are inhibited by CpG methylation 
in the recognition site. With these considerations in 
mind, the 10,019 hypermethylated cDMRs were filtered 
for those with a mean methylation less than 2.5% in the 
normal samples, yielding 1,294 target hypermethylated 
cDMRs (target regions) (Figure 3A and 3B). As a group, 
the target regions had an average methylation level of 
1.5% in the normal samples and 18.6% in the cancers 
(Figure 3C). The target regions, with an average length 
of 308 nt and 34 CpGs were smaller and more CpG-dense 
than the unfiltered cDMRs.

Target regions had multiple methylation-
sensitive restriction sites

The selective amplification of target regions via 
MSRE-PCR requires the presence of MSRE recognition 
sites that allow for the selective digestion of unmethylated 
DNA. Here we focused on 5 MSREs: HhaI, HpaII, 
HpyCH4IV, AciI and BstUI, as each of these enzymes 
have a 4 base pair (bp) recognition sequence containing 
CpG and thus sites for these MSREs should be relatively 
abundant in CpG-rich regions. Indeed, all of the target 

regions had one or more of these 5 MSRE recognition sites 
(Figure 4A). The target regions had on average 19 MSRE 
sites and 34 CpGs and thus more than half of the individual 
CpGs in these target regions were within recognition sites 
of one of the five MSREs. The relationship between the 
number of CpGs in the target regions and the number of 
MSREs was linear (R2 = 0.89, p < 0.0001) (Figure 4B). 

Target regions were primarily in promoters and 
CpG islands

Target regions were not selected based on genomic 
context or proximity to known genes, rather on optimal 
amplicon characteristics that would allow for the most 
selective amplification via MSRE-PCR. These features 
included size, number of CpGs, low background 
methylation in normal tissues, and significant methylation 
across a diverse spectrum of tumor samples. Since the 
methodology was unbiased with respect to genomic 
features, we chose to look at the genomic context of the 
DMRs and selected target regions with respect to known 
genes, transcripts, CpG islands and shores flanking 
the CpG islands. The hypomethylated DMRs were 
located primarily in intergenic regions with only 5% in 
gene promoters, whereas the hypermethylated DMRs 
occurred primarily in promoters (Figure 5A). The target 
regions, which were a subset of the hypermethylated 
DMRs, showed an even more pronounced enrichment for 
promoter regions with 81% of the 1,294 target regions 

Table 1: WGBS samples used in this study

Sample Type Name SRA Sample 
and Reference Description SRA Runs Mbytes Reference

Normal 
Tissues

N3 SRS1351498 normal liver 2 22,600 [36]
N4 SRS1352201 normal liver 2 12,108 [36]
N5 SRS1352208 normal lung 1 20,202 [36]
N6 SRS1353345 normal lung 1 26,014 [36]
N7 SRS1353348 normal lung 1 12,576 [36]
N8 SRS1352204 normal liver 1 24,195 [36]
N9 SRS505928 normal colon 5 27,840 [37]
N10 SRS505949 normal B-cells 3 36,975 [37]
N11 SRS505934 normal breast 5 29,531 [37]

Tumors and 
Tumor Cell 
Lines

C3 SRS1352199 liver tumor 2 16,983 [36]
C4 SRS1352202 liver tumor 2 13,510 [36]
C5 SRS1353344 lung tumor 1 20,783 [36]
C6 SRS1353347 lung tumor 2 24,795 [36]
C7 SRS1353349 lung tumor 1 12,894 [36]
C8 SRS1352206 liver tumor 2 24,173 [36]
C9 SRS505929 colon tumor 6 36,391 [37]
C10 SRS505931 prostate cancer cell line 6 38,854 [37]
C11 SRS505933 breast cancer cell line 5 42,117 [37]
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located in the promoter. The mean distance to the promoter 
was 57 nt, with 39% of the target regions overlapping the 
Transcription Start Site (TSS) (Supplementary Figure 1). 

Target regions were located almost exclusively in 
CpG islands (97%) whereas a lower fraction (84%) of the 
hypermethylated DMRs were in CpG islands (Figure 5B). 
This contrasted with the hypomethylated DMRs, 94% 
of which were located in other regions outside of CpG 
islands and shores.

Target regions were enriched for neuronal genes

Promoter methylation in cancer is largely regarded 
as being associated with repressive chromatin marks and 
gene silencing [3]. Since the vast majority of target regions 
were located in the promoter and 39% overlapped the TSS 
of known genes, we looked at the function and cellular 
location of the gene products encoded by the genes closest 
to the target regions to gain insight into the biological 
context of the cancer-associated differential methylation 
observed in these regions. Some of the target regions 

were adjacent to each other and/or closest to the same 
gene. Consequently, annotating the 1,293 target regions 
for the closest genes and then removing redundancies 
resulted in a reduced list of 562 genes, 39% of which 
overlapped with the TSS. Functional enrichment analysis 
using Gene Ontology (GO) molecular function showed 
significant enrichment for DNA-binding transcription 
factor activity (FDR-corrected p-value 4.3e-11). Analysis 
of GO:biological processes and GO:cellular components 
showed concordant enrichment of neuronal function, with 
significant biological process terms being dominated by 
neuronal differentiation (FDR-corrected p-value 3.9e-
14), generation of neurons (FDR-corrected p-value 
6.1e-14), and the top cellular component terms being 
glutamatergic synapse (FDR-corrected p-value 1.6e-15) 
and synaptic membrane (FDR-corrected p-value 3.1e-13). 
Since there were a large number of significant GO terms 
identified, the list of terms was further analyzed in Revigo 
to summarize clusters of semantically similar GO terms 
[15]. This analysis also underscored the neuronal theme 
with the most significant cluster terms being neuronal 

Figure 1: Global methylation characteristics in the WGBS dataset. (A) Percent methylation in the sample groups: normal (n = 
9) and cancer (n = 9). (B) CpG methylation PCA analysis. Cancer samples are shown in red and normal samples are in blue. (C) Pearson 
correlation plot of global CpG methylation. (D) CpG methylation clustering; distance method: correlation, clustering method: ward.
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differentiation for GO:biological process and synapse for 
GO:cellular component (Figure 6A and 6B).

Hierarchical clustering

Unsupervised hierarchical clustering of the mean 
methylation in the target regions across the samples shows 
that hypermethylation of many of these target regions were 
shared across multiple tumor samples and cancer types, 

yielding a clustering of the the cancer samples together, 
distinct from the normal samples which exhibit only low 
levels of methylation in these regions (Figure 7). 

Multiplexed MSRE-PCR

To test the suitability of the target regions for 
MSRE-PCR based cancer detection, a multiplexed MSRE-
PCR assay was developed and tested on genomic DNAs 

Figure 2: Cancer-associated Differentially Methylated Regions (cDMRs) (A) The majority (95%) of the cDMRs are hypomethylated with 
only 5% hypermethylated in cancer. (B) Chromosomal distribution of hypermethylated and hypomethylated cDMRs (C) Scatterplot of 
cDMR length versus number of CpGs, with the density of points indicated via heatmap. (D) Volcano plot of the cDMRs showing the mean 
methylation difference versus the -log10 q-value. Hypermethylated cDMRs with a q-value < 0.05 and mean methylation difference > 25% 
are indicated in red and hypomethylated cDMRs in green.

Figure 3: Selection of target regions. (A) The 195,590 cDMRs are separated into hypomethylated (n = 185,571) and hypermethylated 
(n = 10,019). The hypermethylated cDMRs are filtered for hypermethylated target regions with a mean methylation level < 2.5% in the 
normal samples, yielding 1,294 target regions. (B) A scatterplot of all 195,590 cDMRs showing the percent methylation in normal tissues 
versus the percent methylation in the cancer samples. The red line shows a mean methylation level = 2.5% in the normal samples. The 1,294 
cDMRs passing the filtering criteria (target regions) are shown in red. (C) Average methylation levels in the target regions is 1.5% in the 
normal samples (n = 9) and 18.6% in the cancer samples (n = 9).
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derived from tumors and normal tissues. The target regions 
were sorted based on q-value and PCR primers for a panel 
of 47 target amplicons and 3 controls were designed for a 
multiplexed MSRE assay (Supplementary Table 2). The 
MSRE assay was carried out by first digesting the DNA 
samples with 5 MSREs followed by multiplexed end-point 
PCR with the panel of 50 primer pairs. Quantitation of 
the individual amplicons was carried out by sequencing 
the amplification products, quantitating mapped reads and 
normalizing to an internal control amplicon that was not 
differentially methylated in the WGBS discovery cohort 
and thus predicted to amplify consistently across sample 
types with diverse methylation patterns (Supplementary 
Table 2). 

The performance of the multiplexed MSRE-PCR 
assay was assessed on an independent, diverse cohort of 
genomic DNA samples (n = 100) encompassing tumor 
and normal samples from lung, breast, stomach and colon 
as well as normal peripheral blood leukocytes (Table 2 
and Supplementary Table 5). This independent cohort 
of DNAs is comprised of different samples than were in 
the WGBS discovery cohort and notably contains several 
tissue types that were not encompassed in discovery cohort 
including peripheral blood leukocytes, normal stomach 
tissue and stomach tumors. The dataset was randomly 
partitioned into training (n = 50) and testing (n = 50) sets 
for predictive modeling. 

The performance of the multiplexed MSRE-PCR 
assay in the training set was assessed by comparing the 
relative levels of amplification in the two sample groups. 
Amplicons with fewer than 10 reads per sample on 
average were removed from the analysis (n = 12) leaving 
35 amplicons. As shown in the volcano plot in Figure 8A, 
all 35 of the amplicons had > 2-fold elevated amplification 
in the tumor DNA samples relative to the normal tissue 
DNA samples, with 27 exhibiting > 10-fold. Most of the 
amplicons (21/35) of exhibited significant elevation in 

tumor samples (FDR corrected p-value < 0.05, Mann-
Whitney U Test). Visualization of these 21 amplicons via 
hierarchical clustering shows that most of the tumor DNA 
samples have elevated amplification levels of multiple 
amplicons relative to the normal tissue DNAs (Figure 
8B). Additionally, none of the amplicons are specific for a 
single tumor type; most are broadly elevated in a subset of 
samples across the four tumor types surveyed here: breast, 
lung, colon and stomach tumors. The Receiver Operating 
Characteristic (ROC) area under the curve (AUC) for 
individual amplicons in the training set ranged from 0.54 
to 0.89, with 9 amplicons having an AUC > 0.8 in the 
training set (Supplementary Table 6).

MSRE-PCR panel modeling and prediction of 
cancer status

The MSRE-PCR training set (n = 50) was used to 
develop a predictive model and also explore the minimum 
number of amplicons that are required to accurately 
classify sample DNAs as either tumor or normal tissue. 
The R package glmnet [16] was used to develop a 
logistic regression model using a lasso penalty for feature 
selection. This analysis yielded a 7-marker model that 
performed with a ROC AUC in the training set of 0.97 
(95% CI [0.92, 1]). The performance of this 7-marker 
model was validated in the independent test set (n = 50), 
yielding an AUC of 0.93 (95% CI [0.84, 1]) (Figure 9). 
The 7 markers used in this model correspond to amplicons 
that are contained within the gene or upstream promoter 
regions of ANKRD33B, CHST2, SPON1, PPP2R5C, 
KCNG2, KIAA1522 and TH2LCRR. 

Visualization of a representative target region in 
the ANKRD33B gene is shown in Figure 10A. Three 
identified hypermethylated cDMRs are shown, with the 
WGBS tracks illustrating the promoter hypermethylation 
in the cancer samples and the relatively low levels of 

Figure 4: Methylation sensitive restriction sites in target cDMRs. Five MSREs are considered here: HhaI, HpaII, HpyCH4IV, 
AciI and BstUI. (A) Histogram of the number of MSRE sites in the target regions. (B) Scatterplot of the number of MSRE sites versus the 
number of CpGs in the target regions showing a linear relationship (R2 = 0.89, p < 0.0001).



Oncotarget4393www.oncotarget.com

methylation in the normal tissues in the discovery cohort. 
Figure 10B shows a close-up of the 106-bp MSRE-PCR 
amplicon within a target region in the ANKRD33B gene 
containing 9 CpGs, 7 of which overlap with an MSRE site. 

DISCUSSION

Here we describe the identification of cDMRs 
in diverse tumor types using publicly available WGBS 
data and further define a set of 1,294 target regions with 
optimal characteristics for MSRE-PCR-based detection 
of tumor DNA. The utility of these target regions in the 
context of MSRE-PCR is shown here with a multiplexed 
assay demonstrating that all 35 amplicons were > 2-fold 
elevated in tumor-derived DNA relative to normal tissue 
DNA. In a diverse cohort of tumor and normal tissue 
DNAs, most of the individual MSRE-amplicons (21/35) 
showed significantly elevated amplification in tumor-
derived DNA versus normal (FDR-corrected p < 0.05). 
Furthermore, despite the diversity of tumor and tissue 

types in the MSRE-PCR cohort, a logistic regression 
model using 7 of the amplicons distinguished between 
tumor versus normal tissue with an AUC of 0.97 in the 
training set and 0.93 in the independent test set. This result 
underscores the conservation of hypermethylation in these 
regions across diverse tumor types and also demonstrates 
the utility of using MSRE-PCR to detect tumor-derived 
DNA.

In the analysis of the WGBS discovery cohort, 
we observed that overall CpG methylation levels were 
lower and more variable in the tumors and this global 
loss of methylation was punctuated by local regions of 
hypermethylation, an observation consistent with multiple 
reports in the literature [2, 17]. We further defined target 
regions for MSRE-PCR, a subset of the hypermethylated 
cDMRs that had low background methylation in normal 
tissues. Although the WGBS methodology used to identify 
targets was genome-wide with an average of 11-fold 
coverage and hence relatively unbiased with respect to 
genomic features, we observed significant enrichment 

Table 2: Genomic DNA samples used in MSRE-PCR assay
Tissue Tumors Normal
Lung 12 8
Breast 12 8
Colon 12 8
Stomach 12 8
Peripheral Blood Leukocytes 0 20

Figure 5: Target regions are enriched for promoter regions and CpG Islands. (A) hypomethylated cDMRs, hypermethylated 
cDMRs, and target regions, a subset of the hypermethylated cDMRs, are annotated with gene parts: promoter, exon, intron or intragenic. 
81% of target regions are in promoters. (B) cDMRs are annotated with respect to CpG Islands (CpGi), shores or other. 97% of target regions 
are in a CpGi.
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Figure 6: Genes closest to or overlapping target regions are enriched for Neuronal genes. (A) GO: Biological Process terms 
visualized in a semantic similarity-based scatterplot derived in Revigo indicates that neuron differentiation is the most significant term. (B) 
The most significant GO: Cellular Component terms are synapse and synapse part.

Figure 7: Unsupervised hierarchical clustering of target region methylation in all 18 WGBS samples used in this 
analysis. Percent methylation is indicated with the color gradient.
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of target regions in gene regulatory regions with 81% in 
promoters and 97% in CpG islands. Furthermore, these 
target regions were very proximal to, or overlapping the 
TSS with a mean distance of 57nt and 39% overlapping 
the TSS. This was in stark contrast to the hypomethylated 
DMRs with only 5% in promoters and only 2% in 
CpG islands, perhaps reflecting the global loss of CpG 
methylation that is observed in these tumor samples. 

A recent study that explored the correlation of 
methylation, transcription and chromatin structure found 
that in normal tissues, methylation 1 kb upstream of 
the TSS was most correlated with gene silencing, but 
in cancer, there was a shift to the TSS [18]. Given that 
the target regions described here were primarily in the 
promoter region and overlapping or close to the TSS, it is 
reasonable to hypothesize that these genes are likely being 
silenced in cancer. 

Despite the diversity of normal tissue types in the 
WGBS discovery cohort, the MSRE-PCR target regions 
identified here were nearly universally unmethylated, with 
an average methylation within these CpG dense region of 
only 1.5%. The very low levels of methylation in these 
regions in normal tissues suggest that there are stringent 
and vigilant mechanisms in place to keep these regions 
clear of methylation marks. The hypermethylation of these 
target regions in cancer thus represents a departure from 
a precisely maintained unmethylated state and indicates a 
change that is generally conserved to some extent across 
the diverse tumor types used in this study. This evidence 
suggests that the genes associated with these target regions 

were acquiring epigenetic marks in cancer that are likely 
silencing these genes - changes that may well be relevant 
to oncogenic transformation and/or disease progression.

 The set of genes closest to or overlapping the target 
regions showed a significant enrichment in neuronal 
development and synapse function which underscore a 
neuronal theme to this set of target genes. Interestingly, 
it has been reported that the neurofilament genes NEFH, 
NEFL and NEFM, gene products that comprise the 
major cytoskeletal component of neurons, are frequently 
silenced via promoter methylation in a variety of cancers 
including breast, pancreas, gastric and colon and this gene 
inactivation is correlated with disease progression and 
adverse clinical parameters [19]. Reintroducing NEFH 
expression in breast cancer cells reduced invasiveness, 
suggesting that expression of neuronal filaments in cancer 
induced a rearrangement of the cytoskeleton that reduced 
motility and migration. Another study showed that 
inhibition of epigenetic modification enzymes, including 
DNA methyl transferases (DNMTs), induced a post-
mitotic, neuronal-like terminal differentiation in different 
types of cancer cells [20]. These studies, taken together 
with the targeted promoter methylation of neuronal-
related genes shown here, underscore an emerging 
pattern of tumor-associated silencing of neuronal genes, 
a mechanism which may facilitate the maintenance of an 
undifferentiated, proliferative state with the oncogenic 
characteristics of mobility and invasiveness.

The target regions identified here are not only 
differentially methylated in tumors versus normal tissues, 

Figure 8: Multiplexed MSRE-PCR of the target regions in genomic DNAs from diverse tumors versus normal tissue. 
(A) Volcano plot of -log10 FDR-corrected p-values (Mann-Whitney U test) versus log2 fold-change in the training set. All 35 amplicons 
have a linear fold-change > 2 fold elevated in the tumor DNA samples (indicated with the vertical dotted black line). The 21 amplicons with 
FDR corrected p-value < 0.05 (horizontal dotted red line) are indicated with red points. The 6 amplicons with the lowest p-values in the 
training set are labeled with the gene symbol for the overlapping gene or promoter region. (B) Hierarchical clustering of the 21 amplicons 
with FDR corrected p-value < 0.05 in the training set with the color indicating the relative level of amplification. The heatmap is supervised 
in the x-dimension, with samples arranged by tissue type (Br: breast, LU: lung, Co: colon, St: stomach, Bl: blood) and unsupervised in the 
y-dimension, with amplicons labeled by the gene symbol of the overlapping gene or promoter region. 
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but also have the unique characteristic of very low average 
methylation levels < 2.5% in normal tissues. In the context 
of MSRE-PCR, this hypomethylation status in normal 
DNA in theory allows for the nearly complete digestion 
of normal DNA, as only methylated MSRE sites will be 
protected from digestion. Furthermore, in addition to an 
extremely low levels of methylation in normal tissues, each 
amplicon contains multiple CpGs that are interrogated by 
one of the MSREs. For successful amplification, all of the 

MSRE sites on a single molecule need to be methylated and 
protected from digestion for amplification of that molecule 
to proceed. Thus, the hypomethylation in normal tissues 
taken together with multiple MSRE sites within these 
regions should facilitate the digestion of the normal DNA 
relative to tumor-derived DNA and consequently enhance 
the specificity of the assay. Indeed, here we observed that 
all 35 amplicons tested in the multiplexed MSRE-PCR 
assay exhibited > 2-fold elevated amplification in the 

Figure 9: Receiver operating characteristic (ROC) curves of the 7-marker logistic regression model in distinguishing 
between tumor and normal tissue DNA. The performance of the model in the training set (n = 50) is shown in red (AUC = 0.97, 95% 
CI: 0.92–1) and the independent test set is shown in black (AUC = 0.93, 95% CI: 0.84–1). 

Figure 10: IGV visualization of the WGBS discovery cohort showing hypermethylated cDMRs and the location of 
an amplicon in the ANKRD33B gene. Percent methylation for individual CpGs is indicated with bar graphs for each of the cancer 
samples (maroon) and normal tissue samples (blue) used in the WGBS data analysis. (A) The location of 3 hypermethylated cDMRs in 
the promoter and gene body of ANKRD33B is indicated with the red rectangles in the cDMR track and the location of the MSRE-PCR 
amplicon is shown in blue in the Amplicon track. (B) A zoomed-in view of the MSRE-PCR amplicon shows the position of the individual 
CpGs (grey) and MSRE sites (red) within this 106 bp amplicon.
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tumor samples, with the majority of the amplicons (27 of 
35) exhibiting > 10-fold elevation.

The multiplexed MSRE-PCR feasibility study on 
diverse tumor and normal tissue genomic DNAs reported 
here identified 21 genes with significantly elevated 
amplification in this assay and further defined a 7-marker 
logistic regression model that distinguished between tumor 
and normal tissue with an AUC of 0.94 in the independent 
test set. The 7 markers used in this model correspond to 
amplicons contained within the gene or promoter region 
of ANKRD33B, CHST2, SPON1, PPP2R5C, KCNG2, 
KIAA1522 and TH2LCRR. Consistent with the neuronal 
theme identified in the gene set enrichment analysis, 
SPON1 is a cell-surface adhesion molecule involved 
in sensory neuron attachment; its expression has been 
associated with metastatic progression in osteosarcomas 
[21]. Both PPP2R5C and KIAA1522 have also been 
associated with cancer progression and/or prognosis. 
PPP2R5C encodes an isoform of the B regulatory subunit 
of protein phosphatase 2A, a serine/threonine phosphatase 
widely implicated in the regulation of mitogenic pathways 
[22]. Aberrant expression of KIAA1522 has been 
observed in non-small cell lung cancer and is associated 
with poor outcome [23]. ANKRD33B, encoding ankyrin 
repeat domain 33B, has been shown to be differentially 
methylated in fetal lung in association with nicotine 
exposure in utero [24]. 

The multiplexed MSRE-PCR assay described 
here interrogated 35 target regions using endpoint PCR 
and quantitated amplification via sequencing. While 
this strategy is convenient to assess many amplicons 
simultaneously, the relatively small number of 
features required for sample classification enables the 
development of a qPCR-based assay that interrogates 
fewer target regions in individual qPCR reactions or as 
a multiplexed reaction with fluorescent reporter probes. 
In the multiplexed MSRE-PCR assay described here, 
there is some variability in the performance of the 
individual amplicons, with some showing only modest 
levels of elevated amplification in tumor DNA samples. 
The relatively poor performance of some amplicons may 
be attributable to the challenges of moving from the 
WGBS platform to a PCR platform along with variable 
amplification efficiencies in these GC-rich regions, 
particularly in the context of a highly multiplexed 
amplification reaction. While the multiplexed endpoint 
MSRE-PCR assay showed that 27 of the 35 target regions 
had > 10-fold elevated amplification in the tumor DNA 
samples, this fold-change may well be enhanced by 
utilizing a qPCR strategy that quantitates amplification 
in real time. The robust elevated amplification of tumor 
DNA observed here in genomic DNA samples lays 
the foundation for applying multiplexed MSRE-PCR 
strategies for the detection of tumor DNA in more complex 
sample types such as cfDNA in blood, where the fraction 
of tumor-derived DNA may be limiting.

While this study included multiple normal tissue 
and tumor types, it is nevertheless limited in the scope 
of tumor types examined, with the cohort for the MSRE-
PCR assay encompassing breast, stomach, lung, and colon 
tumors. While this cohort is diverse, it is by no means 
comprehensive and thus the utility of the MSRE-PCR 
assay defined here and the conservation of the cDMRs 
in a large and more comprehensive cohort remains to be 
investigated. 

The data presented here define genomic target 
regions for MSRE-PCR detection of tumor DNA and 
establish the utility of these target regions in a multiplexed 
MSRE-PCR assay. MSRE-PCR enables the selective 
amplification of hypermethylated tumor-derived DNA 
while avoiding harsh bisulfite treatment and thus is a 
strategy ideally suited for the challenges of non-invasive 
detection. The hypermethylated MSRE-PCR target regions 
defined here may be useful in the development of non-
invasive tests for tumor detection and/or monitoring.

MATERIALS AND METHODS

WGBS data analysis

WGBS raw data was obtained from the NCBI 
Sequence Read Archive (SRA) database [25]. 48 
individual SRA runs representing 18 biological samples 
were analyzed (Table 1 and Supplementary Table 1). 
Multiple runs for the same biological sample were 
combined to optimize coverage. The SRA Toolkit [25] 
was used to extract fasta files and fastQC [26] was used to 
asses the quality of the raw data. Poor quality sequences 
and adapters were trimmed with Trimmomatic [27] and 
the quality of the trimmed reads was assessed with fastQC. 
The bisulfite converted reads were mapped to hg38 and 
CpG methylation calls were extracted using Bismark [28]. 
Differentially methylated Regions (DMRs) were identified 
with Metilene [14], filtering the output for minimum 
mean methylation difference of 0.15, minimum size of 
80 nucleotides and Q-value < 0.01. Summary figures 
and annotation of DMRs was performed in R using the 
package methylKit [29]. Target regions were defined as 
hypermethylated DMRs with a mean methylation < 2.5% 
in normal samples. 

MSRE-PCR

PCR primers were designed using Benchling [30] 
with the considerations that the amplicons have at least 
2 MSRE sites, an amplicon size < 150 bp and PCR 
primer melting temperatures of approximately 61 degrees 
(Supplementary Table 3). Descriptive characteristics of the 
47 target regions and 3 controls in the multiplexed MSRE-
PCR panel such as the genomic coordinates and the 
number of CpGs and MSRE sites within each amplicon 
is detailed in Supplementary Table 2. Genomic DNA 
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samples from lung, breast, stomach and colon tumors and 
normal tissues were obtained from Biochain (Newark, CA, 
catalog numbers D8235152-1, D8235086-1, D8235090-
1, D8234148-1, D8235248-1) (Supplementary Table 5). 
Oligonucleotides were synthesized at IDT (Coralville, 
Iowa). DNA samples (20 ng) were digested with 5 Units 
each of 5 MSREs: HhaI, HpaII, HpyCH4IV, AciI and 
BstUI, all from New England Biolabs (Ipswich, MA). 

The amplification of the multiplexed panel was 
done in several steps, incorporating a hybrid selection 
step to enrich for target sequences and minimize off-target 
amplification. Briefly, 5 ng of digested genomic DNA 
was subjected to 10 cycles (94°C 3 min [95°C 30 s, 61°C 
30 s, 72°C 30 s] × 10) of multiplexed PCR amplification 
using the 50 MSRE-PCR primer pairs and Platinum 
II Hot-Start Green PCR Master Mix (ThermoFisher 
Scientific). The preamplification reaction was hybridized 
to a pool of 50 biotinylated oligonucleotides (custom 
IDT xGen Lockdown probe pool, Supplementary 
Table 4) complimentary to internal sequences within each 
amplicon. The xGen Hybridization and wash kit (IDT, 
Coralville, Iowa) was used for target enrichment according 
to the manufacturer’s protocol. After hybrid selection, the 
magnetic beads containing the captured target amplicons 
were resuspended in 10 uL of dH2O and 5 uL was used 
in a 20 uL amplification reaction with the 50 multiplexed 
MSRE primer pairs for 35 cycles (94°C 3 min [95°C 30 s, 
61°C 30 s, 72°C 30 s] × 35). 

Amplification products were sequenced on the 
Illumina platform at Genewiz (South Plainfield, NJ, 
USA) at a depth of 50,000 reads per sample. FastQC was 
used to assess the quality of the raw data. Adapters and 
poor quality sequences were trimmed with Trimmomatic. 
Reads were mapped using Bowtie2 [31] and quantitation 
of reads mapping to the target regions was carried out 
using Samtools [32]. Samples were normalized to an 
internal control amplicon (Control3) corresponding to a 
genomic region that was not differentially methylated in 
the WGBS discovery cohort (Supplementary Table 2). 
Digestion by the MSREs was assessed using a different 
control amplicon (Control1) that had MSRE sites and 
was consistently unmethylated across sample types in the 
WGBS discovery cohort and thus would be predicted to 
be completely digested. Statistical analysis was carried 
out in R [33] and heatmaps were generated using the 
R package ComplexHeatmap [34]. Summary statistics 
from the multiplexed MSRE-PCR assay are available in 
Supplementary Table 6. Summary statistics for the 1,294 
target regions are in Supplementary Table 7.

Predictive modeling and validation

The MSRE-PCR data was randomly partitioned into 
training (n = 50) and testing (n = 50) sets and the R package 
glmnet [16] was used to fit a logistic regression model 
on the training set, employing a lasso penalty controlled 

by the tuning parameter lambda. The optimal value of 
lambda was determined by K-fold cross-validation with the 
parameters family set to “binomial”, the number of folds set 
to 3 and ROC AUC as the type of measurement for model 
evaluation. The largest value of lambda which yielded an 
AUC within one standard error of the maximum AUC was 
chosen, yielding a logistic regression model with 7 markers 
(Supplementary Table 5). The 7-marker model was validated 
on the independent test set and ROC AUC and confidence 
intervals were determined using the pROC R package [35].

Data accessibility

The WGBS data used in this study was accessed 
from the NCBI SRA database. Individual accessions 
used in this study are detailed in Supplementary Table 1. 
Oligonucleotide sequences used for PCR and hybrid 
selection are available in Supplementary Tables 2 and 3. 
MSRE-PCR data is available upon request.
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