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Although several prognostic signatures have been developed for gastric

cancer (GC), the utility of these tools is limited in clinical practice due to

lack of validation with large and multiple independent cohorts, or lack of

a statistical test to determine the robustness of the predictive models. Here,

a prognostic signature was constructed using a least absolute shrinkage

and selection operator (LASSO) Cox regression model and a training data-

set with 300 GC patients. The signature was verified in three independent

datasets with a total of 658 tumors across multiplatforms. A nomogram

based on the signature was built to predict disease-free survival (DFS).

Based on the LASSO model, we created a GeneExpressScore signature

(GESGC) classifier comprised of eight mRNA. With this classifier patients

could be divided into two subgroups with distinctive prognoses [hazard

ratio (HR) = 4.00, 95% confidence interval (CI) = 2.41–6.66, P < 0.0001].

The prognostic value was consistently validated in three independent data-

sets. Interestingly, the high-GESGC group was associated with invasion,

microsatellite stable/epithelial–mesenchymal transition (MSS/EMT), and

genomically stable (GS) subtypes. The predictive accuracy of GESGC also

outperformed five previously published signatures. Finally, a well-per-

formed nomogram integrating the GESGC and four clinicopathological fac-

tors was generated to predict 3- and 5-year DFS. In summary, we describe

an eight-mRNA-based signature, GESGC, as a predictive model for disease

progression in GC. The robustness of this signature was validated across

patient series, populations, and multiplatform datasets.

1. Introduction

Gastric cancer is the fourth most common malignancy

worldwide despite the decreasing incidence over the

past decades in western countries (Torre et al., 2015).

In Asian countries, GC is still one of the leading rea-

sons of cancer mortality. Most GC patients are identi-

fied at an advanced stage at the time of first diagnosis.

Up to now, the established TNM staging system has

been regarded as the best predictor of survival.

Patients with stage I disease have a relatively good

prognosis, whereas those with stage IV have a rela-

tively poor prognosis. However, GC with the same

stage might also have different prognoses because of

the inherent clinical and molecular diversities of this

cancer (Noh et al., 2014; Stahl et al., 2015). Thus, new
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valuable and sufficient strategies are needed to predict

prognosis and further guide individual treatment in GC.

Recent studies have provided numerous prognostic

gene expression signatures for GC (Chen et al., 2005;

Cho et al., 2011; Kim and Rha, 2009; Leung et al.,

2004; Setoguchi et al., 2011; Takeno et al., 2010;

Wang et al., 2016b; Xu et al., 2010; Yamada et al.,

2008; Yamaguchi et al., 2008). However, several cru-

cial limitations should be noted. Some did not have

enough sample sizes, and this might decrease the relia-

bility of statistical conclusions (Xu et al., 2010;

Yamada et al., 2008). Moreover, some signatures have

not been applied to clinical practice mainly because of

the lack of validation datasets to prove robustness

(Kim and Rha, 2009; Yamaguchi et al., 2008). Fur-

thermore, the statistical models applied in these studies

might be unstable and fail to ensure low covariation

among the numerous genes involved (Cho et al., 2011;

Wang et al., 2016b). Last but not least, most signa-

tures have not been successfully tested using more than

two detection technologies (Chen et al., 2005; Kim

and Rha, 2009; Leung et al., 2004; Takeno et al.,

2010). Thus, we have focused on addressing these

restrictions in this research. We have analyzed nearly

1000 GC specimens from different populations. Our

conclusions were validated in three independent data-

sets, proving the robustness of the predictive value of

the signature. Moreover, these datasets were processed

by multiplatform technologies, including microarrays,

RNA sequence, and qRT-PCR. Finally, a least abso-

lute shrinkage and selection operator (LASSO) Cox

regression model was used to construct the signature.

LASSO has been extensively applied to a Cox propor-

tional hazard regression model for survival analysis

with high-dimensional data (Jiang et al., 2016; Zhang

et al., 2013). It has been used for optimal selection of

features in high-dimensional microarray data with a

robust prognostic value and low correlation among

data to avoid overfitting (Tibshirani, 1997). Here, we

report the development and validation of a

GeneExpressScore signature, GESGC, for predicting

survival of GC after surgery.

2. Materials and methods

2.1. Patients and tumor samples

In all, 978 GC samples from five independent datasets

were analyzed in this research, including four datasets

from Gene Expression Omnibus (GEO), one dataset

from The Cancer Genome Atlas (TCGA), and one

cohort from RenJi Hospital. To maintain consistency,

all of the datasets from GEO were processed using the

same chip platform (Affymetrix Human Genome U133

Plus 2.0 Array, Santa Clara, CA, USA) which has

been extensively used for transcriptome analysis and

has numerous advantages. This chip platform com-

prises 54 675 features and has high accuracy and

reproducibility for each transcript. Initially, differential

tests were performed on 10 paired GC and adjacent

normal mucosa tissues (GSE79973). The training data-

set consisted of gene expression data from 300 GC

samples (GSE62254) (Cristescu et al., 2015). Similarly,

validation dataset I was comprised an adequate num-

ber (192) of GC samples (GSE15459) (Ooi et al.,

2009). Additionally, validation dataset II contained

406 GC samples accessed from TCGA (level III gene

expression data, combining published and provisional

GC samples, https://genome-cancer.ucsc.edu/). Finally,

validation dataset III (Renji cohort) contained 60 fresh

frozen primary GC samples consecutively collected at

Shanghai Renji Hospital from January 2000 to Jan-

uary 2005.

The study was approved by the ethics committee of

Shanghai Jiao Tong University School of Medicine,

Renji Hospital. Written informed consent was

obtained from patients enrolled in the study. The

study conformed to the provisions of the Helsinki

Declaration. None of the patients had received radio-

therapy or chemotherapy prior to surgery. The tissue

samples comprised at least 70% tumor cells. The med-

ian follow-up time for survivors was 25.5 months

(range 4–76).

2.2. Total RNA extraction and qRT-PCR analysis

RNAiso Plus (Takara, Tokyo, Japan) was used to

extract total RNA from 60 GC tissues (validation

dataset III, Renji cohort) according to the manufac-

turer’s protocol. Reverse transcription was performed

using the PrimeScript RT Reagent Kit (Takara). An

ABI Prism 7900HT Sequence Detection System

(Applied Biosystems, Foster City, CA, USA) was

applied to perform the quantitative PCR by using

SYBR Premix Ex Taq II (Takara). The expression of

eight genes of the GESGC was normalized by ACTB

(b-actin), acting as an internal control. Expression

levels of each gene were determined by the �MCT

approach (MCT = CT mRNA � CT ACTB RNA). The

primers of candidate genes are shown in Table S1.

2.3. Development and validation of the GESGC

Several signatures have been successfully constructed

based on candidate biomarkers that are differentially

expressed between tumor and adjacent normal tissues
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(Huang et al., 2012; Leung et al., 2004; Zhang et al.,

2013). These mainly included a 35 miRNA-based sig-

nature that could predict the prognosis of patients

with stage II colon cancer and a seven-gene signature

that could predict the relapse and survival for early-

stage cervical carcinoma (Huang et al., 2012; Zhang

et al., 2013). These studies indicated that some differ-

entially expressed biomarkers in tumor and adjacent

normal tissues might not only contribute to the

development of cancer but also correlate with cancer

prognosis. Therefore, to screen out the potential

biomarkers, the gene expression profiling from

GSE79973 was used for differential expression analysis

based on the ‘Limma’ R package. Candidate genes

were identified as significantly differentially expressed

if the adjusted P value for multiple comparisons (false

discovery rate, FDR) was less than 0.01.

LASSO is a comprehensive method for regression

with high-dimensional predictors (Tibshirani, 1997).

LASSO has been extensively applied to the Cox pro-

portional hazard regression model for survival analysis

with high-dimensional data (Zhang and Lu, 2007;

Zhang et al., 2013). LASSO can also be used for opti-

mal selection of variables in high-dimensional microar-

ray data with a robust prognostic value and low

correlation among data to prevent overfitting. We used

the LASSO Cox regression model to further screen out

the most useful prognostic markers among the

candidate genes in the training dataset. A multi-

mRNA-based risk score, GESGC, was constructed and

normalized to predict prognosis of GC. The ‘glmnet’ R

package could be applied to perform the LASSO Cox

regression model analysis. We selected the optimal cut-

off value of normalized GESGC using X-tile plots

based on the correlation with patient DFS. X-tile plots

provide a single and intuitive method to estimate the

association between variables and survival. The X-tile

software can automatically select the optimal cutoff

value based on the highest chi-square value (minimum

P value) identified by Kaplan–Meier survival analysis

and log-rank test (Camp et al., 2004). The X-TILE soft-

ware version 3.6.1 was used to generate X-tile plots

(Yale University School of Medicine, New Haven, CT,

USA).

The prognostic value of the GESGC was further vali-

dated in another three independent datasets cross-com-

pared with three different platforms. For microarrays

(training and validation dataset I), the background of

the raw CEL files was adjusted using the robust multi-

chip average (RMA) and then all the probesets were

summarized and normalized to obtain single gene

expression (Irizarry et al., 2017). The level III gene

expression dataset of TCGA was directly accessed

from UCSC Cancer Browser (validation dataset II).

Specifically, as for the validation datasets III, individ-

ual expression levels of the genes consisting of the

GESGC were obtained by qRT-PCR and the expres-

sion levels were assessed using -MCT.

2.4. Statistical analysis

We assessed the correlation between GESGC and clin-

icopathological features using independent-samples

t-test and chi-square test. Kaplan–Meier survival

analysis and log-rank test were used to estimate sur-

vival. A Cox proportional hazards model was used to

perform standard univariate and multivariate analysis.

Prediction error curves were used to compare the

accuracy of survival models. The ‘pec’ R package can

provide a set of functions for efficient computation of

predicting error curves (Mogensen et al., 2012). We

used ‘pec’ package to estimate the inverse probability

of censoring weighting (IPCW) estimation of time-

dependent Brier score based on ten-fold cross-valida-

tion. The logistic and Cox regression coefficients were

used to construct the nomogram. Calibration plots

were generated to explore the performance character-

istics of the nomogram. In the calibration plot, the

x-axis indicates predicted survival probability and the

y-axis indicates the actual freedom from DFS for

the patients. The 45� line indicates an ideal perfor-

mance of a nomogram that does a perfect outcome

prediction corresponding with actual outcome. Time-

dependent receiver operating characteristic (ROC)

analysis was performed to assess the predictive accu-

racy of the nomogram. Decision curve analysis was

used to assess the clinical practicability of the nomo-

gram. The ‘GSVA’ package was used to carry out

differentially expressed gene sets analysis. All the sta-

tistical tests were performed with R software (version

2.15 and 3.22, Auckland, New Zealand) and SAS soft-

ware (version 8.02, Charlotte, NC, USA). Statistical

significance was set at 0.05.

3. Results

3.1. Development and validation of the GESGC

The study design is shown in Fig. S1A. Using the

‘Limma’ package, we identified 26 differentially

expressed genes at probe levels in 10 paired tumor and

adjacent normal mucosa tissues of GC (adjusted P value

< 0.01) (Fig. 1A). Then, we used a LASSO Cox regres-

sion model to build a prognostic signature that selected

eight out of the 26 genes identified in the training data-

set (Figs 1B, S1B and Table S2). The gene expression of
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the eight genes had low correlations (Fig. S1C). Using

the LASSO Cox regression model, we then derived a

risk score for each patient based on the individual

expression levels of the eight genes, namely

GESGC = (0.248345* expression level of CAPN13) +
(0.124155* expression level of CBR1) + (0.19997*
expression level of LOXL1) + (0.030862* expression

level of CWH43) + (0.031894* expression level of

RAB31) + (�0.15386* expression level of PEX11G) +
(�0.03507* expression level of ZNF57) + (�0.45008*
expression level of ACADS). Using X-tile plots, patients

in the training dataset were classified into high- or

low-GESGC group with an optimum cutoff value of

0.4608 after GESGC was normalized (Fig. S1D–F). The
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Fig. 1. Construction of the GESGC, a prognostic classifier consisted of eight genes. (A) Heat map of mRNA expression profiles of the 26

differentially expressed in 10 paired gastric cancer and adjacent normal mucosa tissues. Rows represent genes, and columns represent

patients. Pseudocolors represent transcript levels from low to high on a log 2 scale from �2 to 2, ranging from a low correlation power

(dark, black) to high (bright, green, or red). (B) LASSO coefficient profiles of the 26 GC-correlated genes. A dotted vertical line is drawn at

the value identified by ten-fold cross-validation, where optimal k results in eight nonzero coefficients.
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Kaplan–Meier survival analysis demonstrated that the

two groups had significantly different outcomes

(HR = 4.00, 95% CI = 2.41–6.66, P < 0.0001; Fig. 2A).

To confirm the robustness of the GESGC classifier in dif-

ferent populations, it was further validated in three

other independent datasets using the same cutoff point

(validation I: HR = 1.97, 95% CI = 1.28–3.04,
P = 0.0017; validation II: HR = 1.56, 95% CI = 1.13–
2.15, P = 0.0061; validation III: HR = 2.39, 95%

CI = 1.10–5.18, P = 0.023; Fig. 2B–D). The stratifica-

tion analyses indicated that the GESGC classifier was a

clinically and statistically prognostic model (Fig. S2A–
J). Further, in the univariate Cox regression model, the

GESGC classifier was a strong variable correlated with

prognosis in both training and validation datasets

(Fig. 3A). After multivariate adjustment by clinical fac-

tors, the GESGC classifier remained a powerful and

independent prognostic factor in the training dataset,

validation datasets II, III, and marginally in the valida-

tion dataset I (Fig. 3B).

3.2. The GESGC and clinical-molecule

characteristics and pathway analysis

Notably, we found that the distribution of several crit-

ical clinical-molecule characteristics varied significantly

between high- and low-GESGC groups (Fig. 4A–D,

Table S3). We saw a substantially higher percentage of
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Fig. 2. Kaplan–Meier estimates of survival based on the GESGC in four datasets. (A) Training dataset. (B) Validation dataset I. (C) Validation

dataset II. (D) Validation dataset III. The tick marks on the Kaplan–Meier curves represent the censored subjects. The differences between

the two curves were determined by the two-sided log-rank test.
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high TNM stage (III & IV) cases in the high-GESGC

group than in the low-GESGC group of the training

dataset (77.1% vs 48.5%, Table S3), and this condi-

tion was also overt in the validation datasets. Similar

conclusions could be obtained for other clinical char-

acteristics including lymph node ratio (LNR, 58.3% vs

40.7%), recurrence status (68.9% vs 32.8%), and per-

ineural invasion status (37.5% vs 25.5%) in training

dataset.

Interestingly, considerable overlaps were also

observed between the GESGC classifier and reported

molecular subtypes. As regards the Lauren
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classification, 63.2% (60 in 95) high-GESGC group

cases were classified as diffuse subtype in the training

dataset as well as in validation datasets I (50%) and II

(45.1%) (Fig. S3A). Further analysis demonstrated

that the diffuse subtype had a shorter survival than

other subtypes (P = 0.023) and reached much higher

median GESGC value than the intestinal subtype

(P < 0.0001, Fig. S3B). The analyses for other two

P < 0.0001
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molecular subtypes also exhibited high similarities to

the diffuse Lauren classification, including MSS/EMT

subtype (Fig. S3C) and invasion subtype (Fig. S3D).

Additionally, several integrative analysis clusters were

consistently enriched in the high-GESGC group. In the

high-GESGC group, 50.6% (39 in 77) of cases were

mRNA cluster 1, 49.4% were miRNA cluster 4 (41 in

83), and 61.4% were DNA methylation cluster 4 (51

in 83) (Fig. S3A). Moreover, most of the genes highly

expressed in mRNA cluster 1 were also highly

expressed in the high-GESGC group (Fig. S3E). TCGA

has reported that mRNA cluster 1 and miRNA cluster

4 had a substantial overlap and were strongly associ-

ated with GS subtype, and both of these clusters were

enriched with a diffuse subtype (Cancer Genome Atlas

Research, 2014). Our results showed that 33.7% of

high-GESGC group cases were GS subtype (Fig. S3A).

Although no significant prognostic differences were

found among the four molecular subtypes (P = 0.894,

ref. Sahm et al., 2017), the finding that the high-

GESGC group was enriched with GS subtype might be

of benefit for understanding the underlying molecular

biological mechanisms of the GESGC classifier.

We performed gene set variation analysis (GSVA)

to explore differentially activated gene sets between

high- and low-GESGC groups. The results implied that

several metastasis-, stemness-, and adhesion-associated

gene sets were enriched in the high-GESGC group, and

patients in the high-GESGC group were more likely to

be resistant to cisplatin treatment (Fig. S3F). Further-

more, the correlation analysis suggested that there was

a strong positive correlation between the GESGC and

these activated gene sets in the high-GESGC group

(Fig. S3G). To some extent, the above-mentioned

molecular characteristics may provide a reasonable

interpretation of the prognostic value of the GESGC.

3.3. The GESGC and published gene signatures

With the development of microarray technologies over

the past decade, increasing prognostic gene expression

signatures of GC have been published. A systematic

study has summarized these published prognostic sig-

natures in GC (Lin et al., 2015). Five reported signa-

tures that fulfilled the following criteria were selected

for comparison with the GESGC: (a) the total sample

size was more than 50 and (b) the signature contained

validation dataset(s). Complete details of the selected

signature are provided in Table S4. We computed their

accuracy using prediction error curves within training,

validation I and II datasets. Prediction error over time

was calculated using the Brier score. In general, the

prediction error curve of the GESGC was lower than

the selected signatures that were reported. This implied

that the GESGC provided more precise prognostication

of DFS outcomes (Fig. 5 and Fig. S4A,B).

3.4. Clinical utility of the GESGC

To provide a clinically correlated quantitative method

that could predict the probability of 3- and 5-year DFS

in GC, a nomogram was generated by integrating the

GESGC and four clinicopathological risk factors

(Fig. 6A). Calibration plots indicated that the nomo-

gram performed well compared with an ideal model

(Fig. 6B). The areas under the curve (AUC) at 3 and

5 years were 0.73 and 0.78 for the nomogram in the

training dataset, respectively (Fig. 6C). The validation

dataset II was used to test the predictive accuracy of the

nomogram, and the AUCs at 3 and 5 years were 0.70

and 0.73, respectively (Fig. 6C). The decision curve

showed that if the threshold probability of 3- and 5-year

DFS of a patient or doctor is more than 25%, using the

nomogram to predict recurrent probability at 3 or

5 years adds more benefit than the treat-all-patients

scheme or the treat-none scheme (Fig. 6D).

4. Discussion

In the past decade, increasing technologies have been

applied to human transcriptome analysis, including

microarrays, high-throughput RNA sequence, and
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qRT-PCR. There are several well-established platforms

for microarrays, including Affymetrix, Illumina, and

Agilent. To remain consistency, four datasets

downloaded from the GEO were all used for the same

chip platform (Affymetrix Human Genome U133

Plus 2.0 Array). Another two datasets were from
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RNA-sequence and qRT-PCR, respectively. There

were nearly 1000 samples (N = 978) included in this

study. To our knowledge, this is the largest cohort

used for constructing mRNA-based prognostic signa-

ture in GC. Moreover, these specimens were from dif-

ferent populations including Europeans and Asians

(Koreans, Singaporeans and Chinese). These cross-

platform and cross-racial datasets were the basis of

robustness of the signature presented here.

Prognostic models derived from high-dimension data

could carry a high risk of overfitting, which would

decrease the significance of the predictor when applied

to independent datasets. To overcome this limitation,

we applied a Cox regression model with a LASSO

penalty for shrinkage and selection of genes, facilitat-

ing selection of genes with a robust prognostic value,

high expression variances, and low correlation among

each other. Based on this method, we constructed an

eight-mRNA-based prognostic classifier of GC that we

have named GESGC.

Recently, several novel multi-mRNA-based signa-

tures in GC have been reported. Wang et al. generated

a prognostic scoring system in GC based on a total of

53 genes (Wang et al., 2016b). The prognostic value

was validated in an independent dataset. However,

they did not try to reduce the number of genes and

avoid redundancy in prognostic associations among

these genes. Numerous genes may complicate the

transfer to routine clinical trials. In our study, we used

a LASSO Cox regression model to screen out a small

set of genes to simplify such a transfer. According to

the LASSO model, the eight selected genes obtained

merely weak correlations in expression (median Pear-

son correlation 0.15). Another interesting Immuno-

Score signature in GC was constructed by Jiang et al.

(Jiang et al., 2016). They used a similar statistical

model to select five out of 27 immune features.

However, several limitations should be noted.

Firstly, the immune features involved did not represent

all the GC-associated immune features. Secondly, the

expression levels of the immune biomarkers involved

were based on immunohistochemistry conducted by

pathologists. Thus, they probably could not be objec-

tively evaluated in the clinical facility. Last but not

least, all the specimens were from China, and little is

known about the prognostic value in other races. We

primarily performed differential expression analysis

between cancerous and noncancerous GC samples to

reduce thousands of genes to a representative set for

further analysis. To assess the prognostic abilities of

these signatures, we selected five signatures (sample

size more than 50 and containing validation datasets)

to compare with the GESGC using predictive error

curves. The predictive error curve has been widely used

to evaluate and compare predictions in survival analy-

sis (Gerds and Schumacher, 2007; Madhavan et al.,

2012; Mogensen et al., 2012; Sahm et al., 2017). Ten-

fold cross-validation was used to repeat data splitting,

followed by estimation of the predictive error.

In addition to TNM staging system, several pub-

lished classification systems have been generated for

GC (Cancer Genome Atlas Research, N., 2014; Cris-

tescu et al., 2015; Lauren, 1965). Intriguingly, our

results indicated that the high-GESGC group was

enriched with MSS/EMT, invasion, and GC subtypes.

Previous studies have demonstrated that MSS/EMT

subtype occurs at a significantly younger age and typi-

cally has a diffuse Lauren classification and lower

number of mutation events compared with other MSS

groups (Cristescu et al., 2015). The GS subtype

includes diffuse classification and is associated with

CDH1, RHOA mutations, CLDN18-ARHGAP

fusion, and cell adhesion (Cancer Genome Atlas

Research, N., 2014). In addition, gene set variation

analysis indicated that the high-GESGC group is more

likely to be resistant to chemotherapy, especially cis-

platin treatment. One interpretation might be that the

high-GESGC group consists of a large proportion of

EMT subtype. Previous studies have suggested that

EMT could contribute to cancer drug resistance and

metastasis after chemotherapy treatment, e.g. for pan-

creatic cancer (Arumugam et al., 2009), bladder cancer

(McConkey et al., 2009), breast cancer (Huang et al.,

2015), and gastric cancer (Wang et al., 2016a). This

might in some way explain why the high-GESGC group

has a worse survival compared with its counterpart.

Several genes involved in the GESGC have been

reported to be associated with human cancer, includ-

ing LOXL1, RAB31 and CBR1. For example, LOXL1

contributes to the formation of crosslinks in collagens

and elastin. It has been proved to be associated with

several cancer types, including bladder cancer and

juvenile papillary thyroid carcinoma, and may also be

responsible for cisplatin resistance in non-small-cell

lung cancer (Luzon-Toro et al., 2015; Wu et al., 2007;

Zhang et al., 2014). Several studies have demonstrated

that RAB31 is correlated with prognosis in patients

with breast, ovarian, liver cancer, and glioblastoma

(Grismayer et al., 2012; Kotzsch et al., 2011; Serao

et al., 2011; Sui et al., 2015). Specifically, RAB31

might promote hepatocellular carcinoma progression

by inhibiting cell apoptosis induced by the PI3K/

AKT/Bcl-2/BAX pathway (Sui et al., 2015). CBR1 is

correlated with doxorubicin resistance in human gas-

trointestinal cancer, and the efficacy of doxorubicin

can be improved by inhibiting CBR1 in breast cancer
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treatment (Jo et al., 2017; Matsunaga et al., 2015).

Although some of biological functions of the eight

genes have not been reported in GC, they might be

important targets for further biological and mechanis-

tic investigation.

We have also noticed that there were no overlaps

of these genes that consisted of pre-existing five-gene

signature and GESGC. The possible reasons are as

follows. Firstly, we should note that GC is a disease

with high heterogeneity. Dysregulated genes involved

with the biological process in individual GC patients

might be different. Secondly, the datasets applied in

these signatures were derived from different types of

tissues such as GC of a specific stage, metastatic

lymph nodes, and adjacent normal, or healthy tissue.

The expression profiles of these tissues might also be

distinctive. Thirdly, the datasets applied in these sig-

natures were derived from different platforms,

including cDNA microarray, transcripts microarray

and exon array. The total numbers of genes detected

by these platforms were different. This means that

some of these platforms might not be able to detect

some genes. Fourthly, although most of these signa-

ture genes were associated with survival (DFS or

OS), different statistic models also determined that

different genes might be included in these prognostic

models.

Our study is limited because it is retrospective; vali-

dation of the GESGC for each patient in a prospective,

multicenter clinical trial is necessary. We also chose

OS or DFS as the endpoint according to the clinical

data accessed from the public databases. Although

there are some differences between these two concepts,

both of them are recognized as useful clinical end-

points. Additionally, to our knowledge, the clinical

data used for construction of these signatures have not

been available publically, preventing an assessment of

the GESGC in those GC samples. Finally, the mecha-

nisms of the signature genes have not been clearly

identified here, and experimental studies on these genes

may provide important information to facilitate our

understanding of their functional roles.

5. Conclusions

Implementation of molecular testing in clinical practice

could refine prognosis prediction of GC. The GESGC

presented here is the first GC prognostic signature that

is associated with molecular subtypes and successfully

validated in national and international patient series,

and among multiplatform generations. The GESGC

classifier is based on the expression levels of a small

set of eight genes. It has shown its robustness of risk

estimation of GC which hopefully can be applied to a

prospective study for validation on individual GC

patients.
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