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Microbiome and metabolome 
profiles of high screen time 
in a cohort of healthy college 
students
Paniz Jasbi1,8, Alex E. Mohr1,8, Xiaojian Shi1,2, Tara Mahmood1,3, Qiyun Zhu4,5, 
Meg Bruening1, Haiwei Gu1,6* & Corrie Whisner1,7*

As screens are increasingly integrated into every facet of modern life, there is growing concern over 
the potential effects of high screen time. Previous studies have largely utilized self-report data on 
mood and behavioral aspects of screen time, and no molecular theory has yet been developed. In this 
study, we explored the fecal microbiome and metabolome of a diverse group of 60 college students, 
classified by high (≥ 75 min/day) or low (0–75 min/day) self-reported screen time using 16S rRNA 
amplicon sequencing, targeted liquid chromatography-tandem mass spectrometry, and targeted 
detection of short-chain fatty acids using gas chromatography-mass spectrometry. Several key taxa 
and metabolites were significantly altered between groups and found to be highly co-occurrent. 
Results of pathway and enzyme enrichment analyses were synthesized to articulate an integrated 
hypothesis indicating widespread mitochondrial dysfunction and aberrant amino acid metabolism. 
High screen time was also predicted to be significantly associated with type I diabetes, obesity, 
chronic fatigue syndrome, and various manifestations of inflammatory bowel. This is the first-ever 
study to report the effects of high screen time at the molecular level, and these results provide a data-
driven hypothesis for future experimental research.

Screen time, or the time spent using a phone or tablet device, computer, television, or game console, is a matter 
of increasing public and scientific  concern1. Electronic screen use has expanded as new technologies are increas-
ingly integrated across all domains of life, including work, entertainment, physical activity, education, travel, 
finance, and even  romance2. Screen-based activities are particularly prevalent in younger  demographics3, with 
data suggesting significant increases in daily average screen time from infancy to adolescence. In 2013, daily 
average screen time for children under three in the US was estimated to be 42  minutes4, while a 2014 survey 
of the same measure for Australian children and adolescents (8–18 years old) was estimated to be 7 h and 38 
 minutes5. Estimates of screen time for college students are limited and range widely from 2.8 to 11.6 h per  day6, 
and show that female students and physically active students report significantly fewer minutes of total screen 
time than their male and physically inactive counterparts,  respectively7.

As widespread use of screen-based devices has grown, so have concerns over their possible impact on physi-
cal and mental health. However, current research is largely focused on the relationship between screen-based 
activity and mental/behavioral health issues. For instance, results from longitudinal cohort studies have provided 
evidence that higher levels of daily screen time may impede childhood  development8 and have been positively 
associated with depression during  adolescence9. Other problematic areas include reductions in sleep quality and 
physical  activity10, as well as increased consumption and desire for alcohol and  sweets11. These findings have 
spurred recent guidelines on limiting screen time. Stringent limits on screen use for infants and children under 
five have been expounded by both the World Health Organization (WHO)12 and the American Academy of 
Pediatrics (AAP)13: for all children under 5, both the WHO and AAP recommend no more than 60 min of screen 
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time per day. For children and adolescents ages 5 to 18, the AAP recommends regulating the quality of screen 
content rather than quantity, with specific recommendations related to screen use before bed and limiting the 
number of screens in the living  environment13. Although there is no consensus on a safe amount of screen time 
for adults, associations between well-being and digital technology use show deleterious effects on individuals 
engaging in more than 120 min of daily screen  time2.

Far fewer studies have explored risk factors and consequences of screen time on more complex biological 
data. One study examining consumption of screen-based media in preschool-age children demonstrated signifi-
cant correlations between higher screen use and measures of white matter tract  demyelination14. Another study 
involving magnetic resonance imaging demonstrated a strong, positive association between brain connectivity 
and time spent reading books whereas a strong, negative association was observed between length of exposure 
to screen-based media and degree of neuronal  arborization15. Furthermore, it appears as though physical activ-
ity does not compensate for the adverse effects of screen time on the microstructure of the central nervous 
 system16,17. No study to date has investigated the potential effects of screen time using a systems biology approach.

Comprised of thousands of different bacterial taxa as well as various archaea, eukaryotic microbes and 
viruses, the gut microbiota (GM) is now understood to play a significant role in human  health18. Correspond-
ingly, advances in next-generation sequencing technology have rendered 16S rRNA amplicon sequencing an 
attractive platform for monitoring changes in the  GM19 given its high-throughput parallel sequencing, rapid 
time-to-analysis, and  feasibility20. As an internal bioreactor, the GM has tremendous functional  capacity21, 
producing a broad suite of metabolites that have varying effects on host  health22. Like the GM, metabolomic 
profiles also present a unique, person-specific signature and are heavily predicted by host-associated charac-
teristics and environmental  factors23. Defined as the complete suite of metabolites (small molecules < 2000 Da) 
present in a biological system, the metabolome can complement microbiomic readouts and is impacted by 
similar host-associated  characteristics24. In particular, aqueous metabolites and short-chain fatty acids (SCFAs) 
play key roles in host-microbe  interactions24 and bacterial  signaling25, respectively. For instance, aqueous fecal 
and plasma metabolites show strong, significant associations to gut microbial  diversity24 and SCFAs produced 
by bacterial fermentation of dietary fibers and resistant starch in the colon may enable cell signaling through 
surface G-protein coupled  receptors25. Integrating omics-based data is becoming increasingly feasible and offers 
important biological  insight26. The GM and associated metabolic output can also be influenced downstream from 
host behavior including diet, physical activity, and sedentary  time27.

Previously, Whisner et al. (2018) reported that racially/ethnically diverse first year college students displayed 
associations of physical activity and screen time with the  GM27. This population transitions from family-living to 
independent living conditions where many new behaviors are instilled, while others are  eliminated28. The GM in 
adolescence exhibits greater interpersonal variation and lower bacterial diversity compared to adults, which may 
promote a more malleable  biota29. During such a formative period, dietary intake, and health behaviors, including 
physical activity and sedentarism (e.g., screen time), may allow for greater and lasting microbial shifts. Given 
the increased prevalence of screen time and the critical formalization of the GM in this age group, we aimed to 
explore potential differences in the fecal microbiome and metabolome by screen time in a subset of the Devil-
Waste project cohort of college students (n = 60)27. Specifically, we performed a cut on self-reported screen time, 
to compare participants by low (0–75 min/day) vs. high (≥ 75 min/day) screen time using 16S rRNA amplicon 
sequencing in addition to targeted liquid chromatography–tandem mass spectrometry (LC–MS/MS) profiling 
of aqueous metabolites and targeted gas chromatography (GC)-MS profiling of short-chain fatty acids (SCFAs).

Results
Study design and participant characteristics. The current study is a cross-sectional investigation of 
metabolomic and microbiomic differences in a cohort of diverse college students; an overview of the analytical 
workflow is provided in Fig. 1. A total of 60 participants provided a fecal sample and dietary recall, moderate and 
vigorous physical activity (MVPA), and screen time data (Table 1). The overall mean percentage of kilocalories 
from carbohydrate, protein, and fat were 46.0 ± 17.9%, 16.9 ± 9.3%, and 37.1 ± 14.7%, respectively (Table 1). Both 
protein and carbohydrate consumption were within the acceptable macronutrient distribution range (AMDR) 
of 10–35% and 45–65%, respectively, while the mean fat consumption fell slightly outside the AMDR range of 
20–35%. The mean self-reported daily intake of sugar consumed was 75.12 ± 46.13 g/day. Mean daily consump-
tion of dietary fiber for males (n = 20) and females (n = 40) was 12.21 ± 5.36 g/day and 12.70 ± 5.64 g/day, respec-
tively, which fell below the recommended Adequate Intake for both males (38 g/day) and females (25–26 g/day). 
No significant difference in self-reported intake (g) of carbohydrates, sugar, fiber, protein, or fat was overserved 
between high and low screen time groups. Age, sex, body mass index (BMI), and self-reported MVPA did not 
differ significantly by screen-time classification. Self-reported screen time and MVPA were not significantly 
correlated (Spearman’s ρ =  − 0.083, p = 0.530). An initial principal component analysis (PCA) was performed 
between high and low screen time groups using the entire set of captured metabolites and GM features (Sup-
plementary Fig. S1). The first two components accounted for approximately 75% of all variance, and analysis of 
95% confidence intervals (CIs) showed two potential outliers (DW40 and DW100, one from each study group) 
which were removed from further analyses upon confirming non-ignorable missingness of metabolomic data.

Diversity metrics did not differ by screen time classification. Alpha diversity is an important met-
ric commonly reported in the microbiome literature, and different indices are needed to assess various aspects 
of within-sample diversity such as richness, evenness, and dominance. Therefore, we have comprehensively 
reported the most relevant alpha diversity indices in Fig. 2 and Supplementary Table S1 to ensure maximum 
transparency. When controlling for BMI, age, MVPA, and sex as covariates, no significant differences in alpha 
diversity measures were observed between high and low screen time groups (observed features, Faith’s PD, Pie-
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Figure 1.  Overview of analytical workflow from study design to biological interpretation. Created with 
BioRender.com.

Table 1.  Participant characteristics by screen time classification. IQR interquartile range, SD standard 
deviation.

Total (n = 60) Low (n = 14) High (n = 46)

Age, mean ± SD 18.5 ± 0.7 18.6 ± 0.9 18.4 ± 0.6

Sex, % (n)

Male 33.3 (20) 42.9 (6) 30.4 (14)

Female 66.7 (40) 57.2 (8) 69.6 (32)

Race/ethnicity, % (n)

Hispanic 23.3 (14) 21.4 (3) 23.9 (11)

White 43.3 (26) 57.1 (8) 39.1 (18)

Other 33.3 (20) 21.4 (3) 37.0 (17)

Body Mass Index (kg/m2), mean ± SD 24.4 ± 5.9 23.3 ± 3.4 24.8 ± 6.5

 < 18.5 kg/m2% (n) 3.3 (2) 0 (0) 4.3 (2)

18.5–24.9 kg/m2% (n) 63.3 (38) 71.4 (10) 60.9 (28)

25.0–29.9 kg/m2% (n) 18.3 (11) 21.4 (3) 17.4 (8)

 ≥ 30.0 kg/m2% (n) 15.0 (9) 7.2 (1) 17.4 (8)

Screen time (min/day), median (IQR) 195.0 (195.0, 315.0) 15.0 (15.0, 56.6) 195.0 (195.0, 360.0)

Moderate-to-vigorous physical activity (min/day), median (IQR) 52.2 (25.7, 77.1) 58.9 (26.2, 61.6) 45.0 (25.7, 77.1)

Diet, mean ± SD 1614.2 ± 589.3 1546.2 ± 703.5 1634.6 ± 559.2

Carbohydrates (g) 186.1 ± 72.5 169.0 ± 61.1 191.3 ± 75.5

Sugar (g) 75.1 ± 46.1 61.6 ± 34.2 79.2 ± 48.8

Fiber (g) 12.6 ± 5.5 11.2 ± 5.5 13.0 ± 5.4

Protein (g) 68.3 ± 37.7 75.2 ± 64.3 66.2 ± 26.0

Fat (g) 66.5 ± 26.5 63.9 ± 33.6 66.4 ± 24.4
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lou’s E, and Shannon index, p ≥ 0.539). These findings suggest that screen time was not associated with GM 
richness or evenness in this cohort of college students (Supplementary Table S1; Fig. 2a–d). Adonis analysis 
with the same covariates revealed no significant differences between high and low screen time for beta diversity 
metrics (Jaccard, Bray Curtis, Unweighted UniFrac, and Weighted UniFrac p ≥ 0.219; Supplementary Table S1; 
Fig. 2e–f).

Analysis of gut microbiome composition reveals differential abundances in key microbes 
between groups. After quality control and filtering of any samples with fewer features than our rarefaction 
threshold (10,000) and low abundance/low prevalence amplicon sequence variants (ASVs) using the qiime2-
feature-table plugin with the filter-samples method, we generated and provided taxonomy assignments for 247 
features at the genus level (kingdom: 2; phylum: 23; class: 44; order: 69; family: 120; genus: 247). A heatmap of 
the core microbiome showing prevalence by detection threshold (relative abundance %) at the genus level is 
shown in Supplementary Fig. S2. Of the top 15 most prevalent genera, we noted several biologically relevant 
taxa including, Bacteroides, Prevotella, Faecalibacterium, Roseburia, Alistipes, and Akkermansia (Fig.  3a). To 
reveal salient inter-community niche feature importance based on composition, we used DEICODE, a form of 
Aitchison distance that is robust to high levels of  sparsity30. The output is visualized as a robust Aitchison PCA 
(Fig. 3b), based on the feature table. Upon performing an Adonis test with BMI, age, MVPA, and sex as covari-
ates, no significance was detected between high and low screen time groups (F = 0.391, R2 = 0.008, p = 0.678), 
though we did identify several taxa that were correlated with screen time classification including Bacteroides, 
Prevotella, and Roseburia. A taxonomy bar plot of individual subjects at the genus level by high and low screen 
time is provided as Fig. 3c.

To better identify specific microbes associated with screen time classification, we used Songbird, a composi-
tionally aware differential abundance method which provides rankings of features based on their log fold change 
while accounting for relevant  covariates31. As before, we controlled for BMI, age, MVPA, and sex as covariates 
and selected the 20 highest (“set 1,” Supplementary Table S2)- and 20 lowest (“set 2,” Supplementary Table S2)-
ranked ASVs associated with screen time classification. Next, we used  Qurro32 to compute the log ratio of these 
sets of taxa (Fig. 4a). Comparing the ratios of taxa in this way mitigates bias from the unknown total microbial 
load in each sample and taking the log of this ratio gives equal weight to relative increases and decreases of 
 taxa31. Evaluation of the Songbird model for high/low screen time classification against a baseline model showed 
exponential decay and a stable plateau, though a Q2 value of − 0.10 was produced, suggesting a potential for 
overfitting related to the differences between classifications. Comparing the log ratio of the two sets, we noted the 

Figure 2.  Comparison of alpha and beta diversity metrics between high and low screen time classifications. 
Boxplots for alpha diversity metrics: (a) observed features (unweighted amplicon sequence variants). (b) Faith’s 
PD (phylogenetic diversity). (c) Pielou’s E (species evenness). (d) Shannon index (weighted proportional 
abundances). PCoA plots for beta diversity metrics: (e) Jaccard. (f) Bray–Curtis. Weighted and unweighted 
UniFrac distance matrices not displayed.
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high screen time group had a significantly greater log ratio of set 2 compared to set 1 (Fig. 4b; p = 0.002, Cohen’s 
d = 1.89), suggesting that high screen time was more strongly associated with the genera Prevotella, Veillonella, 
Bacteroides, Lachnospira, Coprococcus, and Ruminococcus. In contrast, low screen time was more associated with 
the genera Bacteroides, Akkermansia, Alistipes, Ruminococcus, Sutterella, Oscillospira, and Methanobrevibacter. 
To compare these microbial abundances in a compositionally coherent way, we calculated a log ratio with abun-
dances of several high screen time-specific taxa in the numerator and Ruminococcaceae (genus level not defined) 
abundance in the denominator, which Songbird multinomial regression identified as the taxa most associated 
with low screen time (Fig. 4c–f). Most of these comparisons were not significant, although the high screen time 
classification showed a significantly greater ratio of Peptostreptococcaceae/Runimococcaceae compared to low 
screen time (p = 0.036). High screen time also showed a significantly greater ratio of Bacteroides/Akkermansia 
(p = 0.044), but not Prevotella/Bacteroides (p = 0.518), compared to low screen time.

Predicted functional profile of the gut microbiome differs by screen time. The Phylogenetic 
Investigation of Communities by Reconstruction of Unobserved States 2 (PICRUSt 2)  pipeline33 was used to 
infer the functional profile of the GM based on 16S amplicon sequencing data. The Kyoto Encyclopedia of 
Genes and Genomes (KEGG)34 outputs were analyzed and illustrated with statistical analysis of the taxonomic 
and functional profiles. PCA revealed appreciable differences in the predicted functional composition of the 
GM among the two screen time classifications (e.g., variances accounted by PC 1 and PC 2 were 39.0% and 

Figure 3.  Taxonomic analysis of microbiota between groups. (a) Taxonomy bar plot of the top 15 most 
abundant taxa at the genus level for both groups (n = 60). Less abundant taxa, representing ~ 19.5% of relative 
abundance, are not displayed. (b) Robust Aitchison PCA generated from DEICODE showing taxa (arrows) 
correlated with screen time classification (n = 58). (c) Taxonomy bar plot of individual subjects at the genus level 
by high and low screen time groups (n = 60). Less abundant taxa are not displayed. Note, where resolution at the 
genus level was not possible taxa are described at the lowest feature level obtained (i.e., f = family).
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12.5%, respectively) (Supplementary Fig. S3a). A convergence summary of the predicted metabolic pathways 
also showed some differential enrichment between the two classifications (Supplementary Fig. S3b). Overall, 
there were 52 enzymes at KEGG level 3 with significant differences in enrichment between low and high screen 
time classification (Fig. 5). The main differential enzymes between high and low screen time included gluta-
conate CoA-transferase (q = 0.013), protoporphyrinogen oxidase (q = 0.021), phosphoenolpyruvate carboxylase 
(q = 0.022), levanase (q = 0.027), methylaspartate mutase (q = 0.028), NADP + transhydrogenase (q = 0.030), glu-
tamate dehydrogenase (q = 0.040), and dodecanoyl-ACP hydrolase (q = 0.045).

Taxon set enrichment analysis (TSEA) was also performed using  MicrobiomeAnalyst35. Predicted functional 
profiles of host-intrinsic factors such as disease were analyzed using 239 taxon sets, whereas host-extrinsic factors 

Figure 4.  Differential analysis of log ratio classification. (a) Comparison of log ratio of the 20 highest and 
20 lowest ranked ASVs associated with screen time classification. (b) High screen time classification had 
a significantly greater log ratio of set 2 compared to set 1 (t-test); (c) Prevotella//Runimococcaceae (Mann–
Whitney U test); (d) Peptostreptococcaceae/Runimococcaceae (Mann–Whitney U test); (e) Bacteroides/
Akkermansia (Mann–Whitney U test); (f) Prevotella/Bacteroides (Mann–Whitney U test). *p < 0.05.
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such as diet and lifestyle were predicted using 118 taxon sets. A network view of the least absolute shrinkage and 
selective operator (LASSO) results is provided in Supplementary Fig. S4. Compared to low screen time classifica-
tion, subjects in the high screen time group had significantly greater abundance of taxon sets related to Crohn’s 
disease (q = 0.001), type I diabetes (q = 0.003), having an overweight/obese mother (q = 0.003), and myocardial 
infarction (q = 0.008); high screen time users also had significantly greater abundance of taxa related to consump-
tion of red wine (q = 0.007) and coffee (q = 0.025). Conversely, the low screen time group had significantly greater 
abundance of taxon sets related to liver cirrhosis (q = 0.001), autism (q = 0.006), and high-fat diet (q = 0.047), as 
compared to the high screen time group.

Figure 5.  Significantly altered predicted functional KEGG enzymes at level 3 between high and low screen time 
groups. Single features displayed with q value, effect size, and 95% CI (Welch’s t-test, q < 0.05). Corrected p values 
(q) were calculated using Storey’s FDR approach.
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Analysis of metabolomics data reveals significant differences in five metabolites between 
high and low screen time users. In total, 140 metabolites were reliably detected from human fecal sam-
ples using LC–MS/MS and GC–MS (quality control (QC) CV < 20%, relative abundance > 1,000 in 80% of sam-
ples). Relative levels of these 140 metabolites had a median coefficient of variation (CV) of 11.5%, and ~ 76% 
of captured metabolites had QC CV < 15% (Supplementary Fig.  S5). These metabolites spanned 20 different 
chemical classes and were representative of more than 35 metabolic pathways of potential biological relevance. 
All metabolomics data were log-transformed and Pareto scaled to approximate normality prior to analysis.

A general linear model (GLM) was used to assess differences in metabolite abundance between high and low 
screen time groups. Age, sex, BMI, and MVPA were controlled for as covariates, and significance was calculated 
with FDR correction. Results of the GLM showed five metabolites to be significantly decreased in the high screen 
time group: 1-methylhistidine (q = 0.002), alanine (q = 0.020), proline (q = 0.024), picolinic acid (q = 0.034), and 
tyrosine (q = 0.048) (Fig. 6a). A heatmap of significant metabolites by screen time classification is given in Fig. 6b. 
Full results of the GLM for all 140 reliably detected metabolites (including mean difference, standard error, FDR 
q, and 95% confidence intervals), are displayed in Supplementary Table S3.

Predicted functional profile of the fecal metabolome differs by screen time. Enzyme enrich-
ment analysis with LASSO regression was performed using 912 metabolic sets predicted to change in the case of 
dysfunctional enzymes (Supplementary Fig. S6). Seventeen enzymes were predicted to be significantly increased 
in the high screen time group (enrichment ratio = 8.0, p = 0.003). Two more enzymes, enolase and pyruvate 
kinase, were also predicted to be significantly increased in the high screen time group (enrichment ratio = 6.0, 
p = 0.020), while another three enzymes were significantly increased in high screen time by an enrichment ratio 
of 4.0: extracellular chitinase (p = 0.040), N-acetyl-D-glucosamine exchange (p = 0.040), and peroxisomal FAD 

Figure 6.  Significant metabolites between high and low screen time groups as determined by GLM with FDR 
correction. (a) Box plots of significant metabolites between groups showing normalized relative abundance. 
Age, sex, BMI, and MVPA were controlled for as covariates: 1-Methylhistidine (q = 0.002), Alanine (q = 0.020), 
Proline (q = 0.024), Picolinic acid (q = 0.034), Tyrosine (q = 0.048). Yellow diamonds signify group means, while 
horizontal red lines signify optimal between-group cut-offs. (b) Heatmap of significant metabolites by screen 
time classification.
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transporter (p = 0.045). Supplementary Table S4 lists the complete set of enriched enzymes, along with their 
enrichment ratios and p values.

Metabolomics data was also used to perform enrichment analysis of disease signatures using 44 metabolite 
sets reported in human feces (Fig. 7). Metabolites associated with eight disease signatures were significantly 
increased in the high screen time group: celiac disease (p < 0.001), inflammatory bowel disease (p = 0.001), 
treated celiac disease (p = 0.008), obesity (p = 0.016), asymptomatic diverticulitis (p = 0.031), diverticular disease 
(p = 0.031), symptomatic uncomplicated diverticular disease (p = 0.031), and chronic fatigue syndrome (p = 0.043).

Pathway topology analysis was conducted to predict pathway enrichment between study groups. Metabolomic 
data were mapped to the KEGG human pathway library, and significance and impact were calculated using 
a global test of relative-betweenness centrality. A scatter plot view of the results can be seen in Fig. 8. Three 
pathways were observed to have both high impact (≥ 0.50) and significance (p < 0.05): phenylalanine (pathway 
impact = 1.0, p = 0.008), alanine, aspartate, and glutamate metabolism (pathway impact = 0.715, p = 0.008), and 
D-glutamine/D-glutamate metabolism (pathway impact = 0.50, p = 0.024). All reliably detected metabolites in 
these pathways, with the exception of GABA, were decreased in the high screen time group.

Integrative analysis of multi-omics data revealed disturbances in amino acid metabolism. We 
used  mmvec36 to integrate 16S sequencing and metabolomic data to assess cooccurrence patterns between GM 
features (genera) and fecal metabolites. We found that Ruminococcaceae, previously identified by Songbird anal-

Figure 7.  Enrichment analysis of disease signatures performed using 44 metabolite sets reported in human 
feces. Significant metabolite sets (p): celiac disease (< 0.001), inflammatory bowel disease (0.001), treated celiac 
disease (0.008), obesity (0.016), asymptomatic diverticulitis (0.031), diverticular disease (0.031), symptomatic 
uncomplicated diverticular disease (0.031), and chronic fatigue syndrome (0.043).
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ysis as the taxa most strongly associated with low screen time, had a high probability of co-occurring with five 
amino acids: isoleucine, l-alloisoleucine/leucine/norleucine, valine, proline, and phenylalanine. Upon visual 
examination of the biplot, we noted taxa with the highest cooccurrences were Collinsella, Lactobacillales, Rumi‑
nococcus, cc115 (family Erysipelotrichaceae), and Turicibacter (Supplementary Fig.  S7). These taxa were also 
highly co-occurrent with the same five amino acids (Supplementary Table S5).

Predicted functional results were synthesized to form an integrated hypothesis describing 
the potential pathophysiology underlying high screen time. Our findings are conceptualized with 
respect to central carbon metabolism in Fig. 9. Three canonical KEGG pathways were indicated by pathway 
topology analysis as significantly impacted (0.008 ≤ p ≤ 0.024): (1) phenylalanine, tyrosine, and tryptophan bio-
synthesis, (2) alanine, aspartate, and glutamate metabolism, and (3) d-glutamine and d-glutamate metabolism. 
Between these pathways, 10 metabolites were detected in the current study; of these, six were significantly dif-
ferent between groups as determined by t-test with FDR correction (0.006 ≤ q ≤ 0.042). Nine of these pathway-
embedded metabolites were reduced in the high screen time group (alanine, asparagine, aspartate, fumarate, 
glutamate, glutamine, oxaloacetate, phenylalanine, tyrosine), while one metabolite was elevated with high screen 
time (GABA). Importantly, PICRUSt analysis predicted the mean proportions of two enzymes in these path-
ways to be significantly greater with high screen time. Namely, those were (S)-3-amino-2-methylpropionate 
transaminase (q = 6.07e−4) and glutamate dehydrogenase (q = 0.040). Additionally, when results of our mmvec 
analysis were incorporated into our hypothesis, a high co-occurrence of five bacterial species with one pathway-
embedded metabolite (phenylalanine) was revealed. This indicates a high probability of microbe-metabolite 
interaction between phenylalanine and the subset of microbial consortia (C. collinsella, E. cc115, L. ruminococ‑
cus, Lactobacillales, and T. turicibacter). Higher abundance of all five bacteria was observed in the high screen 
time group. Box plots and significance information are included in Fig. 9 where appropriate.

Discussion
Screens are highly integrated in every facet of modern life, especially for young  people1,2. Yet, despite growing 
concern over the detrimental effects of high screen time, previous studies have largely focused on the cognitive 
and behavioral effects of screen use and have exclusively relied on self-report  data8–11, with only a few studies 
utilizing imaging  techniques14–17. In this study, we explored the fecal microbiome and metabolome of a diverse 

Figure 8.  Scatter plot of pathway topology analysis. Metabolomic data were mapped to the KEGG human 
pathway library, and significance and impact were calculated using a global test of relative-betweenness 
centrality. Pathways with high impact (≥ 0.50) and significance (p < 0.05) have been labeled.
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group of college students, classified by high (≥ 75 min/day) or low (0–75 min/day) screen time. The taxonomic 
profile of the microbiome, but not overall diversity, modestly differed between the two classifications of screen 
time. Indeed, several health-associated microbes such as Bacteroides, Akkermansia, Alistipes, Ruminococcus, 
Sutterella, Oscillospira, and Methanobrevibacter were found to be more associated with low screen time, even 
after accounting for physical activity, sex, BMI, and age. This finding suggests that compositional differences may 
occur based on daily screen time. Meanwhile, the metabolome proved to be a sensitive marker of screen time; 
a panel of five metabolites were significant lower in the high screen time group. Predicted functional analysis 
of the microbiome revealed significant enrichment of numerous enzymes and taxa associated with various 
disease, diet, and lifestyle factors. Predicted metabolomic states indicated enrichment of several other enzymes, 
pathways, and disease profiles. Cumulatively, our results revealed dysfunction of amino acid metabolism which 
related to several key taxa.

By comparing the log ratio abundances of screen-time associated taxa, we noted Ruminococcaceae was one 
of the features most associated with low screen time. This family of bacteria has been positively correlated with 
lower risk of weight gain and improved energy metabolism in  mice37 and a reduction of metabolic syndrome in 
 humans38. Against the top associated taxa with high screen time, we noted significance between log ratio abun-
dances in some important instances. Specifically, a greater ratio of Peptostreptococcaceae/Runimococcaceae in 
those with a high screen time classification was observed. Peptostreptococcaceae has been found to be abundant 
in patients with bile duct and colorectal  cancers39,40. In addition, the low screen time classification had a signifi-
cantly greater Akkermansia/Bacteroides ratio. Akkermansia has been correlated to several health  states41, such 
as being positively associated with an increase in insulin  sensitivity42. More recently, the species Akkermansia 
muciniphila has been explored for use as an oral probiotic therapy for obesity and metabolic  syndrome43. A genus 
that was found to be more associated with high screen time was Prevotella. This finding was intriguing, given 
that Prevotella has been considered beneficial due to its abundance in the GM of healthy individuals and associa-
tions with plant-rich diets and weight  loss44,45. Moreover, Prevotella has been reported to be more common in 

Figure 9.  Integrated hypothesis of the potential pathophysiology underlying high screen time. The conceptual 
schema was synthesized using results of pathway topology analysis, PICRUSt analysis, and mmvec analysis. 
Green lettering with downward green arrows denotes decreases in the high screen time group, while red 
lettering and upward red arrows denotes increases in the high screen time group; box plots and significance 
information is provided where appropriate. Significance of plotted metabolites derived from independent t-test 
with FDR correction. Created with BioRender.com.
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non-Westernized  populations46,47. However, Prevotella is a large genus with high species diversity and high genetic 
diversity between  strains48. For example, several Prevotella species have been suggested as intestinal  pathobionts49. 
Prevotella has also been found to be increased in individuals with metabolic  syndrome50. Another ratio analyzed, 
Prevotella/Bacteroides, which have been promoted as potential biomarkers for diet and  lifestyle51, did not show 
significance between classifications, suggesting that more evidence is needed to establish a predictive relationship.

We performed a prediction of function analysis using microbiome data, identifying significant differences in 
pathway enrichment between low and high screen time classification. The top differential predicted functions 
were significantly more enriched in the high screen time classification. These included enzymes involved in 
energy metabolism, such as CoA-transferases, carboxylases, and dehydrogenases. The most significant predicted 
function, glutaconate CoA-transferase, is responsible for producing acetate and glutaconyl-1-CoA52. Acetate may 
originate from microbial fermentation of residual peptides and  fats53,54. In a Western diet with low fiber intake, 
protein fermentation occurs mainly in the distal colon when saccharolytic substrates have been  depleted55. Par-
ticipants in both classifications had fiber consumptions well below the AMDR. Increased protein fermentation 
can produce amino acids which can further be metabolized via cross-feeding mechanisms and alter gut integrity 
and insulin  sensitivity56. Upon performing microbe-metabolite cooccurrence analysis we noted multiple amino 
acids with the great probability to occur with the taxa Collinsella, Lactobacillales, Ruminococcus, cc115, and 
Turicibacter. Although these did not differ significantly by screen time classification, they were all elevated in 
the high screen time group.

The metabolome also proved to differ by screen time. An age, sex, and BMI-controlled GLM showed signifi-
cant disturbances (q < 0.05) in five metabolites: 1-methylhistidine, alanine, proline, picolinic acid, and tyrosine. 
Although no previous studies have shown any associations between screen time and levels of 1-methylhistidine, 
proline, picolinic acid or tyrosine, alanine has been previously linked to high screen time and increased metabolic 
risk  factors57,58. Among adolescents, reduced alanine via increased alanine transaminase (ALT) activity was 
associated with high screen time, higher blood glucose, and reduced insulin  sensitivity57. A similar association 
was observed between ALT and sedentary behavior in a cohort of obese 11–13-year-olds58. In the current study, 
levels of alanine and glutamate (both substrates and products of the reversible ALT reaction) were significantly 
lower in the high screen time group (0.016 ≤ q ≤ 0.042). Future studies investigating objective markers of screen 
time for targeted therapy or surveillance monitoring should target the metabolome given its superior sensitivity 
compared to the more idiosyncratic changes of the microbiome.

Metabolome data was also mapped to canonical KEGG pathways to perform enzyme and pathway enrichment 
analyses. Additionally, database searches of fecal metabolites were conducted in order to construct predicted 
disease profiles with regard to screen time status. Three pathways were significantly enriched in response to screen 
time: (1) phenylalanine, tyrosine and tryptophan biosynthesis (p = 0.008), (2) alanine, aspartate and glutamate 
metabolism (p = 0.008), and (3) glutamate and glutamine metabolism (p = 0.024). This is the first reported associa-
tion between screen time and differential enrichment of these pathways. Enzyme enrichment analysis returned 
22 enzymes predicted to be significantly dysfunctional between groups, two of which were corroborated by 
PICRUSt analysis of microbiome data: glutamate dehydrogenase (q = 0.040) and (S)-3-amino-2-methylpropionate 
transaminase (q = 6.07e−4). The current study is the first to report predicted functional changes in these enzymes 
in response to high screen time. Analysis of predicted disease profiles showed significant enrichment of metabo-
lites related to various gastrointestinal disorders such as celiac disease, inflammatory bowel disease, treated celiac 
disease, and various forms of diverticular disease (0.001 ≤ p ≤ 0.031). Metabolite profiling of disease states also 
showed significant enrichment of metabolite sets related to obesity (p = 0.016) and chronic fatigue syndrome 
(p = 0.043). Many previous studies have demonstrated a strong, positive association between screen time and 
obesity risk and  incidence4,5,10,11,17,57, while others have shown similarly strong associations between screen time, 
disordered sleep and  fatigue4,5,8–10,17,57. Although no previous studies have indicated potential effects of screen 
time on GI diseases, many metabolites flagged as significant in the current study have been previously implicated 
in the onset and progression of GI disorders. For instance, levels of alanine and severity of celiac hepatitis are 
inversely  correlated59, and proline catabolism has been shown to cause hypoxia and bowel  inflammation60. Our 
results warrant further investigation into metabolite-driven changes in pathways relevant to GI disorders, with 
special regard to inflammatory conditions.

Cumulatively, we performed six discrete analyses of predicted functional changes in pathways and enzymes, 
as well as disease, diet, and lifestyle profiles. Notably, we also performed integrative analysis of microbiomic and 
metabolomic data using mmvec to identify cooccurrence patterns. Results of our pathway and enzyme enrich-
ment analyses, PICRUSt analysis, and mmvec analysis are highly commensurate with one another and have been 
synthesized as an integrative hypothesis of predicted functional changes in Fig. 9. Interestingly, many changes 
predicted by our hypothesis have been previously implicated in disease, diet and lifestyle conditions noted by 
our TSEA and disease analysis of fecal metabolites. For instance, increased levels of Lactobacillales have been 
found in the stool of patients with chronic fatigue syndrome (CFS)61. In the current study, disease enrichment 
analysis predicted CFS to be significantly increased in the high screen time group (Fig. 7) and levels of Lacto‑
bacillales were also elevated in the high screen time group. Similarly, inverse associations between circulating 
levels of glutamate and tyrosine with clinical severity of CFS has previously been  shown62; in our study, levels of 
both metabolites were significantly reduced in the high screen time group. Additionally, over-representation of 
Lachnospiraceae has been cited as a hallmark of inflammatory bowel  conditions63,64. In our study, TSEA indicated 
significant enrichment of taxa related to Crohn’s disease in the high screen time group (Supplementary Fig. S4) 
and disease enrichment of fecal metabolites revealed significant enrichment of metabolite sets linked to celiac 
disease, inflammatory bowel disease, and various forms of diverticular disease (Fig. 7).

While this explorative study provides the foundation for more directed research, it has some limitations, 
particularly that we had a relatively small number of participants (n = 60), who were categorized according to 
self-reported screen-time. Furthermore, 46 subjects were classified into high screen time, while 14 subjects were 
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classified into low screen time. Future studies should make efforts to enroll more low screen time participants. 
Although the present study uses cross-sectional data with concurrent microbiomic and metabolomics data to 
explore actual and predicted effects of high screen time, future studies should validate these findings using lon-
gitudinal repeated-measures designs. Also, this study is limited to young, healthy college students living in the 
United States. Expanding this sample to a wider range of populations would allow us to capture a greater diversity 
of screen time, physical activity, and dietary data, and to better assess potential associations in microbial commu-
nities and metabolic signatures. Additionally, we did not produce strain-level resolution based on our sequencing 
methodology, though assessment at the species level in the future is warranted, as is metagenomic function.

Nevertheless, this is the first study to investigate the effects of screen time at the molecular level. We report 
the association of screen time with fecal microbiome and metabolome profiles in a cohort of healthy young 
college students. Significant features of these profiles may prove to be powerful therapeutic targets for the del-
eterious effects of increased screen time. Importantly, high screen time was found to be associated with reduced 
abundance of commensal bacteria Ruminococcaceae and Akkermansia. Moreover, the health-promoting taxa 
Bifidobacterium and Faecalibacterium were most predictive of low screen time. High screen time was predicted 
to have an increase in energy metabolism pathways, which may be suggestive of increased energy harvesting 
in the gut. Likewise, numerous metabolites associated with health in humans were significantly decreased in 
the high screen time group, suggesting an important role of the metabolome in the propagation of screen time-
associated pathogenesis. Importantly, we present an integrated hypothesis of widespread amino acid dysfunction 
and specific microbial-metabolite interactions using KEGG pathways, database searches, and advanced machine 
learning methods which deserves increased research given its ubiquitous indication in the current study.

Methods
Participants and study procedure. This study included data from 60 college students who were recruited 
from select on-campus dormitories at Arizona State University (ASU). Specifically, samples were obtained from 
a larger cross-sectional study that utilized mobile ecological momentary assessment methodology to assess the 
influence that social networks have on physical activity, dietary intake, and body weight in two residence halls at 
ASU in Tempe,  Arizona65. Briefly, healthy college students living in on-campus housing, who were English speak-
ing, and at least 18 years of age were eligible to participate. Exclusion criteria for this study included a history of 
malabsorptive disorders, high blood pressure, eating disorders, HIV infection, diabetes, and/or the use of antibi-
otics, antifungals, or probiotics in the 2 to 3 months prior to the study. This study was conducted during the Fall 
2014 and Spring 2015 semesters. The ASU Institutional Review Board approved this study (STUDY00002019), 
and all participants provided written informed consent. All research protocols were conducted in accordance 
with the principles expressed in the Declaration of Helsinki.

Enrolled participants were provided with questionnaires capturing demographic, physical activity, and dietary 
intake  data27,65. Height and weight were measured by trained research staff and BMI was calculated and partici-
pants were categorized based on the CDC  guidelines66. Physical activity was assessed via the Godin-Shephard 
Leisure-Time Physical Activity  Questionnaire67. Daily physical activity was calculated and MVPA was computed 
by summing the total time spent on strenuous and moderate activity. This validated survey for measuring physical 
activity habits in college-aged males and females also captured sedentary activity including screen time (excluding 
time in class and being physically active). Participants were asked to report average daily screen time categori-
cally (i.e., 0–15 min, 15–75 min, 75–195 min, 195–315 min, 315–360 min, or 360 + min). Given previous screen 
time recommendations in children and adolescents by the  WHO12 and the  AAP13, as well deleterious effects 
associated with 120 min of screen time in  adults2, we split participants at 75 min of self-reported screen time, as 
it conforms best to current knowledge and guidance. The ASA24 24 h dietary recall was used to assess students’ 
habitual dietary intake. Participants were also asked to complete three days of dietary recall (two weekdays and 
one weekend day). Days of intake were dropped if caloric intake was below 500 or in excess of 5000 kcal. If a 
participant did not have at least one day of adequate dietary intake they were excluded from the study. Using 
data from the ASA24–2014 Daily Total Nutrients Analysis File (TN), we examined total grams of protein, fat, 
carbohydrates, and fiber.

Sample collection. The sample collection procedure used in this study has been previously  reported27. 
Each study participant was provided with a fecal sample collection kit (Commode Specimen Collection Kit, 
Fisher Scientific, Anthem, AZ) in order to provide a single fecal sample for analysis. Collection kits were dis-
tributed to participants in small insulated cooler bags containing ice packs to keep samples cold while in transit 
post-collection. Before participants left with the kit, a brief demonstration on how to collect the sample was 
provided along with a sheet of instructions inside the cooler bag. Participants were asked to freeze their ice 
packs immediately so that they were frozen at the time of sample collection. Ice packs were rated to stay frozen 
for 36–48 h in an insulated container. All stool samples were retrieved from participants and delivered to the 
clinical research facility within 24 h of collection. Stool samples were stored at − 80 °C to preserve the microbial 
community.

Microbiome analysis. DNA isolation, preparation, and sequencing. Assessment of the intestinal microbi-
ome from fecal collections was carried out at the Biodesign Institute at ASU in Tempe, Arizona. Extraction of 
microbial DNA from fecal samples was accomplished using the PowerSoil DNA isolation kit as described by the 
manufacturer (MoBio Laboratories Ltd., Carlsbad, CA) using a beadbeater (BioSpec, Bartlesville, OK). Amplifi-
cation and sequencing of variants was performed as previously  described27.
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Sequence data and statistical analysis. Raw 16S rRNA sequencing data for all samples have been deposited in 
the open-source repository “NCBI/Sequence Read Archive (SRA)” under project PRJNA473006 with acces-
sion numbers: SAMN09258197 – SAMN09258278 (https:// www. ncbi. nlm. nih. gov/ sra). In the present study, 
paired-end, demultiplexed data were imported and analyzed using QIIME 2 software version 2021.268. Briefly, 
sequencing generated 5,259,656 reads with a median of 80,443 reads per sample. After viewing sequence quality 
plots based on 10,000 randomly selected reads, the first 13 bases of the forward and reverse reads were trimmed. 
Next, QC was performed via the DADA2 denoise-paired method to remove low quality regions and construct 
a feature table using amplicon sequence variants (ASVs). The feature-classifier plugin was used to classify ASVs 
taxonomically. A naive Bayes machine-learning classifier was pre-trained to differentiate taxa present in the 
99% Greengenes 13_8 reference set trimmed to 250 bp of the V4 hypervariable region (corresponding to the 
515F-806R primers) was used. This classifier works by identifying k-mers that are diagnostic for particular taxo-
nomic groups and using that information to predict the taxonomic affiliation of each  ASV69. Before construct-
ing the taxonomic bar chart, we first filtered out any samples with fewer features than our rarefaction thresh-
old (10,000) and then filtered out low abundance/low prevalence ASVs using the feature-table plugin with the 
filter-samples method. A phylogenic tree was then constructed using the fragment-insertion plugin where the 
sequences were inserted into the Greengenes 13_8 99% identity reference tree backbone. To account for uneven 
sequencing depth between samples, normalization was performed via alpha rarefaction. Based on the ASV fea-
ture table, a p-min-depth of 10 and a p-max-depth of 70,000 was used.

Diversity analysis was conducted with the diversity plugin. Αlpha diversity (intra-community diversity) was 
measured using richness (Shannon, Faith’s PD and observed ASVs) and evenness (Pielou) indexes and compared 
with Kruskal–Wallis tests. Beta diversity (inter-community diversity) was measured using Jaccard, Bray–Curtis, 
Unweighted UniFrac distance (qualitative measure), and Weighted UniFrac distance (quantitative measure). 
Adonis analyses with the covariates age, sex, MVPA, and BMI, were used to test for significant differences 
between high and low screen time for beta diversity metrics.

Relative abundance of taxa for high and low screen time classification were calculated at the genus level. The 
distinctive taxa between screen time classification were identified first through DEICODE, a compositionally 
aware form of Aitchison distance that is robust to high levels of  sparsity30. This was conducted with the DEICODE 
plugin for QIIME 2 and the output was visualized as a robust Aitchison PCA, based on the feature table. To test 
significance using a multivariate model, the Adonis test in QIIME 2 was used to assess significant differences 
between screen time classification with the covariates sex, age, BMI, and MVPA time. Next, Songbird v1.0.131 in 
QIIME 2 version 2020.6 was used to identify feature ranks (parameters: − p-epochs 10,000 − p-differential-prior 
0.5 − p-summary-interval 1 − num-random-test-examples 10% of samples) based on screen time and accounting 
for the covariates sex, BMI, age, and MVPA time. Qurro v0.4.032 was then used to compute log ratios of ranked 
features. Evaluation of the Songbird models against a baseline model obtained a pseudo-Q2 value of − 0.102, 
suggestive of possible overfitting. The top 20 highest and lowest ranked differential features were selected based 
on screen time classification. T-tests (Mann–Whitney U tests) and Cohen’s d were calculated to assess the sig-
nificance (alpha = 0.05) and effect size of the log ratios.

In order to predict the function of fecal microbiota, data analysis was performed through the PICRUSt 2 
 pipeline33. Then, PICRUSt output for the level 3 KEGG entries were analyzed and illustrated with statistical 
analysis of the taxonomic and functional profiles (STAMP) software version 2.1.370. Welch’s t-test was used to 
test for significant features between screen time classification with p-value corrections performed using Storey’s 
FDR approach.

Taxon set enrichment analysis (TSEA) of disease, diet and lifestyle, in addition to core statistical and visual 
analysis of microbiome data, was performed using MicrobiomeAnalyst v1.035.

Metabolomics analysis. Reagents. Acetonitrile (ACN), methanol (MeOH), and ammonium acetate 
 (NH4Oac), all LC–MS grade, were purchased from Fisher Scientific (Pittsburgh, PA). Ammonium hydroxide 
 (NH4OH), O-methylhydroxylamine hydrochloride (MeOX), and N-Methyl-n-(tert-butyldimethylsilyl) trif-
luoroacetamide (MTBSTFA) were bought from Sigma-Aldrich (Saint Louis, MO). Deionized water was pro-
vided in-house by a water purification system from EMD Millipore (Billerica, MA). Phosphate buffered saline 
(PBS) was bought from GE Healthcare Life Sciences (Logan, UT). Standard compounds corresponding to meas-
ured aqueous metabolites/features were purchased from Sigma-Aldrich and Fisher Scientific. Lipid standards 
were purchased from Fisher Scientific, Sigma-Aldrich, and Avanti Polar Lipids (Alabaster, AL).

Targeted LC–MS/MS aqueous profiling. Prior to LC–MS/MS targeted measurement, frozen fecal samples were 
first thawed overnight under 4 °C. Afterward, 20 mg of each sample were placed in a 2 mL Eppendorf vial. The 
initial step for protein precipitation and metabolite extraction was performed by adding 500 μL MeOH and 50 
μL internal standard solution (containing 1,810.5 μM 13C3-lactate and 142 μM 13C5-glutamic acid). The mixture 
was then vortexed for 10 s and stored at − 20 °C for 30 min, followed by centrifugation at 14,000 RPM (21,913×g) 
for 10 min at 4 °C. The supernatants (450 μL) were collected into new Eppendorf vials and dried using a Cen-
triVap Concentrator (Fort Scott, KS). The dried samples were reconstituted in 150 μL of 40% PBS/60% ACN and 
centrifuged again at 14,000 RPM (21,913×g) at 4 °C for 10 min. Afterward, 100 μL of supernatant was collected 
from each sample into an LC autosampler vial for subsequent analysis. A pooled sample, which was a mixture of 
all experimental samples, was used as the QC sample and injected once every 10 experimental samples.

The targeted LC–MS/MS method used here was modeled after that developed and used in a growing number 
of  studies71–73. Briefly, all LC–MS/MS experiments were performed on an Agilent 1290 UPLC-6490 QQQ-MS 
system. Each supernatant sample was injected twice, 10 µL for analysis using negative ionization mode and 4 µL 
for analysis using positive ionization mode. Both chromatographic separations were performed in hydrophilic 
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interaction chromatography mode on a Waters Xbridge BEH Amide column (150 × 2.1 mm, 2.5 µm particle size; 
Waters Corporation, Milford, MA). The flow rate was 0.3 mL/min, auto-sampler temperature was kept at 4 °C, 
and the column compartment was set to 40 °C. The mobile phase was composed of Solvents A (10 mM  NH4Oac, 
10 mM  NH4OH in 95%  H2O/5% ACN) and B (10 mM  NH4Oac, 10 mM NH4OH in 95% ACN/5%  H2O). After an 
initial 1 min isocratic elution of 90% B, the percentage of Solvent B decreased to 40% at t = 11 min. The composi-
tion of Solvent B was maintained at 40% for 4 min (t = 15 min), after which the percentage of B gradually went 
back to 90%, to prepare for the next injection. The mass spectrometer was equipped with an electrospray ioniza-
tion (ESI) source. Targeted data acquisition was performed in multiple-reaction-monitoring (MRM) mode. For 
targeted data acquisition, we monitored 118 and 160 MRM transitions in negative and positive mode, respectively 
(278 transitions in total). The whole LC–MS system was controlled by Agilent MassHunter Workstation software. 
The extracted MRM peaks were integrated using Agilent MassHunter Quantitative Data Analysis software.

GC–MS analysis of short chain fatty acids (SCFAs). Frozen fecal samples were first thawed overnight under 
4 °C. Afterward, 20 mg of each sample was homogenized with 5 μL hexanoic acid-3,3,3 (internal standard), 15 
μL sodium hydroxide (NaOH [0.5 M]), and 500 μL MeOH. Following storage at − 20 °C for 20 min and centrifu-
gation at 14,000 RPM (21,913×g) for 10 min, 450 μL of supernatant were collected and sample pH was adjusted 
to 10 by adding 30 μL of NaOH:H2O (1:4, v:v). Samples were then dried, and the residues were first derivatized 
with 40 µL of 20 mg/mL MeOX solution in pyridine under 60 °C for 90 min. Next, 60 µL of MTBSTFA contain-
ing  d27-mysristic acid were added, and the mixture was incubated at 60 °C for 30 min. The samples were then 
vortexed for 30 s, followed by centrifugation at 14,000 RPM (21,913×g) for 10 min. Finally, 70 µL of supernatant 
were collected from each sample into new glass vials for GC–MS analysis.

GC–MS conditions used here were adopted from a previously published  protocol74. Briefly, GC–MS experi-
ments were performed on an Agilent 7820A GC-5977B MSD system (Santa Clara, CA) by injecting 1 µL of 
prepared samples. Helium was used as the carrier gas with a constant flow rate of 1.2 mL/min. The separation of 
metabolites was achieved using an Agilent HP-5 ms capillary column (30 m × 250 µm × 0.25 µm). The column 
temperature was maintained at 60 °C for 1 min, increased at a rate of 10 °C/min to 325 °C, and then held at this 
temperature for 10 min. Mass spectral signals were recorded at an m/z range of 50–600. Data extraction was 
performed using Agilent MassHunter Profinder software. A batch recursive feature extraction algorithm for 
small molecules was used, and peaks were filtered so that only peaks with absolute height ≥ 1,000 counts were 
included. An RT tolerance of 0.10 min was established, and extraction was limited to the largest 1,000 compound 
groups. Results were filtered if the overall identification score was less than 75.

Metabolite data analysis. Following peak integration, metabolites were filtered for reliability and only those 
with QC CV < 20% and relative abundance of 1000 in > 80% of samples were retained for analysis. The data were 
 log10-transformed and Pareto scaled prior to analysis. Linear modelling was performed using SPSS 28.0 (SPSS 
Inc., Chicago, IL). Multivariate statistical analyses were performed using open-source R software. Pathway and 
enzyme enrichment analysis of metabolomic data were performed and visualized using MetaboAnalyst v5.075.

Multi‑omics data analysis. In order to identify microbial features associated with screen time classification 
and the metabolites they might be producing, we measured probabilities of cooccurrence between observed 
species (based on metagenomic data) and all metabolites (as informed by the metabolomic analysis). For this 
analysis, we used mmvec v1.0.2, a neural network solution inspired from natural language processing, to build 
a log-transformed conditional probability matrix from each cross-omics feature pair and apply singular value 
decomposition in order to represent cooccurrence in the form of  biplots76.

Data availability
Raw 16S rRNA sequencing data for all samples have been deposited in the open-source repository “NCBI/
Sequence Read Archive (SRA)” under project PRJNA473006 with accession numbers: SAMN09258197–
SAMN09258278 (https:// www. ncbi. nlm. nih. gov/ sra). All mass spectrometry data and deidentified subject 
metadata analyzed in this study have been deposited to Mendeley Data and are publicly available (https:// doi. 
org/ 10. 17632/ nd64f 8zchj.1).
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