

Fluoroquinolones' Biological Activities against Laboratory Microbes and Cancer Cell Lines

Ghadeer A. R. Y. Suaifan ^{1,*}, Aya A. M. Mohammed ¹ and Bayan A. Alkhawaja ²

- ¹ Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, Amman 11942, Jordan; aya_a_mohammed@yahoo.com
- ² Department of Pharmacy, Faculty of Pharmacy and Medical Sciences, The University of Petra, Amman 11196, Jordan; bayan.alkhawaja@uop.edu.jo
- * Correspondence: gh.suaifan@ju.edu.jo

Abstract: Development of novel derivatives to rein in and fight bacteria have never been more demanding, as microbial resistance strains are alarmingly increasing. A multitude of new fluoroquinolones derivatives with an improved spectrum of activity and/or enhanced pharmacokinetics parameters have been widely explored. Reporting novel antimicrobial agents entails comparing their potential activity to their parent drugs; hence, parent fluoroquinolones have been used in research as positive controls. Given that these fluoroquinolones possess variable activities according to their generation, it is necessary to include parent compounds and market available antibiotics of the same class when investigating antimicrobial activity. Herein, we provide a detailed guide on the in vitro biological activity of fluoroquinolones based on experimental results published in the last years. This work permits researchers to compare and analyze potential fluoroquinolones as positive controls by medicinal chemists when investigating novel FQs analogs must be correlated to the laboratory pathogen inquest for reliable results.

check for updates

Citation: Suaifan, G.A.R.Y.; Mohammed, A.A.M.; Alkhawaja, B.A. Fluoroquinolones' Biological Activities against Laboratory Microbes and Cancer Cell Lines. *Molecules* 2022, 27, 1658. https:// doi.org/10.3390/molecules27051658

Academic Editor: Jean-Marc Sabatier

Received: 30 December 2021 Accepted: 15 February 2022 Published: 3 March 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). **Keywords:** ciprofloxacin; moxifloxacin; norfloxacin; fluoroquinolones; resistant bacteria; anticancer; minimum inhibitory concentration

1. Introduction

Antimicrobial prescriptions for the treatment of infections caused in particular by *Staphylococcus aureus* (*S. aureus*), *Pseudomonas aeruginosa* (*P. aeruginosa*), and *Mycobacterium tuberculosis* (*M. tuberculosis*) have been affected by bacterial resistance [1]. Alarmingly, the ever-increasing emergence of resistant strains has globally increased the mortality rates [2].

Several approaches have been followed to develop novel fluoroquinolones (FQs) with enhanced antimicrobial activity and/or to enhanced pharmacokinetic properties to tackle bacterial resistance [3–8]. With more than 500 newly introduced structural modifications on FQs' key scaffold [9]; 1-substituted 1,4-dihydro-4-oxo-pyridine-3-carboxylic acid (Figure 1) and the recent approval of delafloxacin in 2017, researchers have focused on embracing the biological activity of FQs, particularly against resistant bacterial strains [10,11].

Additionally, literature reviews pointed out FQs' potential activities as anticancer, antitumor, antiviral, and antifungal agents in addition to their antibacterial activity where the latter is attributed to their ability to selectively inhibit bacterial type II topoisomerases, DNA gyrase, and/or topoisomerase IV [12–15].

Currently, FQs are one of the most widely used antimicrobial drugs, with a wide range of indications, covering respiratory infections, urinary tract infections (UTIs), gastrointestinal infections, and gynecologic infections [16]. Moreover, FQs are indicated as a prophylactic treatment in immune-compromised neutropenic patients [17].

Pharmocokinetic properties and potency

Figure 1. Fluoroquinolone's nucleus: 1-substituted 1,4-dihydro-4-oxo-pyridine-3-carboxylic acid; R', R" are responsible for pharmacokinetic properties, and R"' is responsible for potency.

FQs are usually classified into four generations with enhanced efficacy and spectrum of activity, along with enhanced safety and pharmacokinetic characteristics (Figure 2) [18,19]. Ciprofloxacin is the most prosperous derivative, both economically and clinically [20], and the newer generations such as levofloxacin, gemifloxacin, and moxifloxacin offer enhanced activity against aerobic Gram-negative bacilli and Gram-positive bacteria over ciprofloxacin, e.g., against *Streptococcus pneumoniae* (*S. pneumoniae*) and *S. aureus* [20]. Ciprofloxacin and moxifloxacin retain enhanced in vitro activity against *P. aeruginosa* [21]. In terms of potency, moxifloxacin is more potent against Gram-positive and anaerobes than ciprofloxacin and levofloxacin. Newer generations displayed potent activity against penicillin-resistant and multidrug-resistant (MDR) pneumococcus and anaerobic bacteria. Recently, delafloxacin was granted approval in 2017 for the systemic treatment of acute bacterial skin infections [22].

Figure 2. Spectrum and antimicrobial activities of fluoroquinolone based on their generations. Widening of the antibacterial activity of fluoroquinolones in relation to their generation. Reproduced/adapted from ref. [13].

Appraisal of the newer FQs' derivatives should be, in part, based on the relevant references. Herein, commonly employed FQ acting as positive controls in antimicrobial bioassays of up-to-date papers were reviewed. These results were reported in a constructive and comparative manner to facilitate the process of developing novel FQs' analogues. The chemical structures and key physical properties of the frequently adopted standard FQs, namely norfloxacin 1, ciprofloxacin 2, levofloxacin 3, and moxifloxacin 4 are summarized in Table 1. This should provide a facile referral guide to recent research areas concerning FQs derivatives antibacterial inhibitory effect, the adopted testing protocols, and generations-based comparison between different FQs to be applied in innovative research. Choosing

standard FQs will not only affect the assessment of the new counterparts, but also provide a more comprehensive and efficient performance in assays.

Fluoroquinolone	Structure	Generation	Physical Properties	References
Norfloxacin			ClogP 1.81	[23,24]
Ciprofloxacin		2nd	LogP _{exp} -0.1432 ClogP-0.725 ClogP 1.32 ClogP 1.55	[23,25–27]
Levofloxacin		3rd	ClogP 1.35 ClogP–0.51	[24,26]
Moxifloxacin	F NH Me 4	4th	<i>ClogP</i> 2.53 Log <i>P</i> 1.60	[24,28]

Table 1. Most adopted standard fluoroquinolones, their chemical structures, and key physical properties.

2. Comparison of the In Vitro Antimicrobial Assays

A variety of methods and tactics could be adopted to evaluate the antibacterial activity of potential agents, and to draw constructive conclusions. In this regard, choosing and performing these assays varies according to the antimicrobial agents, availability of equipment, and cost-related reasons. The most known and basic standard methods are disk-diffusion [29] and broth or agar dilution methods [30]. The advantages and disadvantages of these assays are summarized in Table 2 and reviewed elsewhere [31,32], being apart from the scope of this article. In brief, standardized antimicrobial bioassays (antimicrobial susceptibility testing) are nowadays published and approved by the Clinical and Laboratory Standards Institute (CLSI) for bacteria and yeasts testing [33], herein the most commonly reported bioassays and the antimicrobial values of various FQs analogues are reported. Dilution methods afford quantitative evaluation of the in vitro antimicrobial activity, which are usually expressed as minimum inhibitory concentration (MIC) values and represent the lowest concentration of the tested antimicrobial agent that inhibits the visible growth of tested microorganism. A number of approved guidelines for dilution antimicrobial susceptibility testing of fastidious or non-fastidious bacteria, yeast, and filamentous fungi are reported [30].

On the other hand, agar disk-diffusion method is the standard qualitative method for routine antimicrobial susceptibility testing. This method provides qualitative results by categorizing bacteria as susceptible, intermediate, or resistant based on the obtained growth zones of inhibition (ZOI) diameters. However, important parameters, including the growth media, temperature, period of incubation, and the required inoculum size should be optimized to fulfil CLSI standards [22].

Differently, measuring the inhibition of supercoiling activity (catalytic activity) of DNA gyrase or the concentration of compounds required for inhibiting 50% of gyrase supercoiling activity (IC_{50}) has been widely reported as an alternative assay to test the antibacterial activity of different FQs derivatives, particularly if the mechanistic and catalytical activity of the developed analogues are of concern [34,35].

Testing Technique	Advantages	Disadvantages	Reference
Disk-diffusion	 Can be used to for routine susceptibility testing Ability to adjust the tested discs Simple Standardized Low cost Reproducible 	 Diffusability of drug from disc must be considered Results are qualitative Requires large inoculum size 1-2 × 10⁸ CFU/ mL Can only approximate MIC based on diameter of the zones of inhibition 	[36,37]
Dilution methods	 Includes agar dilution, broth microdilution and broth macrodilution methods Can be used to accurately calculate MIC against various bacteria, yeasts, and fungi Can be used to monitor resistance emergence Reproducible Low cost Can test multiple bacteria in one platex using agar dilution method Agar dilution method can be semi-automated 	 Broth macrodilution has higher risk of error Broth microdilution may not detect contamination, inoculum viability and the inhibitory effect of cosolvents used (e.g., dimethyl sulphoxide) Agar dilution method requires intense labor and high cost unless it is automated 	[31,38]

Table 2. Advantages and disadvantages of commonly applied technique for the evaluation of drugs antimicrobial activity.

3. FQ's Antibacterial Biological Activity

3.1. FQ's Antibacterial Activity against Gram-Positive Bacteria

According to the reviewed literature in the past five years, and for the sake of including up-to-date activities on the most common FQs applied as golden antimicrobial positive controls in laboratories, herein, standard FQs and their antimicrobial activity against a panel of laboratory microbes are reported (Table 3).

As reported, norfloxacin was used as a positive control in the pipeline publications, including norfloxacin derivatives synthesis. Norfloxacin MIC against Gram-positive is presented in Table 3 [1,23,24,26,28,34–71]. In brief, norfloxacin inhibitory activity against a panel of Gram-positive bacteria regardless of the strain varied relatively. For example, norfloxacin in vitro antibacterial activity reported by Mentese et al. against *E. faecalis* ATCC 29212 varied from

that reported by Seliem et al. (MIC ranged from <0.128 μ M [46]–100.207 μ M [47]). Similarly, norfloxacin MIC against *S. aureus* ATCC 25923 ranged from <0.128 μ M [46]–156.170 μ M [45] in the above-mentioned two different studies.

Table 3. Fluoroquinolones' antibacterial activity against Gram-positive bacterial strains.

Fluoroquinolone		C the Bactoria	Strain	MIC (uM)	Reference
Generation	Name	G +ve bacteria	Strain		Kelerence
		B. subtilis	NCDC 71	15.658	[42]
			8035	4.697	[44]
		B. cereus	Roma 702	<0.128	[46]
			Roma 709	8.267	[28]
		B. polymyxa	NCDC 64	78.289	[42]
				<0.128	[46]
		E. faecalis	ATCC 29212	8.267	[28]
				100.207	[47]
		L. acidophilus	RSKK 06029	2113.794	[28]
Second Generation	Norfloxacın	L. monocytogenes	ATCC 43251	8.267	[28]
			NCDC 110	31.315	[42]
			ATCC 29213	3.132	[43]
				156.170	[45]
		S. aureus	ATCC 25923	4.134	[28]
				<0.128	[46]
			S. aureus 209p	1.221	[44]
			MRSA	1.879	[28]
		S. pneumonia	ATCC 49619	19.572	[43]
	Lomoflovacin	B. cereus	8035	17.931	[44]
	Lomenoxacin	S. aureus	209p	2.220	[±±]
		1 haumannii	24.144		[24]
		A. baumannii	ATCC 19606	2.354	[50]
			ATCC 10876	0.360	[57]
		B. cereus	Roma 702	0.181	[46]
			Roma 709	3.954	[28]
		B. polymyxa	NCDC 64	30.180	[42]
				0.090	[57]
	Ciprofloxacin		ATCC 6633	0.030	[58]
	erpronorment	B. subtilis		8.149	[34]
			NCDC 71	60.361	[42]
			NCDC /1	72.433	[59]
				3.018	[56,60,61]
				1.360	[51]
		E. Faecalis	ATCC 29212	0.368	[46]
				1.509	[55,62]
				7.878	[28]

Fluoroquinolone	e	C +ve Bacteria	Strain	MIC (uM)	Roforonco
Generation	Name		Stram	1011C (µ101)	Reference
			ATCC 33186	2.384	[50]
			ATCC 51575	1.360	[51]
			ATCC 51299	1.509	[55]
		E Eggealic	JH2-2	6.036	[63]
		L. I uccuits	UCN41	3.018	[63]
			E. faecalis	24.144	[47]
			14-1	96.577	[53,54]
			14-2	3.018	[53,54]
			ATCC-19434T	3.018	[63]
			BM-4147	12.072	[63]
			ATCC 27270	2.651	[56]
			ATCC 700221	>386.308	[55]
		E. faecium	13-7	>386.308	[55]
			14-2	96.577	[53,54]
			14-5	386.308	[53,54]
			14-6	>386.308	[53,54]
		E. hirae	ATCC 10541	24.144	[48]
		K. pneumonia		193.154	[24]
	L. acidophilus	RSKK 06029	252.277	[28]	
		ATCC 43251	3.954	[28]	
		L. monocytogenes	EGD	12.072	[64]
	Ciprofloxacin		CLIP21369	48.288	[64]
			ATCC 6538	26.015	[65]
				0.800	[66]
				146.978	[49]
				1.509	[48]
				0.400	[66]
				1.509	[48]
				0.082	[67]
			ATCC 20212	1.509	[60,61]
		S. aureus	AICC 29213	0.296	[50]
				0.680	[51]
				0.755	[55]
			0.755	[64]	
			2.960	[57]	
				0.010	[52]
				0.755	[26]
			ATCC 25923	0.368	[46]
				3.954	[28]
				3.018	[62]

Fluoroquinolone		- Cura Bastaria	Strain	MIC (uM)	Deference
Generation	Name	G +ve bacteria	Strain		Kererence
			<i>S. aureus</i> ATCC 25923 (clinical isolate)	0.755	[63]
			SAI	24.144	[64]
			SAI24	48.289	[64]
			SA036	96.577	[64]
			N41120032	193.154	[64]
			SG511	0.470	[58]
			Microbank 14001 (MRSA)	1.480	[57]
			S. aureus D15 MRSA	3.100	[66]
			S. aureus D17 MRSA	3.100	[66]
			S. aureus CIP ^R	50.000	[66]
			S. aureus NCTC 4163	0.755	[48]
			<i>S. aureus</i> HG001 (laboratory strain)	0.377	[63]
			MSSA 12-1	0.755	[26]
			MSSA 12-2	0.755	[26]
			MSSA 12-4	0.755	[26]
			MSSA 12-5	0.755	[26]
			MSSA 14-1	96.577	[53,54]
			MSSA14-3	0.377	[53,54]
			MSSA 14-4	1.509	[53,54]
	Ciprofloxacin	S aurous	MRSA	3.954	[28]
	cipionoxuent	5. иштень	MRSA 14-4	>386.308	[53,54]
			MRSA 14-5	48.288	[53,54]
			MRSA 12-2	193.154	[26]
			MRSA 12-4	193.154	[26]
			MRSA 12-5	96.577	[26]
			CMCC 26003	1.509	[53,54]
			<i>S. aureus</i> ATCC 700699 (resistant isolate)	>24.144	[63]
			Healthcare-acquired MRSA NRS70	0.604	[50]
			Community-acquired MRSAUSA300	19.014	[50]
				1.509	[60,61]
			(MRSA) ATCC 33591	0.755	[55]
				0.680	[51]
			MRSA ATCC 33592	≤ 0.083	[56]
			NCDC 110	150.901	[42]
			12.072		[47]
			0.589		[49]
			0.377		[24]

Fluoroquinolone		— G +ve Bacteria	Strain	MIC (uM)	Reference
Generation	Name	G IVE Dacteria	Strant	niie (µm)	Kelelence
				0.400	[66]
			ATCC 12228	1.480	[57]
				0.755	[48]
			ATCC 14990	0.377	[63]
			ATCC 35984	≤ 0.181	[63]
			-	0.589	[49]
			MSSE CANWARD-2008 81388	≤ 0.083	[56]
			MEEE ATCC 10000	0.377	[55]
			MSSE ATCC 12228	0.340	[51]
			MSSE 12-1	0.755	[26]
			MSSE 12-3	6.036	[26]
		C. midamuidia	MSSE 12-6	0.755	[26]
	Ciprofloxacin	S. epiaermiais	MSSE 12-8	12.072	[26]
		MSSE 14-2	>386.308	[53,54]	
		MRSE CAN-ICU 61589 (CAZ > 32)	42.411	[56]	
			MRSE 12-1	24.144	[26]
			MRSE 12-6	48.288	[26]
			MRSE 13-3	193.154	[55]
			MRSE 14-21	193.154	[54]
			MRSE 14-22	386.308	[53,54]
			MRSE 14-37	386.308	[53,54]
			MRSE 14-39	386.308	[53,54]
			MRSE 16-3	32.897	[54]
		S. pneumoniae	ATCC 19615	6.036	[54]
			ATCC 49619	0.331	[56]
			R6	1.177	[50]
		B. cereus	Roma 709	1.636	[28]
		E. faecalis	ATCC 29212	3.435	[28]
		L. acidovhilus	RSKK 06029	219.385	[28]
	Cipro HCl	L. monocytogenes	ATCC 43251	3.435	[28]
			ATCC 25923	6.843	[28]
		S. aureus	MRSA	3.435	[28]
				2.770	[51]
			ATCC 29212	2 767	[55]
				1 380	[51]
	1 0 ·	E faccalia	ATCC 51575	1 384	[55]
Inird Generation	Levofloxacin	E. juecuits	ATCC 700221	177 220	[51]
				44 276	[68]
			14-1	254 210	[52 54]
				334.210	[00,04]

Fluoroquinolone			C . 1		
Generation	eneration Name	G +ve Bacteria	Strain	MIC (µM)	Reference
			14.2	88.552	[68]
		E. faecalis		2.767	[53,54]
			14-3	177.104	[68]
			ATCC 700221	88.552	[55]
			13-7	88.552	[55]
			14-1	354.210	[68]
			14-2	88.552	[53,54]
		E. faecium	14-2	2.767	[68]
			14-5	177.105	[53,54]
			14-6	177.105	[53,54]
			16-4	44.300	[51]
			ATCC 25923	< 0.022	[26]
			MICC 25725	0.166	[69]
			ATCC 29213	0.350	[55]
			MICC 27215	0.350	[51]
			CMCC 26003	0.346	[68]
			CIVICC 20003	0.346	[53,54]
			MSSA 12-2	0.346	[26]
			MSSA 12-4	0.166	[69]
		S. aureus		0.344	[26]
	Levofloxacin		MSSA 12-5	0.346	[26]
Third Generation			MSSA 14-1	22.138	[53,54]
			MSSA 14-2	0.692	[68]
			MSSA 14-3	0.346	[53,54,68]
			MSSA 14-4	1.384	[53,54,68]
			MRSA 12-1	177.105	[69]
			MRSA 12-2	88.552	[26]
			MRSA 12-4	88.552	[26]
			MRSA 12-5	88.552	[26]
			MRSA 14-4	177.105	[53,54,68]
			MRSA 14-5	22.138	[26,53,54]
			NARSA 10198	88.552	[70]
			NARSA 10193	88.552	[70]
			ATCC 29213	1.384	[70]
			MSSE ATCC 12228	0.350	[51]
				0.346	[55]
		S. epidermidis	12-1	0.346	[26]
			12-3	1.384	[26]
			12-6	0.346	[26]

Fluoroquinolone					
Generation	Name	- G +ve Bacteria	Strain	MIC (µM)	Reference
			12-8	11.069	[26]
			12-1	11.069	[26]
			12-6	88.552	[26]
			MRSE 12-1	0.083	[69]
			MSSE 14-2	>354.210	[53,54]
			WI35E 14-2	354.210	[68]
			MSSE 12-3	1.384	[69]
			MSSE 14-4	2.767	[68]
Third Constation	Lovoflovacin	S. epidermidis	MSSE 14-6	5.534	[68]
Third Generation	Levonoxaciii		MRSE 13-3	88.552	[55]
			MRSE 14-21	177.105	[53,54]
			MRSE 14-22	88.552	[53,54,68]
			MRSE 14-37	177.105	[53,54,68]
			MRSE 14-39	177.105	[53,54,68]
			MRSE 16-3	5.540	[51]
		S. pneumoniae	ATCC 49619	0.346	[69]
			ATCC 19615	1.384	[53,54,68]
	Sparifloyacin	B. cereus	8035	0.484	[44]
	opurinoxaciti	S. aureus	209p	0.484	- [11]
		B. subtilis	NCDC 71	213.109	[42]
		B. polymyxa	NCDC 64	26.639	[42]
		S. aureus	NCDC 110	13.319	[42]
			ATCC 29213	0.333	[71]
	Gatifloxacin		MSSA clinical isolates	0.333	[71]
			MRSA clinical isolates	42.622	[71]
			ATCC 12228	0.160	[71]
		S. epidermidis	MSSE clinical isolates	0.160	[71]
			MRSE clinical isolates	0.160	[71]
		B. cereus	Roma 709	<1.370	[28]
			ATCC 33186	0.891	[50]
			14-1	18.296	[68]
		E. faecalis	14-2	36.539	[68]
			14-3	18.296	[68]
			ATCC 29212	<1.370	[28]
	Moxifloxacin HCI		14-1	73.077	[68]
			14-2	1.142	[68]
		E. faecium	MSSE 12-3	0.284	[26,69]
			MSSE 12-6	0.069	[26]
			MSSE 12-8	2.284	[26]

Fluoroquinolone			o		
Generation	Name	G +ve Bacteria	Strain	ΜΙC (μ M)	Reference
			MSSE 14-4	4.567	[68]
			MSSE 14-6	4.567	[68]
			MRSE 12-1	0.571	[26,69]
		E. faecium	MRSE 12-6	16.539	[26]
			MRSE 14-22	18.269	[68]
			MRSE 14-37	18.269	[68]
			MRSE 14-39	18.269	[68]
		L. acidophilus	RSKK 06029	92.785	[28]
		L. monocytogenes	ATCC 43251	<1.370	[28]
			ATCC 25923	2.900	[28]
			MCC 25725	<0.018	[26,69]
			CMCC 26003	0.137	[68]
			MSSA ATCC 29213	0.057	[50]
			MSSA 12-1	0.034	[26]
			MSSA 12-2	0.018	[26]
			MSSA 12-4	<0.018	[26,69]
	Moxifloxacin HCl		MSSA 12-5	0.034	[26]
			MSSA 14-3	<0.018	[68]
			MSSA 14-4	<0.018	[68]
		S. aureus	community-acquired MRSAUSA300	3.654	[50]
			healthcare-acquired MRSA NRS70	0.057	[50]
			MRSA 12-1	18.269	[69]
			MRSA 12-2	18.269	[26]
			MRSA 12-4	18.269	[26]
			MRSA 12-5	18.269	[26]
			MRSA 14-4	27.404	[68]
			MRSA 14-5	18.269	[68]
			MRSA	<1.370	[28]
			ATCC 19615	0.034	[68]
		S. pneumoniae	ATCC 49619	0.137	[69]
			R6	0.365	[50]

Acinetobacter baumannii (A. baumannii); American Type Culture Collection (ATCC); Bacillus cereus (B. cereus); Bacillus polymyxa (B. polymyxa); Bacillus subtilis (B. subtilis); China Center of Industrial Culture Collection (CMCC); Enterococcus faecalis (E. faecalis); Enterococcus faecium (E. faecium); Enterococcus hirae (E. hirae); Klebsiella pneumonia (K. pneumonia); Lactobacillus acidophilus (L. acidophilus); Listeria monocytogenes (L. monocytogenes); Methicillinresistant staphylococcus aureus (MRSA); Methicillin-resistant staphylococcus epidermidis (MRSE); Methicillin-sensitive staphylococcus aureus (MSSA); Methicillin- sensitive staphylococcus epidermis (MSSE); Nigeria Centre for Disease Control (NCDC); Staphylococcus aureus (S. aureus); Staphylococcus enterica (S. enterica); Staphylococcus epidermidis (S. epidermidis); Streptococcus pneumoniae (S. pneumoniae).

As illustrated in Table 3, ciprofloxacin was the most commonly adopted reference by the cited researchers against different Gram positive and negative bacterial stains, ciprofloxacin

MIC against Gram-positive bacteria including *B. cereus* spp. ranged from 0.181 μ M [46]– 3.954 μ M [28], *S. aureus* ATCC 6538 (ranged from 1.509 μ M [48]–146.978 μ M) [49], *S. aureus* ATCC 29213 (MIC ranged from 0.082 μ M [67]–1.509 μ M [48]), and *S. aureus* ATCC 25923 (MIC ranged from 0.010 [52] μ M –3.954 μ M [28]). Remarkably, ciprofloxacin MIC varied within similar bacterial species, one example is *S. epidermidis* species, according to Liu et al., strain MSSE 12-1 of *S. epidermidis* species was susceptible to ciprofloxacin (MIC 0.755 μ M) [26], whereas it showed very limited activity against MSSE14-2 strain (MIC > 386.308 μ M) [53,54]. Interestingly, discrepancy in MIC values was observed between similar bacterial strains as reported by different research groups with 100-fold MIC difference [48,49]. Minor variation between the adopted testing protocol for MIC determination, such as incubation temperature might be the driving factor for such a difference [48,49].

Considering the third FQ reference, levofloxacin was adopted by many researchers' as a reference control, and exhibited variable antimicrobial activity against *E. faecalis* (MIC ranged from 1.384 μ M for *E. faecalis* 51575 [55], 177.220 μ M for *E. faecalis* ATCC 700221 [51]) as an example. A notable difference in levofloxacin potency against different *staph* strains, including methicillin-sensitive *S. aureus* (MSSA) [26,53,54,68,69], methicillin-resistant *S. aureus* (MRSA) [26,53,54,68,69], *S. epidermidis*, and *S. pneumoniae* was observed (Table 3).

Following scientific reports in the literature, levofloxacin exhibited superior antibacterial activity against Gram-positive *S. epidermis* strains [51,55,63] and moxifloxacin is generally the most potent amongst FQs a, gainst Gram-positive and negative bacteria [26]. Moxifloxacin was the latent agent against the food poisoning pathogen *L. monocytogenes* ATCC 43251 (MIC < 1.370 μ M [28]) when compared with other FQs as ciprofloxacin (MIC 3.954 μ M-12.072 [28,64]) and norfloxacin (MIC < 8.267 μ M [28]).

3.2. FQs Antibacterial Activity against Gram-Negative Bacteria

A summary of common laboratory tested Gram-negative bacteria and standard fluoroquinolones antibiotics are presented in Table 4. It is noticeable that ciprofloxacin has potential antibacterial activity against Gram-negative bacteria as *P. aeruginosa* and *E. coli*. [28,48]. Moreover, ciprofloxacin had prospective growth inhibitory activity against *H. pylori* NCTC 11916 and 12 more *H. pylori* clinical isolates as reported by Abu-Sini et al. [72]. Ciprofloxacin broad spectrum of activity against aerobic and anaerobic Gram-negative bacteria is shown in Table 4.

Nevertheless, Gorityala et al. [56] reported that ciprofloxacin potency against *P. aerug-inosa* were superior compared to moxifloxacin. This pattern was also noticed in results published by Türe et al. and Garza et al., [28,50].

Norfloxacin inhibitory activity against a panel of Gram-negative bacterial type, and on the same bacterial strain is noted to be varied. For instance, norfloxacin in vitro antibacterial activity reported by Pardeshi et al. against *E. coli* ATCC 25922 varied from that reported by Leyva-Ramos et al. (MIC ranged from < 0.094 μ M [24]–117.433 μ M [45]). Moreover, norfloxacin and ciprofloxacin MIC against different *P. aeruginosa* strains ranged from 1.002 μ M [1]–1565.773 μ M [45] and <0.091 [62] μ M–150.901 μ M [42], respectively, in different studies. On the contrary, ciprofloxacin MIC against a panel of Gram–negative pathogens looks more consistent (*A. haemolyticus* ATCC 19002 (MIC 0.755 μ M) [62], *A. baumannii* ATCC17961 (MIC 0.24 μ M) [58], *A. calcoacetious* ATCC 19606 (MIC 1.509 μ M) [55], and *C. freundii* ATCC 43864 (MIC 1.38 μ M) [51]. However, a wide range in ciprofloxacin MIC against *E. coli* ATCC 25922 is perturbing as MIC reported ranged from 0.002 μ M [24]–61.869 μ M [49] in different publications. This fluctuation in ciprofloxacin antibacterial activities may explain the current abundant application of levofloxacin and moxifloxacin as positive standards by medicinal chemists when designing and synthesizing novel FQs analogues [24,28,53–55,68–70,73–75].

CenerationNameFor outcomeALCC 97940.251[4]84.312[4]	Fluoroquinolone	olone	— G-ve Bacteria S	Strain	MIC (uM)	Reference
Second Generation Norfloxacin E. coli 112 [41] ATCC 2592 41879 [28] 117.433 [45] 0.094 [24] ATCC 35218 626.05 [44] Norfloxacin K. pneumonine ATCC 1382 [42] Norfloxacin K. pneumonine ATCC 1383 [1] ATCC 1383 [1] [28] Norfloxacin K. pneumonine ATCC 1383 [1] ATCC 27853 [17,433 [28] 1.002 [1] [10] ATCC 1383 [16,503 [28] NCDC 105 46.973 [42] P. aeruginosi ATCC 911 [155.77] [43] ATCC 1002 [1] [1] [1] NCDC 105 46.973 [42] P. aeruginosi 9027 [138] [28] ATCC 1902 [28] [44] [28] A. concethus A. concethus [29] [28] [44] A. concethus A. Concethus <th>Generation</th> <th>Name</th> <th>Struit</th> <th></th> <th>mererence</th>	Generation	Name		Struit		mererence
Second Generation Norfloxacin E. coli 1.12 41 F. coli ATCC 25922 41 117.433 451 0.128 460 117.433 451 0.128 460 117.433 451 0.128 6.63 460 117.433 451 Norfloxacin K. pneumonine ATCC 3518 6.263 440 Norfloxacin K. pneumonine ATCC 13883 4.134 128 Norfloxacin F. preumonine ATCC 27853 4.134 128 Norfloxacin P. aerreginesa ATCC 27853 15.55.773 143 NCDC 105 46.973 142 1002 11 NORTO 105 46.973 142 102 11 NDCD 105 46.973 142 102 102 12 NDCD 105 46.973 142 102 12 14 NDCD 105 46.973 142 102 12 16 I.omeefloxacin F. aerogenosi <				ATCC 8739	<0.251	[1]
 					3.132	[43]
Second Generation E. coli ATCC 25922 <1.879					< 0.094	[24]
Second Generation Norfloxacin E. coli 117.433 [45] ATCC 35218 6.263 [46] F-50 0.595 [44] NCDC 134 125.262 [42] Regeneration ATCC 3583 4.134 [28] Norfloxacin ATCC 9027 9.708 [41] P. aeruginosa ATCC 27853 [45] [17.433] ATCC 27853 19.572 [43] ATCC 43288 16.503 [28] NCDC 105 46.973 [42] PAO1 12.526 [47] <				ATCC 25922	<1.879	[28]
Second Generation Norfloxacin			E. coli		117.433	[45]
Second Generation Norfloxacin $K. pneumoniae$ ATCC 35218 6.263 $[46]$ $F.50$ 0.595 [44] NCDC 134 125.262 [42] $K. pneumoniae$ ATCC 13883 4.134 [28] $ATCC 9027$ 9.708 [44] 1.002 [1] 1.002 [1] $P. aeruginosa$ $ATCC 7853$ [45] 1.002 [1] $P. aeruginosa$ $ATCC 43288$ 16.503 [28] $NCDC 105$ 46.973 [42] $P. aeruginosa$ 9027 12.526 [47] 1.028 [46] $NDCP 015$ 46.973 [42] 1.028 [46] $NDC 015$ 46.973 [42] 1.028 [46] $NDC 015$ 16.503 [42] 1.028 [46] $NDC 015$ 16.503 [42] 1.028 [46] $NDC 015$ 1.028 [42] 1.028 [46] $ADC 01$ 0.257 0.219 0.755 <td></td> <td></td> <td></td> <td></td> <td>0.128</td> <td>[46]</td>					0.128	[46]
Second Generation Norfloxacin $F.50$ 0.595 [44] NCDC 134 125.262 [42] K. pneumoniae ATCC 13883 4.134 [28] ATCC 9027 $F.002$ [11] P. aeruginosa $ATCC 27853$ [45] ATCC 27853 [45] [15,72] [43] ATCC 43288 16.503 [28] [14] P. aeruginosa $ATCC 9107$ [15,72] [43] PAO1 12.526 [47] [14] PAO1 12.526 [47] [14] PAO1 12.526 [47] PAO1 12.526 [47] ATCC 910 12.526 [47] OLOBERON P. aeruginosa 9027 17931 A. Alamonylicus ATCC 19002 0.755 [62] A. haemolyticus ATCC 19002 0.755 [62] A. baumannii CIP 7010 0.3377 [62] A. coacetius ATCC 19002 0.755 [62] A. coa				ATCC 35218	6.263	[46]
Second Generation Norfloxacin K-pneumoniae ATCC 1383 4134 [28] ATCC 9027 9708 [44] 1002 [1]				F-50	0.595	[44]
Second Generation Norfloxacin K. meumoniae ATCC 13883 4.134 [28] ATCC 9027 9.708 [44] 1.002 [1] P. aeruginosa ATCC 27853 16503 [28] ATCC 12288 16.603 [28] NCDC 105 46.973 [42] PAO1 12.526 [47] PAO1 12.526 [47] Pareudotuberculosis ATCC 911 1.879 [28] I.Br99 [28] [14] [46] P. aeruginosa 9027 17.931 [44] A. baumannii CIP 7010 0.377 [62] A. baumannii CIP 7010 0.377 [62] C. freundii				NCDC 134	125.262	[42]
second Generation Nonioxachi 9.708 [44] 1.002 [1] 1.002 [1] 1.002 [1] 1.002 [1] 1.002 [1] 1.002 [1] 1.002 [1] 1.002 [1] 1.002 [43] 1.002 [44] 1.002 [44] 1.002 [43] 1.002 [44] 1.002 [44] 1.002 [44] 1.002 [44] 1.002 [44] 1.002<	Second Constation	Norflowagin	K. pneumoniae	ATCC13883	4.134	[28]
$\begin{array}{c c c c c c } & A \mbox{ICC 902} & 1002 & [1] \\ \hline 1100 & [1] \\ \hline 1000 & [1] \\ 1000 & [1] \\ \hline 1000 & [1] \\ 1000 & [1] \\ \hline 1$	Second Generation	Normoxaciii		ATCC 0027	9.708	[44]
$\begin{array}{l} eq:hardbardbardbardbardbardbardbardbardbardb$				AICC 9027	1.002	[1]
$\begin{array}{c c c c c c c } & AICC 2383 & 19.572 & [43] \\ \hline & AICC 43288 & 16.503 & [28] \\ \hline & AICC 43288 & 16.503 & [28] \\ \hline & AICC 105 & 46.973 & [42] \\ \hline & PAO1 & 12.526 & [47] \\ \hline & Pao1 & 1.509 & [55] \\ \hline & AICC 19002 & 0.755 & [62] \\ \hline & AICC 19002 & 0.755 & [62] \\ \hline & AICC 19001 & 0.377 & [62] \\ \hline & CAN-ICU 63169 & 6.036 & [21] \\ \hline & A. aaaanannii & CIP 7010 & 0.377 & [62] \\ \hline & CAN-ICU 63169 & 6.036 & [21] \\ \hline & A. aaaaanannii & CIP 7010 & 0.377 & [62] \\ \hline & CAN-ICU 63169 & 6.036 & [21] \\ \hline & A. aaaaanannii & CIP 7010 & 0.377 & [62] \\ \hline & CAN-ICU 63169 & 6.036 & [21] \\ \hline & A. aaaaanannii & CIP 7010 & 0.377 & [62] \\ \hline & CAN-ICU 63169 & 6.036 & [21] \\ \hline & A. aaaaaanannii & CIP 7010 & 0.377 & [62] \\ \hline & CAN-ICU 63169 & 6.036 & [21] \\ \hline & A. aaaaaanannii & CIP 7010 & 0.377 & [62] \\ \hline & Canaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$					>1565.773	[45]
$ \begin{array}{c c c c c c c } \hline P \ deringinosa & ATCC 43288 & 16.503 & [28] \\ \hline \ ATCC 43288 & 16.503 & [28] \\ \hline \ NCDC 105 & 46.973 & [42] \\ \hline \ PAO1 & 12.526 & [47] \\ \hline \ PAO1 & 12.526 & [47] \\ \hline \ PAO1 & 12.526 & [47] \\ \hline \ \ 0.128 & [46] \\ \hline \ \ \ \ 0.128 & [46] \\ \hline \ \ 0.128 & [46] \\ \hline \ \ \ 0.128 & [46] \\ \hline \ \ 0.128 & [46] & [46] \\ \hline \ \ 0.128 & [46] & [46] \\ \hline \ \ 0.128 & [46] & $, , , , , , , , , , , , , , , , , , ,	AICC 27853	19.572	[43]
$ \begin{array}{c c c c c c c } \hline NCDC 105 & 46.973 & [42] \\ \hline PAO1 & 12.526 & [47] \\ \hline PAO1 & 12.526 & [47] \\ \hline PAO1 & 12.526 & [47] \\ \hline Part & 12.526 & [47] \\ \hline 0.128 & [46] \\ \hline 0.128 & [44] \\ \hline 0.128 & [41] \\ \hline $			P. aeruginosa	ATCC 43288	16.503	[28]
$ \begin{array}{c c c c c c } \hline PAO1 & 12.526 & [47] \\ \hline PAO1 & 12.526 & [47] \\ \hline 1.879 & [28] \\ \hline 0.128 & [46] \\ \hline 0.128 & [41] \hline 1.290 & [41] \\ \hline 0.019 & [55] \\ \hline 0.019$				NCDC 105	46.973	[42]
$ \begin{array}{ c c c c c } \hline P. seudotuberculosis \\ P. seudotuberculosis \\ Lomefloxacin \\ \hline E. coli \\ P. aeruginosa \\ P. aeruginos \\ P. aeruginos$				PAO1	12.526	[47]
			Y. pseudotuberculosis	ATCC 911	1.879	[28]
$\begin{tabular}{ c c c c c c } \hline Lomefloxacin & E.coli & F-50 & 8.823 & [44] \\ \hline P.aeruginosa & 9027 & 17.931 & [44] \\ \hline A.haemolyticus & ATCC 19002 & 0.755 & [62] \\ \hline A.haemolyticus & ATCC 19002 & 0.755 & [62] \\ \hline A.haemolyticus & ATCC 19000 & 0.377 & [62] \\ \hline C.Aherevel{abular} & $CIP 7010 & 0.377 & [62] \\ \hline C.Aherevel{abular} & $CIP 7010 & 0.377 & [62] \\ \hline C.Aherevel{abular} & $CIP 7010 & 0.377 & [62] \\ \hline C.Aherevel{abular} & ATCC 19606 & [21] \\ \hline A.coacetius & ATCC 19606 & [55] \\ \hline $1.360 & [51] \\ \hline C.freundii & ATCC 43864 & $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$					0.128	[46]
$\begin{tabular}{ c c c c } \hline P. acruginosa & 9027 & 17.931 & [44] \\ \hline A. haemolyticus & ATCC 19002 & 0.755 & [62] \\ \hline A. haemolyticus & ATCC 19002 & 0.755 & [62] \\ \hline A. haumannii & CIP 7010 & 0.377 & [62] \\ \hline CAN-ICU 63169 & 6.036 & [21] \\ \hline A. coacetius & ATCC 19606 & [1.509 & [55] \\ \hline 1.360 & [51] \\ \hline C. freundii & ATCC 19606 & [51] \\ \hline C. freundii & ATCC 43864 & [0.091 & [55] \\ \hline 1.380 & [51] \\ \hline e. aerogenes & ATCC 13048 & [0.091 & [55] \\ \hline e. cloacae & ATCC 13048 & [0.091 & [55] \\ \hline e. cloacae & ATCC 43560 & [0.091 & [55] \\ \hline e. cloacae & ATCC 43560 & [0.091 & [55] \\ \hline e. cloacae & ATCC 43560 & [0.091 & [55] \\ \hline e. cloacae & ATCC 43560 & [0.091 & [55] \\ \hline e. cloacae & [1.001 & [1.001 & [55] \\ \hline e. cloacae & [1.001 & [1.001 & [1.001 & [1.001 & [1.001 & [1.001 & [1.001 & [1.001 & [1.001 & [1.001 & [1.001 & [1.001 & [1.001 & [1.001 & [1.001 & [1.001 & [1.001 & [1.001 & [1.001 & [1.0$		Lomefloxacin	E. coli	F-50	8.823	[44]
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			P. aeruginosa	9027	17.931	[44]
$\begin{array}{c c c c c c c } A. \ baumannii & ATCC17961 & 0.240 & [58] \\ \hline CIP \ 7010 & 0.377 & [62] \\ \hline CAN-ICU \ 63169 & 6.036 & [21] \\ \hline A. \ coacetius & ATCC \ 19606 & 1.509 & [55] \\ \hline 1.360 & [51] \\ \hline 1.360 & [51] \\ \hline C. \ freundii & ATCC \ 43864 & \leq 0.091 & [55] \\ \hline 1.380 & [51] \\ \hline 1.380 & [51] \\ \hline 2. \ oldsymbol{action} & ATCC \ 13048 & \leq 0.080 & [51] \\ \hline \le 0.091 & [55] \\ \hline \le 0.080 & [51] \\ \hline 1.41 & [54] \\ \hline 48.289 & [55] \\ \hline E. \ coli & ESBL^+ \ 14-2 & 96.577 & [54] \\ \hline 14-1 & 24.144 & [54] \\ \hline 14-2 & 24.144 & [54] \\ \hline 14-2 & 24.144 & [54] \\ \hline 14-2 & 24.144 & [54] \\ \hline \end{array}$			A. haemolyticus	ATCC 19002	0.755	[62]
$\begin{array}{c c c c c c } A. \ baumannii & \hline {\mbox{CIP}\ 7010} & 0.377 & [62] \\ \hline CAN-ICU\ 63169 & 6.036 & [21] \\ \hline CAN-ICU\ 63169 & 6.036 & [21] \\ \hline CAN-ICU\ 63169 & 6.036 & [21] \\ \hline A. \ coacetius & ATCC\ 19606 & 1.509 & [55] \\ \hline 1.360 & [51] \\ \hline C. \ freundii & ATCC\ 43864 & \leq 0.091 & [55] \\ \hline 1.380 & [51] \\ \hline SBL & SC\ 13048 & \leq 0.080 & [51] \\ \hline SO\ 0.091 & [55] \\ \hline SC\ 10020000 & [55] \\ \hline SC\ 100200000 & [51] \\ \hline SC\ 10020000000000000 & [51] \\ \hline SC\ 10020000000000000000000000000000000000$			A. baumannii	ATCC17961	0.240	[58]
$ \begin{array}{c c} \hline \mbox{CAN-ICU 63169} & 6.036 & [21] \\ \hline \mbox{A. coacetius} & \mbox{ATCC 19606} & \begin{tabular}{c c c c c } 1.509 & [55] \\ \hline \mbox{1.360} & [51] \\ \hline \mbox{A. coacetius} & \mbox{ATCC 43864} & \begin{tabular}{c c c c c } \le 0.091 & \begin{tabular}{c c c c c } 55\\ \hline \mbox{I.380} & [51] \\ \hline \mbox{I.380} & [55] \\ \hline \mbox{I.380} & [51] \\ \hline \mbox{I.380} & [5$				CIP 7010	0.377	[62]
$\begin{array}{ccc} A. \ coacetius & ATCC 19606 & \hline 1.509 & [55] \\ \hline 1.360 & [51] \\ \hline 1.360 & [51] \\ \hline C. \ freundii & ATCC 43864 & \hline 20.091 & [55] \\ \hline 1.380 & [51] \\ \hline 1.380 & [51] \\ \hline 20.080 & [51] \\ \hline 20.091 & [55] \\ \hline 20.091 & [55] \\ \hline 20.091 & [55] \\ \hline 20.080 & [51] \\ \hline 21.144 & [54] \\ \hline 48.289 & [55] \\ \hline ESBL^+ 14-2 & 96.577 & [54] \\ \hline 14-1 & 24.144 & [54] \\ \hline 14-2 & 24.144 & [54] \\ \hline \end{array}$				CAN-ICU 63169	6.036	[21]
A. coddentiasATCC 190031.360[51] $C. freundii$ ATCC 43864 ≤ 0.091 [55] $E. aerogenes$ ATCC 13048 ≤ 0.080 [51] $E. cloacae$ ATCC 43560 ≤ 0.091 [55] $E. cloacae$ ATCC 43560 ≤ 0.091 [55] $E. cloacae$ ATCC 43560 ≤ 0.091 [55] $E. cloacae$ ESBLs(+)14-11 24.144 [54] $E. coli$ $ESBL^+ 14-2$ 96.577[54] $14-1$ 24.144 [54] $14-2$ 24.144 $14-2$ 24.144 [54]			A concerting	ATCC 10404	1.509	[55]
$ \begin{array}{c} C. \ freundii \\ C. \ freundii \\ E. \ aerogenes \\ E. \ aerogenes \\ E. \ cloacae \\ E. \ cl$			A. coucettus	AICC 19000	1.360	[51]
$ \begin{array}{c} E. present of the second secon$			C froundii	ATCC 42964	≤ 0.091	[55]
$ \begin{array}{c} E. \ aerogenes \\ E. \ aerogenes \\ E. \ cloacae \end{array} \\ ATCC 13048 & \frac{\leq 0.080 [51]}{\leq 0.091 [55]} \\ \hline \leq 0.091 [55] \\ \hline \leq 0.080 [51] \\ \hline = 0.080 [51] \hline [51] \hline$			C. jreunuu	AICC 43804	1.380	[51]
$ \begin{array}{c} E. \ derogenes \\ E. \ derogenes \\ E. \ cloacae \\ E. \ cloacae \\ E. \ cloacae \\ E. \ coli \\ E. \ coli \\ E. \ coli \\ ESBLs(+)14-11 \\ ESBLs(+)14-11 \\ ESBL^+ 14-2 \\ 14-1 \\ 24.144 \\ [54] \\ [55] \\ [55] \\ [54] \\ [55] $			E gavaganas	ATCC 12040	≤ 0.080	[51]
$ \begin{array}{c} E. \ cloacae \\ \hline E. \ cloacae \\ \hline E. \ cloacae \\ \hline E. \ coli \\ \hline \\ E. \ coli \\ \hline \\ E. \ coli \\ \hline \\ ESBL^+ 14-2 \\ \hline \\ 14-1 \\ \hline \\ 14-2 \\ \hline \\ 24.144 \\ \hline \\ 14-2 \\ \hline \\ 24.144 \\ \hline \\ \\ 14-2 \\ \hline \\ \\ 14-1 \\ \hline \\ \\ 14-2 \\ \hline \\ \\ 14-1 \\ \hline \\ \\ 14-2 \\ \hline \\ \\ 14-1 \\ \hline \\ \\ 14-2 \\ \hline \\ \\ 14-1 \\ \hline \\ \\ 14-2 \\ \hline \\ \\ 14-1 \\ \hline \\ \\ 14-2 \\ \hline \\ \\ 14-1 \\ \hline \\ \\ 14-2 \\ \hline \\ \\ 14-1 \\ \hline \\ \\ 14-2 \\ \hline \\ \\ 14-1 \\ \hline \\ \\ 14-2 \\ \hline \\ \\ 14-1 \\ \hline \\ \\ 14-2 \\ \hline \\ \\ 14-1 \\ \hline \\ \\ 14-2 \\ \hline \\ \\ 14-1 \\ \hline \\ \\ 14-2 \\ \hline \\ \\ 14-1 \\ \hline \\ \\ 14-1 \\ \hline \\ \\ 14-2 \\ \hline \\ \\ 14-1 \\ \hline \\ \\ \\ 14-1 \\ \hline \\ \\ \\ 14-1 \\ \hline \\ \\ \\ \\ 14-1 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $			L. uerogenes	AICC 13048	≤0.091	[55]
E. colacte AFCC 43560 $ $					≤0.091	[55]
$E. \ coli \qquad ESBLs(+)14-11 \qquad \frac{24.144}{48.289} [55] \\ ESBL^+ 14-2 \qquad 96.577 [54] \\ 14-1 \qquad 24.144 [54] \\ 14-2 \qquad 24.144 [54] \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$			E. cloacae	AICC 43560	≤0.080	[51]
E. coli E. coli E. coli ESBL+14-2 ESBL+14-2 ESBL+14-2 ESBL+14-2 ESBL+14-2 ESBL+14-2 ESBL+14-2 ESBL+14-2 ESBL+14-4 ES					24.144	[54]
E. coli ESBL+ 14-2 96.577 [54] 14-1 14-2 24.144 [54] 14-2 [54]				ESBLs(+)14-11	48.289	[55]
14-1 24.144 [54] 14-2 24.144 [54]			E. coli	ESBL+ 14-2	96.577	[54]
14-2 24.144 [54]				14-1	24.144	[54]
				14-2	24.144	[54]

 Table 4. Fluoroquinolones' antibacterial activity against Gram-negative bacterial strains.

Generation Name Control Statu Control Attex ATCC-29213 ≤0.755 [21] ATCC-29213 ≤0.755 [21] 0.024 [54] 0.024 [54] 0.021 [4] 0.021 [4] 0.021 [4] 0.031 [48] 0.021 [4] 0.031 [48] 0.002 [24] NR 17663 0.002 [24] NR 17666 0.0045 [24] NR 17661 96.577 [24] NR 17661 96.577 [24] NCC 25922 ESBLs(-); ≦0.091 [51] ≤0.080 [51] ATCC 25922 (wild type) ≤0.091 [76]	Fluoroquinolone	!	— G-ve Bacteria	Strain	MIC (uM)	Reference
ATCC-29213 <0.755 [21,4] ATCC-29213 <0.755 [24,4] 0.024 [54,2] 0.010 [66] 61.869 [49]	Generation Name	6 ve bacteria	Strum		Reference	
E. coli = Carbon Control Con				ATCC-29213	≤ 0.755	[21,52]
ATCC 25922 0.024 (48) 0.031 (48) 0.031 (49) 0.010 (60) (61) (62) (0.02) (24) NR 17663 0.002 (24) NR 17666 0.045 (24) NR 17666 0.045 (24) NR 17661 96:577 (24) ATCC 25922 (wild type) <0.091 (55) <0.080 (51) ATCC 35218 (6961 (54) (20,80) (51) ATCC 35218 (6961 (64) <0.045 (60,4) <0.045 (60,4) <0.045 (60,4) <0.045 (60,4) <0.045 (60,4) <0.045 <0.047 <0.045 <0.041 <0.05 <0.005 <					<1.811	[28,63]
ATCC 25922					0.024	[54,57]
ATCC 25922 0.010 [66] 61.869 [49] 0.092 [24] NR 17663 0.002 [24] NR 17666 0.045 [24] NR 17666 0.045 [24] NR 17666 0.045 [24] NR 17661 96.577 [24] ATCC 25922 (wild type) ≤0.091 [55] ATCC 25922 (wild type) ≤0.091 [76] (wild type) ≤0.091 [76] (wild type) ≤0.091 [76] (wild type) ≤0.091 [76] (wild type) ≤0.0755 [21] CAN-ICU 61714 (GEN-R) ≤0.755 [21] CAN-ICU 50374 (AMK 32) ≤0.755 [21] CAN-ICU 40714 (GEN-R) ≤0.755 [21] CAN-ICU 40714 (GEN-R) ≤0.0755 [21] DC0 0.470 [58] DC2 0.240 [58] F-50 0.573 [44] K12 Mac(L1169 tolC:Tn10) 0.001 K12 Mac(L1169 tolC:Tn10) 0.005 K12					0.031	[48]
$F. coli = \left[\begin{array}{c} 61.869 & [49] \\ 0.091 & [62] \\ 0.002 & [24] \\ NR 17663 & 0.002 & [24] \\ NR 17666 & 0.045 & [24] \\ NR 17661 & 96.577 & [24] \\ ATCC 25922 ESBLs(-); & \leq 0.091 & [55] \\ \leq 0.080 & [51] \\ ATCC 25922 ESBLs(-); & \leq 0.091 & [76] \\ 0.045 & [60, 4] \\ \leq 0.080 & [51] \\ ATCC 35218 & [0.691] & [60, 4] \\ \leq 0.080 & [51] \\ ATCC 35218 & [0.691] & [76] \\ CAN-ICU 61714 (GEN-R) & \leq 0.755 & [21] \\ CAN-ICU 61714 (GEN-R) & \leq 0.755 & [21] \\ CAN-ICU 6174 (AMK 32) & \leq 0.755 & [21] \\ CAN-ICU $				ATCC 25922	0.010	[66]
$E. coli = 0.091 [62] \\ 0.002 [24] \\ NR 17663 0.002 [24] \\ NR 17666 0.045 [24] \\ NR 17666 0.045 [24] \\ NR 17661 96.577 [24] \\ 4RCC 25922 ESBLs(-); \leq 0.091 [55] \\ \leq 0.080 [51] \\ ATCC 25922 (wild type) < 0.091 [76] \\ (0.080 [51] \\ BW5328/pAH69 (wild type) < 0.091 [76] \\ (wild type) < 0.091 [76] \\ CAN-ICU 61714 (GEN-R) < 0.755 [21] \\ CAN-ICU 63074 (AMK 32) < 0.009 [67] \\ K12 \Delta IacU169 Ialc::Tn10 0.001 \\ K12 \Delta IacU169 Ialc::Tn10 0.0$					61.869	[49]
$E. \ coli$ $ 0.002 [24] NR 17663 0.002 [24] NR 17666 0.045 [24] NR 17661 96.577 [24] ATCC 25922 ESBLs(-); $					0.091	[62]
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					0.002	[24]
NR 17666 0.045 [24] NR 17661 96.577 [24] ATCC 25922 ESBLs(-); ≤ 0.091 [55] ≤ 0.080 [51] ATCC 35218 0.045 [60,4] ATCC 35218 16.961 [34] ≤ 0.080 [51] BW5328/pAH69 0.045 [60,4] (wild type) ≤ 0.091 [76] CAN-ICU 61714 (GEN-R) ≤ 0.091 [76] DC0 0.470 [58] DC0 0.470 [58] DC2 0.240 [58] F-50 0.573 [44] K12 AlacUlf69 tol:::Tn10 0.001 gyr A S831 0.019 [67] K12 AlacUlf69 tol::Tn10 0.001 [67] </td <td></td> <td></td> <td></td> <td>NR 17663</td> <td>0.002</td> <td>[24]</td>				NR 17663	0.002	[24]
NR 17661 96.577 [24] ATCC 25922 ESBLs(-):				NR 17666	0.045	[24]
$\begin{array}{l} \mbox{ATCC 25922 ESBLs(-);} & \frac{\leq 0.091}{\leq 0.080} & [51] \\ \hline \leq 0.080 & [51] \\ \hline \leq 0.080 & [51] \\ \hline ATCC 25922 (wild type) & \leq 0.091 & [76] \\ \hline (\Delta MTCC 35218 & 16.961 & [34] \\ \hline \leq 0.080 & [51] \\ \hline \leq 0.080 & [51] \\ \hline \leq 0.080 & [51] \\ \hline \& W5328/pAH69 & $ \le 0.091 & [76] \\ \hline & & & & & & & & & & & & & & & & & &$				NR 17661	96.577	[24]
$\begin{aligned} & \text{ATCC } 25922 \text{ (wild type)} &\leq 0.091 & [76] \\ & \text{ATCC } 25922 \text{ (wild type)} &\leq 0.091 & [76] \\ & \text{ATCC } 35218 & [60, 4] \\ & \text{S0} & [51] \\ & \text{S0} & [51] \\ & \text{S0} & [51] \\ & \text{S0} & \text{S0} & \text{S0} & [51] \\ & \text{S0} & \text{S0} & \text{S0} & [51] \\ & \text{S0} & \text{S0} & \text{S0} & [51] \\ & \text{S0} & \text{S0} & \text{S0} & [51] \\ & \text{S0} & \text{S0} & \text{S0} & [51] \\ & \text{S0} & \text{S0} & \text{S0} & [51] \\ & \text{S0} & \text{S0} & \text{S0} & [51] \\ & \text{S0} & \text{S0} & \text{S0} & [51] \\ & \text{S0} & \text{S0} & \text{S0} & \text{S0} \\ & \text{S0} & \text{S0} & \text{S0} & \text{S0} & [51] \\ & \text{S0} & \text{S0} & \text{S0} & \text{S0} \\ & \text{S0} & \text{S0} & \text{S0} & \text{S0} \\ & \text{S0} & \text{S0} & \text{S0} & \text{S0} \\ & \text{S0} & \text{S0} & \text{S0} & \text{S0} \\ & \text{S0} & \text{S0} & \text{S0} & \text{S0} \\ & \text{S0} & \text{S0} & \text{S0} & \text{S0} \\ & \text{S0} & \text{S0} & \text{S0} & \text{S0} \\ & \text{S0} & \text{S0} & \text{S0} & \text{S0} \\ & \text{S0} & \text{S0} & \text{S0} \\ & \text{S0} & \text{S0} & \text{S0} \\ & \text{S0} & \text{S0} & \text{S0} & \text{S0} \\ & \text{S0} & \text{S0} & \text{S0} & \text{S0} \\ & \text{S0} & \text{S0} & \text{S0} & \text{S0} \\ & \text{S0} & \text{S0} & \text{S0} & \text{S0} \\ & \text{S0} & \text{S0} & \text{S0} & \text{S0} \\ & \text{S0} & \text{S0} & \text{S0} \\ & \text{S0} & \text{S0} & \text{S0} & \text{S0} \\ & \text{S0} & \text{S0} & \text{S0} & \text{S0} \\ & \text{S0} & \text{S0} & \text{S0} & \text{S0} \\ & \text{S0} & \text{S0} & \text{S0} & \text{S0} \\ & \text{S0} & \text{S0} & \text{S0} \\ & \text{S0} & \text{S0} & \text{S0} & \text{S0} \\ & \text{S0} & \text{S0} & \text{S0} & \text{S0} \\ & \text{S0} & \text{S0} & \text{S0} & S$				$\Delta T C C 2E022 E C P ().$	≤ 0.091	[55]
$ \begin{array}{l} \mbox{ATCC 25922 (wild type)} &\leq 0.091 & [76] \\ & & & & & & & & & & & & & & & & & & $				ATCC 25922 ESDLS(-);	≤0.080	[51]
$F. \ coli = 0.045 [60, 0.045]{} \\ [60, 0.080]{} \\ [60, 0.080]{} \\ [60, 0.091]{} \\ [60, 0.0$				ATCC 25922 (wild type)	≤ 0.091	[76]
$F. coli$ $ATCC 35218$ $I6.961$ $[34]$ ≤ 0.080 $[51]$ $BW5328/pAH69$ $(wild type)$ ≤ 0.091 $[76]$ $CAN-ICU 61714 (GEN-R)$ ≤ 0.755 $[21]$ $CAN-ICU 63074 (AMK 32)$ ≤ 0.755 $[21]$ $CAN-ICU 63074 (AMK 32)$ ≤ 0.755 $[21]$ $CANVARD-2011 97615$ 772.616 $[21]$ $gyrA S83LD87N, parC$ $S80I E84G, AcrA+$ >96.577 $[76]$ $DC0$ 0.470 $[58]$ $DC2$ 0.240 $[58]$ $F-50$ 0.573 $[44]$ $K12$ 0.604 $[50]$ $K12 \Delta lacU169 tolC::Tn10$ 0.005 $K12 \Delta lacU169 tolC::Tn10$ 0.009 $[67]$ $gyrA S83L$ $K12 \Delta lacU169 tolC::Tn10$ 0.009 $[67]$ $imp-4213 (permeable outer membrane)$ ≤ 0.091 $[76]$ $JW5503-1 (\Delta tolC)$ ≤ 0.091 $[76]$					0.045	[60,61]
$ \begin{array}{ c c c c c } \hline & & & & & & & & & & & & & & & & & & $				ATCC 35218	16.961	[34]
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					≤0.080	[51]
$ \begin{array}{c c} CAN-ICU 61714 (GEN-R) & \leq 0.755 & [21] \\ \hline CAN-ICU 63074 (AMK 32) & \leq 0.755 & [21] \\ \hline CAN-ICU 63074 (AMK 32) & \leq 0.755 & [21] \\ \hline CAN-ICU 63074 (AMK 32) & \leq 0.755 & [21] \\ \hline CANWARD-2011 97615 & 772.616 & [21] \\ \hline gyrA S83LD87N, parC \\ S801 E84G, AcrA+ & >96.577 & [76] \\ \hline DC0 & 0.470 & [58] \\ \hline DC2 & 0.240 & [58] \\ \hline DC2 & 0.240 & [58] \\ \hline DC2 & 0.240 & [58] \\ \hline F-50 & 0.573 & [44] \\ \hline K12 & 0.604 & [50] \\ \hline K12 & \Delta lacU169 & 0.005 & \\ \hline K12 & \Delta lacU169 & tolC::Tn10 & 0.011 & \\ \hline K12 & \Delta lacU169 tolC::Tn10 & 0.019 & \\ \hline K12 & \Delta lacU169 tolC::Tn10 & 0.019 & \\ \hline K12 & \Delta lacU169 tolC::Tn10 & 0.019 & \\ \hline K12 & \Delta lacU169 tolC::Tn10 & 0.009 & \\ \hline imp-4213 (permeable \\ outer membrane) & \leq 0.091 & [76] \\ \hline JW5503-1 (\Delta tolC) & \leq 0.0091 & [76] \end{array} $				BW5328/pAH69 (wild type)	≤ 0.091	[76]
E. coliCAN-ICU 63074 (AMK 32) ≤ 0.755 [21]CANWARD-2011 97615772.616[21]gyrA S83LD87N, parC S80I E84G, AcrA+>96.577[76]DC00.470[58]DC20.240[58]F-500.573[44]K120.604[50]K12 $\Delta lacU169$ tolC::Tn100.001K12 $\Delta lacU169$ tolC::Tn100.019gyrA S83L0.019K12 $\Delta lacU169$ tolC::Tn100.009Imp-4213 (permeable outer membrane) ≤ 0.091 JW5503-1 (Δ tolC) ≤ 0.091 [76]				CAN-ICU 61714 (GEN-R)	≤0.755	[21]
E. coliCANWARD-2011 97615772.616[21]gyrA S83LD87N, parC S80I E84G, AcrA+>96.577[76]DC00.470[58]DC20.240[58]F-500.573[44]K120.604[50]K12 $\Delta lac U169$ 0.005K12 $\Delta lac U169$ tolC::Tn100.001 $gyrA$ S83L0.019gyrA S83L0.009Imp-4213 (permeable outer membrane) ≤ 0.091 [76]JW5503-1 ($\Delta tolC$) ≤ 0.091 [76]				CAN-ICU 63074 (AMK 32)	≤0.755	[21]
$ \begin{array}{ c c c c c c } & gyrA S83LD87N, parC \\ S80I E84G, AcrA+ & >96.577 & [76] \\ \hline DC0 & 0.470 & [58] \\ \hline DC2 & 0.240 & [58] \\ \hline P-50 & 0.573 & [44] \\ \hline K12 & 0.604 & [50] \\ \hline K12 & \Delta lacU169 & 0.005 & \\ \hline K12 & \Delta lacU169 & tolC::Tn10 & 0.001 & \\ \hline K12 & \Delta lacU169 & tolC::Tn10 & 0.001 & \\ \hline K12 & \Delta lacU169 & tolC::Tn10 & 0.019 & \\ \hline gyrA & S83L & 0.019 & \\ \hline K12 & \Delta lacU169 & tolC::Tn10 & \\ gyrA & D87Y & 0.009 & \\ \hline imp-4213 & (permeable \\ outer membrane) & \leq 0.091 & [76] \\ \hline JW5503-1 & (\Delta toIC) & \leq 0.0.091 & [76] \\ \end{array} $			E. coli	CANWARD-2011 97615	772.616	[21]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				gyrA S83LD87N, parC S80I E84G, AcrA+	>96.577	[76]
$\begin{array}{c c c c c c c } DC2 & 0.240 & [58] \\ \hline F-50 & 0.573 & [44] \\ K12 & 0.604 & [50] \\ \hline K12 \ \Delta lac U169 & 0.005 & \\ \hline K12 \ \Delta lac U169 \ tol C::Tn10 & 0.001 & \\ \hline K12 \ \Delta lac U169 \ tol C::Tn10 & 0.019 & \\ \hline K12 \ \Delta lac U169 \ tol C::Tn10 & \\ gyrA \ S83L & \\ \hline K12 \ \Delta lac U169 \ tol C::Tn10 & \\ gyrA \ S83L & \\ \hline M12 \ \Delta lac U169 \ tol C::Tn10 & \\ gyrA \ S83L & \\ \hline M12 \ \Delta lac U169 \ tol C::Tn10 & \\ gyrA \ S83L & \\ \hline M12 \ \Delta lac U169 \ tol C::Tn10 & \\ gyrA \ S83L & \\ \hline M12 \ \Delta lac U169 \ tol C::Tn10 & \\ gyrA \ S83L & \\ \hline M12 \ \Delta lac U169 \ tol C::Tn10 & \\ \hline M12 \ \Delta lac U169 \ tol C::Tn10 & \\ gyrA \ S83L & \\ \hline M12 \ \Delta lac U169 \ tol C::Tn10 \ tol C::Tn10 & \\ \hline M12 \ \Delta lac U169 \ tol C::Tn10 \ tol C::Tn10 \$				DC0	0.470	[58]
$ \begin{array}{c c} F-50 & 0.573 & [44] \\ K12 & 0.604 & [50] \\ K12 \ \Delta lac U169 & 0.005 & \\ K12 \ \Delta lac U169 \ tol C::Tn10 & 0.001 & \\ K12 \ \Delta lac U169 \ tol C::Tn10 & \\ gyrA \ S83L & \\ K12 \ \Delta lac U169 \ tol C::Tn10 & \\ gyrA \ D87Y & \\ \hline \\ imp-4213 \ (permeable \\ outer \ membrane) & \leq 0.091 & [76] \\ \end{array} $				DC2	0.240	[58]
$ \begin{array}{ c c c c c } \hline K12 & 0.604 & [50] \\ \hline K12 \ \Delta lac U169 & 0.005 & \\ \hline K12 \ \Delta lac U169 \ tol C::Tn10 & 0.001 & \\ \hline K12 \ \Delta lac U169 \ tol C::Tn10 & \\ gyrA \ S83L & \\ \hline K12 \ \Delta lac U169 \ tol C::Tn10 & \\ gyrA \ D87Y & \\ \hline imp-4213 \ (permeable \\ outer \ membrane) & \leq 0.091 & [76] \\ \hline JW5503-1 \ (\Delta tol C) & \leq 0.0.091 & [76] \\ \end{array} $				F-50	0.573	[44]
K12 $\Delta lacU169$ 0.005K12 $\Delta lacU169 tolC::Tn10$ 0.001K12 $\Delta lacU169 tolC::Tn10$ gyrA S83L0.019K12 $\Delta lacU169 tolC::Tn10$ gyrA D87Y0.009imp-4213 (permeable outer membrane) ≤ 0.091 JW5503-1 (Δ toIC) ≤ 0.091 [76]				K12	0.604	[50]
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				K12 ΔlacU169	0.005	
$ \begin{bmatrix} K12 \ \Delta lac U169 \ tol C::Tn10 \\ gyrA \ S83L \\ \end{bmatrix} 0.019 \begin{bmatrix} 67 \end{bmatrix} \\ \begin{bmatrix} K12 \ \Delta lac U169 \ tol C::Tn10 \\ gyrA \ D87Y \\ \end{bmatrix} 0.009 \\ \begin{bmatrix} imp-4213 \ (permeable \\ outer \ membrane) \\ \end{bmatrix} \\ \begin{bmatrix} S0.091 \\ S0.091 \\ \end{bmatrix} \begin{bmatrix} 76 \end{bmatrix} \\ \end{bmatrix} $				K12 ∆lacU169 tolC::Tn10	0.001	
K12 $\Delta lacU169 \ tolC::Tn10$ gyrA D87Y0.009imp-4213 (permeable outer membrane) ≤ 0.091 [76]JW5503-1 (Δ toIC) $\leq 0.0.091$ [76]				K12 ΔlacU169 tolC::Tn10 gyrA S83L	0.019	[67]
imp-4213 (permeable outer membrane) ≤ 0.091 [76]JW5503-1 (Δ toIC) $\leq 0.0.091$ [76]				K12 ΔlacU169 tolC::Tn10 gyrA D87Y	0.009	
JW5503-1 (Δ toIC) $\leq 0.0.091$ [76]				imp-4213 (permeable outer membrane)	≤0.091	[76]
				JW5503-1 (ΔtoIC)	≤0.0.091	[76]
MC4100 (wild type) ≤ 0.091 [76]				MC4100 (wild type)	≤0.091	[76]
NB27005-CDY0039 (ΔtolC, gyrA S83L D83G, 6.036 [76] parC S80I)				NB27005-CDY0039 (ΔtolC, gyrA S83L D83G, parC S80I)	6.036	[76]

Fluoroquinolone			04 I		D (
Generation	Name	G-ve Bacteria	Strain	MIC (µM)	Reference
			NCDC 134	75.451	[42]
			NCTC 8196	0.031	[48]
			Nere 0170	0.040	[66]
		E. coli	ATCC 8739	28.007	[65]
			Penicillin Resistant E. coli	0.377 μM (68.9% survival of bacteria	[77]
		H milori	NCTC 11916	1.811	[72]
		11. руют	Clinical isolate	0.905	[72]
				≤0.755	[21]
			ATCC 12002	1.811	[28]
			AICC 13883	0.755	[62]
				0.050	[66]
			ATCC 35657	0.021	[60,61]
				1.509	[55]
			ATCC 700603 ESBLs (+)	1.360	[51]
				0.755	[63]
			7 ESBLs(-)	≤0.091	[55]
		K. pneumoniae	7 ESBLs (-)	≤ 0.080	[51]
			ESBL ⁺ 14–17	1.509	[54]
			ESBL+ 14-18	1.509	[54]
			ESBL ⁺ 14–19	193.154	[54]
			14-1	96.577	[54]
			14-2	48.288	[54]
			14-3	>386.308	[54]
			14-4	96.577	[54]
			K. pneumonia	40.160	[78]
		M. catarrhalis	ATCC 25238	0.091	[60,61]
		Manonomii		≤0.091	[55]
		wi. morgunii	AICC 25830	≤ 0.080	[51]
			ATCC 0027	0.720	[57]
			AICC 9027	1.177	[44]
			ATCC 15442	0.755	[48]
			ATCC 42200	<0.091	[62]
		P. aeruginosa	AICC 43288	3.954	[28]
				1.509	[48]
			ATCC 27853	1.509	[54]
			AICC 27000	0.680	[51]
				0.755	[55]

Table 4. Cont.

Generation Name C - Ve bacterin Strain MC (0.97) Reference Generation Name C - Ve bacterin 0.755 [62,63] 3.018 [21] CAN-ICU 6208 (GFN.R) 6.066 [21] $CAN-ICU 6208 (GFN.R)$ 6.066 [21] CAN-ICU 6208 (GFN.R) 6.066 [21] $CAN-ICU 6208 (GFN.R)$ 6.066 [21] CAN-ICU 6208 (GFN.R) 0.755 $62,63$ 0.066 [21] CAN-ICU 6208 (GFN.R) 0.066 [21] 0.075 0.066 [21] CAN-ICU 6208 (GFN.R) 0.0755 0.066 0.0755 0.066 0.0755 DSM 1117 Succinate minimum medium + medium medium + minimum medium + 0.755 0.0575 0.061 0.181 0.61 AM 85 Succinate minimum medium + 96.577 $FC13 (1M)$ 6.0240 581 $K799/vt$ 0.470 581 K799/vt 0.470 581 $K799/vt$ 0.470 581 NB52023-C5D005 $(AmexX, AmexB, grA)$ 1.0272 761 761 <th colspan="2">Fluoroquinolone</th> <th></th> <th><i>c</i>. :</th> <th></th> <th></th>	Fluoroquinolone			<i>c</i> . :		
ATCC 27853 0.755 (62,43) AIRC 27853 0.036 [21] CAN-NCU 6208 (GEN.R) 6.036 [21] CANWARD-201196846 12.072 [21] DSM 1117 0.755 [79] DSM 1117 Succinate minimum medium 0.755 [79] AM 85 Mueller-Hinton 48.288 [79] AM 85 Succinate minimum medium + finimum medium + fininum medium + f	Generation	Name	G-ve Bacteria	Strain	MIC (µM)	Keference
AICC 2833 3.018 [21] CANNUK 62:08 (CEN-R) 6.036 [21] CANNUK 62:08 (CEN-R) 6.036 [21] CANNUK 62:08 (CEN-R) 0.755 [21] DSM 1117 0.755 [32] DSM 1117 Succinate minimum medium 0.755 [79] AM 85 Mueller-Hinton 48.288 [79] AM 85 Sucinate minimum medium + 96.577 [79] FCC3 (1 IM) 0.755 [79] AM 85 Sucinate minimum medium + 96.577 [76] K799/vit 0.470 [58] K799/vit 0.470 [59] NB52023-CDK005 [30] [41] NB52023-CDK006 [31] [32] (AmexX, DmexB, gyrA 1.509 [76] NB52023-CDK006 [31] [34] [41-15 3.018 [54] [41-16 3.018 [54] [41-16 3.018				ATCC 27852	0.755	[62,63]
CAN-ICU 62308 (GEN-R) 6.036 [21] CANWARD-2011 9836 12.072 [21] DSM 1117 0.755 [21] DSM 1117 Succinate 0.755 [79] DSM 1117 Succinate 0.755 [79] AM 85 Mueller-Hinton 48.288 [71] AM 85 Succinate 48.288 [72] MM 85 Succinate 48.288 [71] MM 85 Succinate 48.288 [74] MM 85 Succinate 96.577 [76] FcG3 (1 M) 1.509 [53] K799/of 0.470 [58] K799/ot 0.470 [58] K1352 (AmexX, DmexB) 0.181 [76] NES2023-CDK005 [76] [20] (Mass, DmexB) 0.181 [76] NBS2023-CDK005 [20] [76] [20] PAOI 1.177 [50] PAOI 0.181 [51] 14:16 3.				AICC 27855	3.018	[21]
CANWARD-2011 96846 12.072 [21] DSM 1117 0.755 DSM 1117 Succinate minimum medium 0.755 DSM 1117 Succinate minimum medium + fic13 (1M) 0.755 AM 85 Succinate minimum medium + minimum medium + fic13 (1M) 0.755 AM 85 Succinate minimum medium + minimum medium + fic13 (1M) 0.755 AM 85 Succinate minimum medium + fic13 (1M) 96.577 FeC3 (1M) 0.470 [58] K799/vit 0.470 [58] K799/vit 0.470 [58] K799/vit 0.400 [58] K799/vit 0.401 [76] NED202-CDK005 (AmexX, DmexB, gyrA T831) [76] NES2023-CDK05 (AmexX, AmexB, gyrA [2.072 [76] PAOI 1.177 [50] PAOI 1.176 <td< td=""><td></td><td></td><td></td><td>CAN-ICU 62308 (GEN-R)</td><td>6.036</td><td>[21]</td></td<>				CAN-ICU 62308 (GEN-R)	6.036	[21]
DSM 1117 Mueller-Hinton 0.755 DSM 1117 Succinate minimum medium 0.755 DSM 1117 Succinate minimum medium 0.755 FeC3 (1 M) 0.755 AM 85 Mueller-Hinton 48.288 AM 85 Succinate minimum medium 48.288 AM 85 Succinate minimum medium 96.577 FeC3 (1 M) -470 K799/61 0.440 0.790 [42] NBS203-CDK005 [58] (AmexX, DmexB) 0.181 [76] NCDC 105 150.901 [42] NB5203-CDK005 [AmexX, DmexB, gyrA 12.072 [76] (AmexX, DmexB, gyrA 12.072 [76] [76] W101 (Wild type) 0.377 [76] [76] PA01 (Wild type) 0.377 [76] [76] 14.9 1.509 [54] [54] 14.14 3.018 [54] [54] 14.15 3.018 [54] [54] 14.16 3.018 [54] [51] 14.16 3.018<				CANWARD-2011 96846	12.072	[21]
DSM 1117 Succinate minimum medium 0.755 DSM 1117 Succinate minimum medium 0.755 FeC13 (1 M) 0.755 AM 85 Succinate minimum medium 48.288 AM 85 Succinate minimum medium 48.288 AM 85 Succinate minimum medium 96.577 FeC13 (1 M) 0.470 [58] K799/61 0.400 [58] K799/61 0.240 [58] NCDC 100 1.509 [42] NES2023-CDK006 [20] [42] NES2023-CDK006 [20] [42] NES2023-CDK006 [20] [42] [20] [20] [76] P. aeruginosa 1.509 [76] NES2023-CDK006 [20] [76] (AmexX, AmexB, gyrA T831) 1.509 [76] PA01 (Wild type) 0.377 [76] - 5.030 [47] - 5.030 [47] - 5.030 [47] - 5.030 [47] - 5.030				DSM 1117 Mueller-Hinton	0.755	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				DSM 1117 Succinate minimum medium	0.755	
AM 85 Succinate minimum medium 48.288 AM 85 Succinate minimum medium 48.288 AM 85 Succinate minimum medium + FeCl3 (1 M) 96.577 K799/wt 0.470 [58] K1542 (AmexX, DmexB) 0.181 [76] NB52023-CDK005 [42] [42] NB52023-CDK006 [42] [76] (AmexX, DmexB, grA, DmexB, grA, DmexB, grA 12.072 [76] PA01 1.177 [50] [51] PA01 1.177 [50] [51] 14-9 1.509 [49] [41-4] 14-16 3.018 [54] 14-16				DSM 1117 Succinate minimum medium + FeCl ₃ (1 lM)	0.755	[79]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				AM 85 Mueller-Hinton	48.288	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				AM 85 Succinate minimum medium	48.288	
$P. aeruginosa = \begin{bmatrix} K799/wt & 0.470 & [58] \\ K799/61 & 0.240 & [58] \\ K1542 (\Delta mexX, DmexB) & 0.181 & [76] \\ NCDC 105 & 150.901 & [42] \\ NB52023-CDK005 & \\ (\Delta mexX, DmexB, x, DmexB, x, DmexB, x, DmexB, yrA T831) & \\ NB52023-CDK006 & \\ (\Delta mexX, \Delta mexB, gyrA T831) & \\ NB52023-CDK006 & \\ (\Delta mexX, \Delta mexB, gyrA T831) & \\ PAO1 & 1.107 & [50] \\ PAO1 & 1.177 & [50] \\ PAO1 & 1.177 & [50] \\ PAO1 & 0.377 & [76] \\ - & 0.589 & [49] \\ 14-9 & 1.509 & [54] \\ 14-16 & 3.018 & [54] \\ 14-16 & 3.018 & [54] \\ 14-16 & 3.018 & [54] \\ 14-16 & 3.018 & [54] \\ 14-16 & 3.018 & [54] \\ 14-16 & 3.018 & [54] \\ 14-16 & 3.018 & [54] \\ 14-16 & 3.018 & [54] \\ 14-16 & 3.018 & [54] \\ 14-16 & 3.018 & [54] \\ 13-1 & \leq 0.091 & [55] \\ \hline P. rettgeri & ATCC 12905 & \leq 0.080 & [51] \\ \hline P. vulgaris & ATCC 29905 & \frac{<0.091 & [55]}{<0.080 & [51]} \\ \hline \end{cases}$				AM 85 Succinate minimum medium + FeCl3 (1 lM)	96.577	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				K799/wt	0.470	[58]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				K799/61	0.240	[58]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			P. aeruginosa	K1542 (ΔmexX, DmexB)	0.181	[76]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Ŭ	NCDC 105	150.901	[42]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				NB52023-CDK005 (ΔmexX, DmexB, gyrA T83I)	1.509	[76]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				NB52023-CDK006 (ΔmexX, ΔmexB, gyrA T83I, parC S87L)	12.072	[76]
PA01 (Wild type) 0.377 $[76]$ - 5.030 $[47]$ - 0.589 $[49]$ 14-9 1.509 $[54]$ 14-14 3.018 $[54]$ 14-15 3.018 $[54]$ 14-16 3.018 $[54]$ 14-16 3.018 $[54]$ 14-16 3.018 $[54]$ 14-16 3.018 $[54]$ 14-16 3.018 $[54]$ 14-16 3.018 $[54]$ 14-16 3.018 $[54]$ 14-16 3.018 $[54]$ 13-1 ≤ 0.091 $[55]$ ≤ 0.091 $[55]$ ≤ 0.080 $[51]$ $P. vulgaris$ $ATCC 29905$ ≤ 0.080 ≤ 0.080 $[51]$				PAO1	1.177	[50]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				PA01 (Wild type)	0.377	[76]
$\begin{array}{c c c c c c c c } \hline - & 0.589 & [49] \\ \hline 14.9 & 1.509 & [54] \\ \hline 14.14 & 3.018 & [54] \\ \hline 14.15 & 3.018 & [54] \\ \hline 14.16 & [56] & [56] & [56] \\ \hline 14.16 & [56] & [56] \\ \hline 14.16 & [56] & [56] & [56] & [56] \\ \hline 14.16 & [56] & [56] & [56] & [56] \\ \hline 14.16 & [56] & [56] & [56] & [56] & [56] & [56] \\ \hline 14.16 & [56] & [$				-	5.030	[47]
$\frac{14.9}{14.14} = \frac{1.509}{3.018} = \frac{54}{54}$ $\frac{14.14}{14.15} = \frac{3.018}{3.018} = \frac{54}{54}$ $\frac{14.15}{14.16} = \frac{3.018}{3.018} = \frac{54}{54}$ $\frac{14.16}{14.16} = \frac{3.018}{3.018} = \frac{54}{54}$ $\frac{ATCC 12453}{57} = \frac{0.045}{57} = \frac{57}{57}$ $\frac{ATCC 49565}{51} = \frac{50.080}{55} = \frac{55}{57}$ $\frac{9.091}{55} = \frac{55}{57}$ $\frac{50.080}{51} = \frac{55}{57}$ $\frac{50.080}{51} = \frac{55}{57}$ $\frac{50.080}{51} = \frac{55}{57}$				-	0.589	[49]
$\frac{14.14}{14.15} = \frac{3.018}{3.018} = \frac{54}{54}$ $\frac{14.15}{14.16} = \frac{3.018}{3.018} = \frac{54}{54}$ $\frac{14.16}{14.16} = \frac{3.018}{3.018} = \frac{54}{54}$ $\frac{ATCC 12453}{0.045} = \frac{0.080}{57} = \frac{57}{57}$ $\frac{ATCC 49565}{13.1} = \frac{40.091}{55} = \frac{55}{57}$ $\frac{60.091}{55} = \frac{55}{57}$				14-9	1.509	[54]
$\frac{14-15}{14-16} = \frac{3.018}{3.018} = \frac{54}{54}$ $\frac{14-16}{14-16} = \frac{3.018}{0.045} = \frac{57}{57}$ $\frac{ATCC 12453}{0.045} = \frac{0.080}{51} = \frac{55}{55}$ $\frac{P. \ rettgeri}{13-1} = \frac{0.091}{55} = \frac{55}{50}$ $\frac{P. \ rettgeri}{55} = \frac{50.080}{51} = \frac{55}{50}$ $\frac{13-1}{55} = \frac{50.080}{50} = \frac{55}{50}$ $\frac{13-1}{55} = \frac{50.080}{50} = \frac{55}{50}$				14-14	3.018	[54]
$\frac{14-16}{14-16} = \frac{3.018}{3.018} = \frac{54}{54}$ $P. \ mirabilis = \frac{ATCC 12453}{ATCC 49565} = \frac{0.045}{5000} = \frac{55}{51}$ $\frac{P. \ rettgeri}{13-1} = \frac{0.091}{55} = \frac{55}{500}$ $\frac{0.091}{55} = \frac{55}{500}$ $\frac{0.091}{55} = \frac{55}{500}$ $\frac{0.091}{5000} = \frac{55}{500}$ $\frac{0.091}{5000} = \frac{55}{5000}$				14-15	3.018	[54]
ATCC 12453 0.045 [57]P. mirabilisATCC 49565 ≤ 0.080 [51]13-1 ≤ 0.091 [55]P. rettgeriATCC 31052 ≤ 0.091 [55]P. vulgarisATCC 29905 ≤ 0.091 [55]P. vulgarisATCC 29905 ≤ 0.091 [55]				14-16	3.018	[54]
P. mirabilis ATCC 49565 ≤ 0.080 [51] 13-1 ≤ 0.091 [55] P. rettgeri ATCC 31052 ≤ 0.091 [55] P. vulgaris ATCC 29905 ≤ 0.091 [55] <0.080				ATCC 12453	0.045	[57]
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			P. mirabilis	ATCC 49565	≤ 0.080	[51]
P. rettgeri ATCC 31052 ≤ 0.091 [55] ≤ 0.080 [51] P. vulgaris ATCC 29905 ≤ 0.091 [55] < 0.080 [51]				13-1	≤0.091	[55]
P. rettgeri ATCC 31052 ≤ 0.080 [51] P. vulgaris ATCC 29905 ≤ 0.091 [55] <0.080					≤0.091	[55]
P. vulgaris ATCC 29905 ≤ 0.091 [55] <0.080			P. rettgeri	ATCC 31052	≤0.080	[51]
P. vulgaris ATCC 29905 <a>(0.080 [51]					≤0.091	[55]
			P. vulgaris	ATCC 29905	≤0.080	[51]

Fluoroquinolone		C vo Postorio Stroin		MIC (M)	Deferreres
Generation N	Name	G-ve Bacteria	Strain	MIC (µM)	Keference
		C managagana	ATCC 01074	0.160	[51]
		5. murcescens	AICC 21074	0.181	[55]
			ATCC 12626	5.450	[51]
		S. maltophilia	AICC 13030	12.072	[55]
			CAN-ICU 62584	1.325	[56]
		C manualiza	ATCC 49619	0.755	[26]
		5. pneumoniue	12-18	3.018	[26]
		Y. pseudotuberculosis	ATCC 911	1.812	[28]
		Гаторина	ATCC 13048	0.086-0.172	[64]
		E. uerogenes	CM64	01.363	[64]
			1700 07000	<1.636	[28]
C	Ciprofloxacin HCl	E. coli	ATCC 25922	0.022 (pH 7.4)	[64]
		K. pneumoniae	ATCC13883	<1.636	[28]
		P. aeruginosa	ATCC 43288	3.435	[28]
		Y. pseudotuberculosis	ATCC 911	<1.636	[28]
		A concetious	ATCC 19606	0.346	[55]
		71. coucerious	AICC 17000	0.350	[51]
		C freundii	ATCC /386/	≤.0.083	[55]
		Cificultur	AICC 10001	≤ 0.080	[51]
		E. aerogenes	ATCC 13048	0.166	[55]
				0.170	[51]
		E cloacae	ATCC 43560	≤.0.083	[55]
		L. cioucue	MICC 45500	≤ 0.080	[51]
				0.346	[68]
			ATCC 25922	0.0412	[24]
Third Generation L	Levofloxacin			<0.022	[69]
				≤0.083	[55]
			ATCC 25922 ESBLs ⁻	88.610	[51]
			ATCC 35218 ESBLs ⁺	≤ 0.080	[51]
			NR 17663	0.083	[24]
		E. coli	NR 17666	0.083	[24]
			NR 17661	88.552	[24]
			12-6	0.692	[69]
			12-11	11.069	[69]
				11.069	[54]
			ESBL+ 14-1	44.276	[69]
				5.534	[68]

Fluoroquinolone					
Generation	Name	— G-ve Bacteria	Strain	ΜΙC (μ M)	Reference
			FSRI + 14 2	21.810	[54]
			E3DL 14-2	21.810	[68]
		T	Strain ESBL+ 14-2 14-1 14-2 14-2 ESBL+ 14-17 ESBL+ 14-18 ESBL+ 14-19 - 14-1 14-2 14-3 14-3 14-4 ATCC 700603 ESBLs+ ESBLs ⁻ ESBLs ⁻ ESBLs ⁻ 12-4 12-7 ATCC 27853 14-9 14-11 14-15 14-16 14-19 12-12 12-14 12-20	21.810	[54]
		E. COll		10.905	[68]
			14.2	21.810	[54]
			14-2	10.905	[68]
			FSBI + 11_17	1.363	[54]
			E3DL 14-17	10.905	[68]
			ECRI + 1/ 10	1.363	[54]
			E3DL 14-16	2.276	[68]
			ESBL ⁺ 14-19	174.482	[54,68]
			-	11.069	[80]
			14-1	43.621	[54,68]
		K meumoniae	14-2	21.810	[54]
			14_3	87.241	[54]
		14 / 10 / 10 / 10	110	43.621	[68]
			$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	43.621	[54]
				21.810	[68]
	Lovefloverin			[55]	
Third Generation	Levonoxaciii			1.380	[51]
			ESBLs	≤ 0.082	[55]
			ESBLs ⁻	0.170	[51]
			12-4	0.082	[69]
			12-7	1.363	[69]
			ATCC 27853	$\begin{array}{ c c c c c c } \hline 21.810 \\ \hline 21.810 \\ \hline 21.810 \\ \hline 10.905 \\ \hline 21.810 \\ \hline 10.905 \\ \hline 1.363 \\ \hline 10.905 \\ \hline 1.363 \\ \hline 2.276 \\ \hline 174.482 \\ \hline 11.069 \\ \hline 43.621 \\ \hline 21.810 \\ \hline 43.621 \\ \hline 21.810 \\ \hline 87.241 \\ \hline 43.621 \\ \hline 21.810 \\ \hline 87.241 \\ \hline 43.621 \\ \hline 21.810 \\ \hline 87.241 \\ \hline 43.621 \\ \hline 21.810 \\ \hline 87.241 \\ \hline 43.621 \\ \hline 21.810 \\ \hline 87.241 \\ \hline 43.621 \\ \hline 21.810 \\ \hline \hline 87.241 \\ \hline 43.621 \\ \hline 21.810 \\ \hline \hline 87.241 \\ \hline 1.364 \\ \hline 1.363 \\ \hline 2.726 \\ \hline 5.540 \\ \hline 1.363 \\ \hline 2.726 \\ \hline 5.540 \\ \hline 1.363 \\ \hline 2.726 \\ \hline 5.453 \\ $	[54,55,68]
			111002/000	5.540	[51]
			14-9	1.363	[54]
			11 /	2.726	[68]
			14-11	5.453	[68]
			14-14	5.453	[54]
		P. aeruginosa	14-15	5.453	Q [54] 0 [54] 0 [54] 5 [68] 0 [54] 5 [68] 0 [54] 5 [68] 0 [54] 5 [68] 5 [68] 5 [68] 5 [68] 6 [54] 5 [68] 82 [54,68] 9 [80] 1 [54] 1 [54] 1 [54] 1 [54] 1 [54] 0 [68] 1 [54] 0 [68] 1 [54] 0 [51] 82 [55] 0 [51] 5 [69] 5 [68] 5 [68] 5 [54] 5 [68] 5 [68] 5 [54]
		0	14-16	5.453	[54]
			14-19	5.453	[68]
			12-12	1.363	[69]
			12-14	87.241	[69]
			12-20	21.810	[69]
		M. morçanii	ATCC 25830	≤0.083	[55]
		0	AICC 25050	< 0.080	[51]

Fluoroquinolone		- C-ve Bactoria	Strain	MIC (uM)	Reference
Generation	Name		Strain		Kererence
		P mirahilis	13-1	0.166	[55]
			ATCC 49565	≤ 0.080	[51]
		P. rettgeri	ATCC 31052	≤ 0.080	[51]
			1110001002	≤ 0.83	[55]
		P. vulgaris	ATCC 29905	≤ 0.080	[51]
			11100 2000	≤ 0.083	[55]
Third Generation	Levofloxacin	S. maltophilia	ATCC 13636	2.767	[55]
			11100 10000	1.380	[51]
		S marcescens	ATCC 21074	0.350	[51]
		5. <i>marcescens</i>	MCC 21074	0.356	[55]
		S nneumoniae	ATCC 49619	0.345	[26]
		o. pricumontae	12-18	2.535	[26]
	Sparifloxacin	E. coli	F-50	0.484	[44]
	opumoxuem	P. aeruginosa	ATCC 9027	0.484	[44]
		E coli	ATCC 700603 0.160 NCDC 134 266.387 ATCC 25922 2.664 NCDC 105 106.555	0.160	[71]
	Catiflavasin	L. con		266.387	[42]
	Gatifioxacin	K. pneumoniae		[71]	
		P. aeruginosa	NCDC 105	106.555	[42]
		A. baumannii	ATCC 19606	0.972	[50]
			ATCC 25922	0.137	[68]
				<0.018	[69]
				0.037	[24]
				<1.370	[28]
			NR 17663	0.037	[24]
			NR 17666	0.075	[24]
			NR 17661	79.715	[24]
		E. coli	12-6	1.142	[69]
			12-11	36.539	[69]
	Moxifloxacin HCl		ESBL ⁺ 12-14	36.539	[69]
			ESBL ⁺ 14-1	4.567	[68]
			ESBL ⁺ 14-2	36.539	[68]
			14-1	18.269	[68]
			14-2	36.539	[68]
			ATCC 13883	<1.370	[28]
			ESBL+ 14-17	18.269	[68]
		<i>K</i>	ESBL+ 14-18	2.284	[68]
		к. рпеитопіае	ESBL+ 14-19	146.155	[68]
			14-1	18.269	[68]
			14-2	18.269	[68]

Fluoroquinolon	e		- C-ve Bacteria Strain		D (
Generation	Name	- G-ve bacteria	Strain	ΜΙC (μ Μ)	Keference
			14-3	73.077	[68]
			14-4	18.269	[68]
		K. pneumoniae	12-4	0.069	[69]
			ESBL ⁺ 12-7	1.142	[69]
		S nneumoniae	ATCC 49619	0.137	[26]
		5. pricumoniae	12-18	1.142	[26]
			ATCC 27853	4.567	[68]
			ATCC 43288	11.601	[28]
	Moviflovacin HCl		14-9	9.135	[68]
	WIOXIIIOXaciii I ICI		14-11	36.539	[68]
			14-15	36.539	[68]
		P. aeruginosa	14-16	18.269	[68]
			14-19	2.284	[68]
			PA01	7.722	[50]
			12-12	4.567	[69]
			12-14	36.539	[69]
			12-20	18.269	[69]

Table 4. Cont.

ZOI: Zone of Inhibition; NZ: No Zone; ND: Not Detected; Acinetobacter baumannii (A. baumannii); Acinetobacter calcoaceticus (A. calcoacetius); Acinetobacter haemolyticus (A. haemolyticus); American Type Culture Collection (ATCC); Citrobacter freundii (C. freundii); China Center of Industrial Culture Collection (CMCC); Enterobacter aerogenes (E. aerogenes); Enterobacter cloacae (E. cloacae); Escherichia coli (E. coli); Extended spectrum beta-lactamases (ESBL); Helicobacter pylori (H. pylori); Klebsiella pneumonia (K. pneumonia); Moraxella catarrhalis (M. catarrhalis); Morganella morganii (M. morganii); Nigeria Centre for Disease Control (NCDC); Providencia rettgeri (P. rettgeri); Pseudomonas aeruginosa (P. aeruginosa); Proteus mirabilis (P. mirabilis); Proteus vulgaris (P. vulgaris); Serratia marcescens (S. marcescens); Stenotrophomonas maltophilia (S. maltophilia); Streptococcus pneumoniae (S. pneumoniae); Yersinia pseudotuberculosis (Y. pseudotuberculosis).

<1.495

[28]

ATCC 911

As presented in Table 4, different studies reported the use of third generation levofloxacin as a positive control against a wide range of Gram-negative organisms includes *P. aeruginosa*. For this infectious pathogen, MIC ranged from 5.453 μ M [68] for *P. aerugi*nosa 14–19 strain to 87.241 μ M [69] for *P. aeruginosa* 12–14 strain. Similarly, levofloxacin MIC against K. pneumonia ranged from 0.082 µM [69] for K. pneumonia 12-4 strain to 87.241 μM [54] for K. pneumonia 14–3 strain. According to Zhang et al., [69] levofloxacin is around five hundred time more potent against K. pneumonia 12-4 strain compared to *P. aeruginosa* 12–14 strain, though both are Gram-negative pathogens. However, in another by Huang et al. [68], levofloxacin was more potent against *P. aeruginosa* for 14–19 strain compared to K. pneumonia for 14–2 strain. It is worth mentioning that the bacterial strain is the variant factor in both articles. This indeed highlights the importance of referring to the relevant standard control during laboratory investigation and comparisons.

A similar pattern of the wide range of MIC values against the same strain was observed, where the MIC of norfloxacin against E. coli ATCC-25922 ranged from <0.094 µM [24] to 117.433 µM [45].

3.3. FQs' Antimycobacterial Activity

Y. pseudotuberculosis

FQs, particularly ciprofloxacin was included as a positive control along with isoniazid and rifampicin against various Mycobacterium strains as shown in Table 5 [24,26–28,58,63, 65,68,75,81,82]. Furthermore, levofloxacin in vitro anti-mycobacterial activity was reported

and found to be comparable to ciprofloxacin [26,68]. Recent studies by Hu et al., [82] and Mohammed et al., [65] declared moxifloxacin in vitro anti-mycobacterial activity to be more potent than both ciprofloxacin 1 and levofloxacin 3.

0.346

[65]

ATCC06841

Fluoroquinolone Mycobacterium MIC (mM) Reference Strain Bacteria Generation Name 16.503 [28] Norfloxacin M. smegmatis ATCC 607 No activity [46] 36.216-51.307 [63] MIC₉₀ 1.780 [27] MTB H₃₇Rv 3.018 [81] MTB H37Rv ATCC 27294 0.755 [26,68] Second Generation MDR-TB 6.036 [81] Ciprofloxacin M. tuberculosis MDR-MTB 6133 resistant 0.377 [26] to INH and RFP MDR-MTB 11277 resistant 0.377 [26] to INH and RFP M. vaccae IMET10670 0.470 [58] ATCC607 >120.721 [28] M. smegmatis Cipro HCl M. smegmatis ATCC607 >109.052 [28] H₃₇RV 76? 1.384 [65] MTB H37Rv ATCC 27294 0.692 [26,68] MDR-MTB 6133 resistant 0.377 [26] to INH and RFP M. tuberculosis MDR-MTB 11277 resistant 0.692 [26] to INH and RFP R2012-123 (pan-sensitive) 0.692 [65] MDR-TB ND [75] M. abscessus 5.535 [24] M. chelonae Third Generation Levofloxacin 5.535 [24] M. fortuitum 0.346 [24] M. avium ND [75] M. terrae ND [75] R-2012-59 (MDR) 0.692 [65] R-2012-97 (XDR) 22.138 [65] M. abscessus ATCC19977 >88.552 [65] M. chelonae ATCC35752 1.384 [65]

M. fortuitum

Table 5. Fluoroquinolones' antimycobacterial activity.

Fluoroquinolone		Mycobacterium Strain		MIC (mM)	Roforonco
Generation	Name	Bacteria	Strain	MIC (IIIM)	Kererence
			H37Rv ATCC27294	0.311	[65]
		M. tuberculosis	MTB H ₃₇ Rv	0.228	[82]
			MDR-TB	0.274	[82]
			R2012-123 (pan-sensitive)	0.137	[65]
		M. smegmatis (MXF HCl)	ATCC607	>91.347	[28]
	Moxifloxacin	Antituberculosis		0.440	[28]
		R-2012-59 (MDR)		≤ 0.069	[65]
		R-2012-97 (XDR)		4.567	[65]
		M. abscessus	ATCC19977	>73.077	[65]
		M. chelonae	ATCC35752	0.571	[65]
		M. fortuitum	ATCC06841	0.137	[65]

ND: Not determined; Mycobacterium abscessus (Mycobacterium abscessus); Mycobacterium avium (M. avium); Mycobacterium chelonae (M. chelonae); Multi drug resistant Tuberculosis (MDR-TB); Mycobacterium fortuitum (M. fortuitum); Mycobacterium smegmatis (M. smegmatis); Mycobacterium terrae (M. terrae); Mycobacterium tuberculosis (MTB).

3.4. FQs' Antifungal, Antiparasitic, and Anticancer Activity

Apart from their antibacterial activity, FQs were also tested for their antifungal activity with little effect on most fungi. Since the late 1980s, studies revealed anti-trypanosomal activity for the quinolones prototype, nalidixic, and oxolonic acid derivatives [14]. Other studies illustrated the antiparasitic activity of norfloxacin against Plasmodium falciparum and the inhibitory effect of other fluoroquinolones against Plasmodium family [14,83,84]. Today, quinolone-amides related derivatives were used to design anti-trypanosomal compounds with many of them presenting potential in vivo activity [85].

Anticancer activity of FQs were also evaluated against a range of cancer cell lines, such as A549 Lung adenocarcinoma, HCT-116 colon cancer, MCF-7 breast cancer cell lines, and others have been determined previously and compared with the developed counterparts [48,50,61,66] as presented in Table 6.

Fluoroquinolone		Fungi and Cancer	Strain	Inhibitory Effect	Poforonco	
Generation	Name		Strain	Initional Prices	Reference	
Second Generation	Norfloxacin	C. albicans	ATCC 60193	No zone of inhibition	[28]	
		S. cerevisiae	RSKK 251	No zone of inhibition	[=0]	
		A. clavatus		No zone of inhibition	[86]	
		C. albicans	ATCC 90873 amphotericin B-resistant	MIC 97.784 μM	[34]	
	Ciprofloxacin	C. albicans	ATCC 60193	No zone of inhibition	[86]	
		T. brucei	427/421	$\begin{array}{c} MIC \ 100 \ \mu M \\ GI_{50} \ 30.9 \ \pm \ 3.3 \ \mu M \end{array}$	[66]	
		Lung adenocarcinoma	A549	MIC 50 μM	[61]	

Table 6. Fluoroquinolones' antifungal and anticancer activity.

Fluoroquinolon	e	Fungi and Cancer	Strain	Inhibitory Effect	Reference
Generation	Name	3			
		Colon cancer	HCT-116	MIC 50 μM	[61]
		Breast cancer	MCF-7	MIC 50 μM	[61]
	-	HEPG2, liver hepatocellular carcinoma cells	ATCC HB-8065	$IC_{50} \geq 1207.211 \; \mu M$	[50]
		Vero, kidney epithelial cells	ATCC CCL-81.	$IC_{50} \geq 1207.211 \; \mu M$	[50]
	-	Human primary colon cancer	(SW480)	$IC_{50}\ 160.4\pm 6.7\ \mu M$	[48]
		Human metastatic colon cancer	(SW620)	$IC_{50}\ 200.4 \pm 4.9\ \mu M$	[48]
		Human metastatic prostate cancer	(PC3)	$IC_{50}\ 101.4\pm 3.6\ \mu M$	[48]
		Human immortal keratinocyte cell line from adult human skin	(HaCaT)	$IC_{50}\ 222.1 \pm 5.2\ \mu M$	[48]
		LDH release	HaCaT	LDH release % 4.6% at 60 µM 4.2% 40 µM 3.9% 20 µM 3.2% 10 µM	[48]
	Ciprofloxacin	LDH release	SW480	LDH release % 15% at 60 µM 14.5% at 40 µM 14.2% at 20 µM 12% at 10 µM	[48]
		LDH release	SW620	LDH release % 9.3% at 60 µM 9.1% at 40 µM 8.9% at 20 µM 8.1% at 10 µM	[48]
		LDH release	PC3	LDH release % 18% at 60 μM 17.5% at 40 μM 16.5% at 20 μM 14% at 10 μM	[48]
		Urease inhibitory activity		94.32 μM	[78]
		HL-60		$\label{eq:MIC} \begin{split} MIC > 100 \ \mu M \\ GI_{50} > 100 \ \mu M \end{split}$	[66]
		Selectivity		$\label{eq:MIC} \begin{split} MIC > 1 \ \mu M \ ratio \\ GI_{50} > 3.2 \ \mu M \ ratio \end{split}$	[66]
		L929		GI ₅₀ >100 \pm n.d. μ M	[66]
		HeLa		$GI_{50}~560\pm22.6~\mu M$	[66]
		DNA gyrase		IC ₅₀ 0.15 μM	[66]

Fluoroquinolone		Fungi and Cancer	Strain	Inhibitory Effect	Reference	
Generation	Name	8				
		Topoisomerase IV		4.00 μM	[66]	
		Cytotoxicity		>100 µM	[27]	
	Cipro HCl	C. albicans	ATCC 60193	No inhibition	[28]	
		S. cerevisiae	RSKK 251	No inhibition	[28]	
		Vero Cells		$CC_{50} > 276.73 \ \mu M$	[70]	
		A549		$76.3\pm6.51~\mu M$		
		HepG2		>100 µM		
		MCF-7		$64.2\pm5.67~\mu M$		
Third Generation	Levonoxacin	PC-3		>100 µM	[87]	
		HeLa		$71.1\pm4.98~\mu M$		
		MCF-10A (Human breast epithelial cell line)		>100 µM		
		S. cerevisiae	RSKK 251	No inhibition	[28]	
	Moxifloxacin	HEPG2, liver hepatocellular carcinoma cells	ATCC HB-8065	$\geq 996.435~\mu M$	[50]	
		Vero, kidney epithelial cells	ATCC CCL-81	$\geq 996.435 \ \mu M$	[50]	

Micrococcus luteus (*M. luteus*); *Candida albicans* (*C. albicans*); *Saccharomyces cerevisiae* (*S. cerevisiae*); *Aspergillus clavatus* (*A. clavatus*); *Trypanosoma brucei* (*T. brucei*); lactate dehydrogenase (LDH); The half maximal inhibitory concentration (IC₅₀). Minimum inhibitory concentration (MIC); Concentration causing 50% cell growth inhibition (GI₅₀).

3.5. FQs Inhibitory Effect as Anti-Viral Agaents against SARS-CoV-2 and HIV-1

As researchers investigate several approaches to combat COVID-19 infection, there is a wide interest in fluoroquinolones. Ciprofloxacin and Moxifloxacin were tested through in silico molecular docking and showed the potential binding capacity to SARS-CoV-2 main protease (M^{pro}) and low binding energy. Moreover, a recent study evaluated the potency and cellular toxicity of selected FQs (enoxacin, ciprofloxacin, levofloxacin, and moxifloxacin) against SARS-CoV-2 and MERS-COV. This study showed that a high concentration of the tested FQs should be employed to prevent viral replication with enoxacin being the superior (EC50 of 126.4) against SARS-CoV-2 [14,83,84]. Other studies evaluated FQs anti-HIV-1 activities. However, FQs standards activity were not presented [65].

4. Recommendations

Based on recently published research where FQs were used as positive controls against several microorganisms and cancer cells, it is recommended to use the most active FQ in future studies in addition to the parent drugs to compare the benefits and to have an accurate insight when reporting results.

The difference perceived in FQs' potency according to different research articles is challenging and could be attributed to several factors, including the different testing protocols implemented by each research group, solvents or broth used in bacterial culturing, incubation time, bacterial concentration tested, bacterial growth phase, reader instrument sensitivity, etc.

Ciprofloxacin is recommended to be used as a control against Gram-negative bacteria whether resistant or susceptible. If mainly Gram-positive activity is concerned, levofloxacin or moxifloxacin might be the best choices. The wide-spectrum and potent newer generations should be compared with, when broader comparison is desired. Choose moxifloxacin if the development of newer FQs derivatives is not a biologically-based design. This should provide a proper perspective when reporting novel FQs and their activities. Working against Mycobacterium stains, moxifloxacin was found to be more active compared to the other FQs, thus it is advisable to consider it as a positive control.

Moreover, the authors spur adopting preliminary activity testing of the chosen strains before commencing biological evaluation of interest as some of the stains might not be susceptible to the reference drugs. Lastly, given that some stains exhibited varied MIC values against the same drug, we recommend revising the adopted protocols beforehand to get more accurate comparable results of the reference drug, which will be then more reliable to base the conclusions upon.

Author Contributions: Conceptualization, G.A.R.Y.S. and A.A.M.M.; resources, G.A.R.Y.S., A.A.M.M. and B.A.A.; writing—original draft preparation, A.A.M.M.; writing—review and editing, B.A.A. and G.A.R.Y.S.; supervision, G.A.R.Y.S.; funding acquisition, G.A.R.Y.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Deanship of Scientific research at The University of Jordan grant number [2213].

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not related.

Acknowledgments: The authors would like to acknowledge The University of Jordan and The University of Petra.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Pintilie, L.; Stefaniu, A.; Nicu, A.I.; Maganu, M.; Caproiu, M.T. Design, synthesis and docking studies of some novel fluoroquinolone compounds with antibacterial activity. *Synthesis* **2018**, *665*, *636*w. [CrossRef]
- 2. World Health Organization. The World Health Report: 2004: Changing History; World Health Organization: Geneva, Switzerland, 2004.
- 3. Andriole, V.T. The quinolones: Past, present, and future. Clin. Infect. Dis. 2005, 41 (Suppl. S2), S113–S119. [CrossRef] [PubMed]
- 4. Mohammed, A.A.; Suaifan, G.A.; Shehadeh, M.B.; Okechukwu, P.N. Design, synthesis, and biological evaluation of 1, 8naphthyridine glucosamine conjugates as antimicrobial agents. *Drug Dev. Res.* **2019**, *80*, 179–186. [CrossRef] [PubMed]
- Suaifan, G.A.; Mohammed, A.A.M.; Shehadeh, M.B. 1,8-naphthyridine Glucosamine Derivatives, Their Use in the Treatment of Microbial Infections, and a Method for Preparation 2020-WO202084648. Available online: https://patents.google.com/patent/ WO2020084648A1/en?oq=PCT%2fJO2019%2f050010 (accessed on 13 October 2021).
- Suaifan, G.A.; Mohammed, A.A.M.; Shehadeh, M.B. Glycosylated 3-Substituted Fluoroquinolone Derivatives, Preparation Methods Thereof, and Their Use in the Treatment of Antimicrobial Infections 2020, WO2020/202239. Available online: https: //patents.google.com/patent/WO2020202239A1/en?oq=WO2020202239A1 (accessed on 13 October 2021).
- Suaifan, G.A.; Mohammed, A.A.M.; Shehadeh, M.B. 1,8-naphthyridine Glucosamine Derivatives, and Uses Thereof for Treating Microbial Infections 2018. Reg. No. P/JO/2018/000097. Available online: https://patentscope.wipo.int/search/ar/detail.jsf? docId=JO320922571&_cid=P10-KZSKQB-93797-1 (accessed on 13 October 2021).
- Ezelarab, H.A.; Abbas, S.H.; Hassan, H.A.; Abuo-Rahma, G.E.D.A. Recent updates of fluoroquinolones as antibacterial agents. *Arch. Pharm.* 2018, 351, 1800141.
- 9. Suaifan, G.A.; Mohammed, A.A. Fluoroquinolones structural and medicinal developments (2013–2018): Where are we now? *Bioorg. Med. Chem.* 2019, 27, 3005–3060. [CrossRef] [PubMed]
- Suaifan, G.A.; Mohammed, A.A. Erratum to "Fluoroquinolones structural and medicinal developments (2013–2018): Where are we now?". *Bioorganic Med. Chem.* 2019, 27, 115072. [CrossRef]
- 11. Markham, A. Delafloxacin: First global approval. Drugs 2017, 77, 1481–1486. [CrossRef]
- 12. Patrick, G.L. An Introduction to Medicinal Chemistry; Oxford University Press: Oxford, UK, 2013.
- 13. Idowu, T.; Schweizer, F. Ubiquitous nature of fluoroquinolones: The oscillation between antibacterial and anticancer activities. *Antibiotics* **2017**, *6*, 26. [CrossRef]
- Dalhoff, A. Antiviral, antifungal, and antiparasitic activities of fluoroquinolones optimized for treatment of bacterial infections: A puzzling paradox or a logical consequence of their mode of action? *Eur. J. Clin. Microbiol. Infect. Dis.* 2015, 34, 661–668. [CrossRef]
- 15. Ozdek, S.C.; Miller, D.; Flynn, P.M.; Flynn, H.W., Jr. In vitro antifungal activity of the fourth generation fluoroquinolones against Candida isolates from human ocular infections. *Ocul. Immunol. Inflamm.* **2006**, *14*, 347–351. [CrossRef]
- 16. Oliphant, C.M.; Green, G. Quinolones: A comprehensive review. Am. Fam. Physician 2002, 65, 455.

- 17. Abidi, M.; Ledeboer, N.; Banerjee, A.; Hari, P. Morbidity and mortality attributable to Rothia bacteremia in neutropenic and nonneutropenic patients. *Diagn. Microbiol. Infect. Dis.* **2016**, *85*, 116–120. [CrossRef] [PubMed]
- Mitscher, L.A. Bacterial topoisomerase inhibitors: Quinolone and pyridone antibacterial agents. *Chem. Rev.* 2005, 105, 559–592. [CrossRef] [PubMed]
- 19. Zhanel, G.G.; Walkty, A.; Vercaigne, L.; Karlowsky, J.A.; Embil, J.; Gin, A.S.; Hoban, D.J. The new fluoroquinolones: A critical review. *Can. J. Infect. Dis. Med. Microbiol.* **1999**, *10*, 207–238. [CrossRef] [PubMed]
- 20. Zhanel, G.G.; Ennis, K.; Vercaigne, L.; Walkty, A.; Gin, A.S.; Embil, J.; Smith, H.; Hoban, D.J. A critical review of the fluoroquinolones. *Drugs* **2002**, *62*, 13–59. [CrossRef] [PubMed]
- Gorityala, B.K.; Guchhait, G.; Goswami, S.; Fernando, D.M.; Kumar, A.; Zhanel, G.G.; Schweizer, F. Hybrid antibiotic overcomes resistance in P. aeruginosa by enhancing outer membrane penetration and reducing efflux. *J. Med. Chem.* 2016, 59, 8441–8455. [CrossRef]
- 22. Jorgensen, S.C.; Mercuro, N.J.; Davis, S.L.; Rybak, M.J. Delafloxacin: Place in therapy and review of microbiologic, clinical and pharmacologic properties. *Infect. Dis. Ther.* 2018, 7, 197–217. [CrossRef] [PubMed]
- 23. Ibrahim, M.A.; Panda, S.S.; Birs, A.S.; Serrano, J.C.; Gonzalez, C.F.; Alamry, K.A.; Katritzky, A.R. Synthesis and antibacterial evaluation of amino acid–antibiotic conjugates. *Bioorganic Med. Chem. Lett.* **2014**, 24, 1856–1861. [CrossRef]
- Pardeshi, K.A.; Kumar, T.A.; Ravikumar, G.; Shukla, M.; Kaul, G.; Chopra, S.; Chakrapani, H. Targeted Antibacterial Activity Guided by Bacteria-Specific Nitroreductase Catalytic Activation to Produce Ciprofloxacin. *Bioconjugate Chem.* 2019, 30, 751–759. [CrossRef]
- Abdel-Aziz, M.; Park, S.-E.; Abuo-Rahma, G.E.-D.A.; Sayed, M.A.; Kwon, Y. Novel N-4-piperazinyl-ciprofloxacin-chalcone hybrids: Synthesis, physicochemical properties, anticancer and topoisomerase I and II inhibitory activity. *Eur. J. Med. Chem.* 2013, 69, 427–438. [CrossRef]
- Liu, H.; Huang, J.; Wang, J.; Wang, M.; Liu, M.; Wang, B.; Guo, H.; Lu, Y. Synthesis, antimycobacterial and antibacterial evaluation of l-[(1R, 2S)-2-fluorocyclopropyl] fluoroquinolone derivatives containing an oxime functional moiety. *Eur. J. Med. Chem.* 2014, 86, 628–638. [CrossRef]
- 27. Cilliers, P.; Seldon, R.; Smit, F.J.; Aucamp, J.; Jordaan, A.; Warner, D.F.; N'Da, D.D. Design, synthesis, and antimycobacterial activity of novel ciprofloxacin derivatives. *Chem. Biol. Drug Des.* **2019**, *94*, 1518–1536. [CrossRef] [PubMed]
- Türe, A.; Kulabaş, N.; Dingiş, S.İ.; Birgül, K.; Bozdeveci, A.; Karaoğlu, Ş.A.; Krishna, V.S.; Sriram, D.; Küçükgüzel, İ. Design, synthesis and molecular modeling studies on novel moxifloxacin derivatives as potential antibacterial and antituberculosis agents. *Bioorganic Chem.* 2019, *88*, 102965. [CrossRef] [PubMed]
- Wayne, P. Clinical and Laboratory Standards Institute (CLSI) performance standards for antimicrobial disk diffusion susceptibility tests 19th ed. approved standard. CLSI Doc. M100-S19 2009, 29, M100-S21.
- Pfaller, M.; Sheehan, D.; Rex, J. Determination of fungicidal activities against yeasts and molds: Lessons learned from bactericidal testing and the need for standardization. *Clin. Microbiol. Rev.* 2004, 17, 268–280. [CrossRef]
- 31. Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. *J. Pharm. Anal.* 2016, *6*, 71–79. [CrossRef]
- 32. Khan, Z.A.; Siddiqui, M.F.; Park, S. Current and emerging methods of antibiotic susceptibility testing. *Diagnostics* **2019**, *9*, 49. [CrossRef]
- SLCI Performance Standards for Antimicrobial Disk Susceptibility Tests. Available online: https://clsi.org/standards/products/ microbiology/documents/m02/ (accessed on 30 March 2020).
- Xiao, Z.-P.; Wang, X.-D.; Wang, P.-F.; Zhou, Y.; Zhang, J.-W.; Zhang, L.; Zhou, J.; Zhou, S.-S.; Ouyang, H.; Lin, X.-Y. Design, synthesis, and evaluation of novel fluoroquinolone–flavonoid hybrids as potent antibiotics against drug-resistant microorganisms. *Eur. J. Med. Chem.* 2014, 80, 92–100. [CrossRef]
- Towle, T.R.; Kulkarni, C.A.; Oppegard, L.M.; Williams, B.P.; Picha, T.A.; Hiasa, H.; Kerns, R.J. Design, synthesis, and evaluation of novel N-1 fluoroquinolone derivatives: Probing for binding contact with the active site tyrosine of gyrase. *Bioorganic Med. Chem. Lett.* 2018, 28, 1903–1910. [CrossRef]
- Jorgensen, J.H.; Turnidge, J.D. Susceptibility test methods: Dilution and disk diffusion methods. Man. Clin. Microbiol. 2015, 1253–1273.
- 37. Korgenski, E.K.; Daly, J.A. Evaluation of the BIOMIC video reader system for determining interpretive categories of isolates on the basis of disk diffusion susceptibility results. *J. Clin. Microbiol.* **1998**, *36*, 302–304. [CrossRef]
- Benkova, M.; Soukup, O.; Marek, J. Antimicrobial susceptibility testing: Currently used methods and devices and the near future in clinical practice. *J. Appl. Microbiol.* 2020, 129, 806–822. [CrossRef] [PubMed]
- Le Page, S.; van Belkum, A.; Fulchiron, C.; Huguet, R.; Raoult, D.; Rolain, J.-M. Evaluation of the PREVI[®] Isola automated seeder system compared to reference manual inoculation for antibiotic susceptibility testing by the disk diffusion method. *Eur. J. Clin. Microbiol. Infect. Dis.* 2015, 34, 1859–1869. [CrossRef] [PubMed]
- 40. Hada, D.; Chauhan, N.P.S. 11. Antimicrobial testing methods. In Biocidal Polymers; De Gruyter: Berlin, Boston, 2019; pp. 241–262.
- 41. Bruin, J.P.; Diederen, B.M.; IJzerman, E.P.; Den Boer, J.W.; Mouton, J.W. Correlation of MIC value and disk inhibition zone diameters in clinical Legionella pneumophila serogroup 1 isolates. *Diagn. Microbiol. Infect. Dis.* **2013**, *76*, 339–342. [CrossRef]
- 42. Sharma, P.C.; Kumar, R.; Chaudhary, M.; Sharma, A.; Rajak, H. Synthesis and biological evaluation of novel benzothiazole clubbed fluoroquinolone derivatives. *J. Enzym. Inhib. Med. Chem.* **2013**, *28*, 1–10. [CrossRef]

- 43. Patel, M.M.; Patel, L.J. Design, synthesis, molecular docking, and antibacterial evaluation of some novel flouroquinolone derivatives as potent antibacterial agent. *Sci. World J.* **2014**, 2014, 10. [CrossRef]
- Chugunova, E.; Akylbekov, N.; Bulatova, A.; Gavrilov, N.; Voloshina, A.; Kulik, N.; Zobov, V.; Dobrynin, A.; Syakaev, V.; Burilov, A. Synthesis and biological evaluation of novel structural hybrids of benzofuroxan derivatives and fluoroquinolones. *Eur. J. Med. Chem.* 2016, 116, 165–172. [CrossRef] [PubMed]
- Leyva-Ramos, S.; de Loera, D.; Cardoso-Ortiz, J. In vitro antibacterial activity of 7-substituted-6-fluoroquinolone and 7-substituted-6, 8-difluoroquinolone derivatives. *Chemotherapy* 2017, 62, 194–198. [CrossRef]
- Mentese, M.; Demirbas, N.; Mermer, A.; Demirci, S.; Demirbas, A.; Ayaz, F.A. Novel azole-functionalited flouroquinolone hybrids: Design, conventional and microwave irradiated synthesis, evaluation as antibacterial and antioxidant agents. *Lett. Drug Des. Discov.* 2018, 15, 46–64. [CrossRef]
- Seliem, I.A.; Panda, S.S.; Girgis, A.S.; Nagy, Y.I.; George, R.F.; Fayad, W.; Fawzy, N.G.; Ibrahim, T.S.; Al-Mahmoudy, A.M.; Sakhuja, R. Design, synthesis, antimicrobial, and DNA gyrase inhibitory properties of fluoroquinolone–dichloroacetic acid hybrids. *Chem. Biol. Drug Des.* 2020, *95*, 248–259. [CrossRef]
- 48. Chrzanowska, A.; Roszkowski, P.; Bielenica, A.; Olejarz, W.; Stępień, K.; Struga, M. Anticancer and antimicrobial effects of novel ciprofloxacin fatty acids conjugates. *Eur. J. Med. Chem.* **2020**, *185*, 111810. [CrossRef]
- Mokaber-Esfahani, M.; Eshghi, H.; Akbarzadeh, M.; Gholizadeh, M.; Mirzaie, Y.; Hakimi, M.; Lari, J. Synthesis and Antibacterial Evaluation of New Pyrimidyl N-Ciprofloxacin Derivatives. *ChemistrySelect* 2019, *4*, 8930–8933. [CrossRef]
- 50. Garza, I.; Wallace, M.J.; Fernando, D.; Singh, A.; Lee, R.E.; Gerding, J.S.; Franklin, C.; Yendapally, R. Synthesis and Evaluation of Thiazolidine Amide and N-Thiazolyl Amide Fluoroquinolone Derivatives. *Arch. Der. Pharm.* **2017**, *350*, e201700029. [CrossRef]
- Gao, Y.; Na, L.X.; Xu, Z.; Zhang, S.; Wang, A.P.; Lü, K.; Guo, H.Y.; Liu, M.L. Design, Synthesis and Antibacterial Evaluation of 1-[(1R, 2S)-2-Fluorocyclopropyl] ciprofloxacin-1, 2, 4-triazole-5 (4H)-thione Hybrids. *Chem. Biodivers.* 2018, 15, e1800261. [CrossRef]
- 52. Gao, L.-Z.; Xie, Y.-S.; Li, T.; Huang, W.-L.; Hu, G.-Q. Synthesis and antibacterial activity of novel [1, 2, 4] triazolo [3, 4-h][1, 8] naphthyridine-7-carboxylic acid derivatives. *Chin. Chem. Lett.* **2015**, *26*, 149–151. [CrossRef]
- 53. Bykowska, A.; Starosta, R.; Jezierska, J.; Jeżowska-Bojczuk, M. Coordination versatility of phosphine derivatives of fluoroquinolones. New Cu I and Cu II complexes and their interactions with DNA. *RSC Adv.* **2015**, *5*, 80804–80815. [CrossRef]
- 54. Zhang, T.; Shen, W.; Liu, M.; Zhang, R.; Wang, M.; Li, L.; Wang, B.; Guo, H.; Lu, Y. Synthesis, antimycobacterial and antibacterial activity of fluoroquinolone derivatives containing an 3-alkoxyimino-4-(cyclopropylanimo) methylpyrrolidine moiety. *Eur. J. Med. Chem.* **2015**, *104*, 73–85. [CrossRef]
- 55. Xu, Z.; Zhang, S.; Feng, L.-S.; Li, X.-N.; Huang, G.-C.; Chai, Y.; Lv, Z.-S.; Guo, H.-Y.; Liu, M.-L. Synthesis and in vitro antimycobacterial and antibacterial activity of 8-OMe ciprofloxacin-hydrozone/azole hybrids. *Molecules* **2017**, 22, 1171. [CrossRef]
- Gorityala, B.K.; Guchhait, G.; Fernando, D.M.; Deo, S.; McKenna, S.A.; Zhanel, G.G.; Kumar, A.; Schweizer, F. Adjuvants based on hybrid antibiotics overcome resistance in Pseudomonas aeruginosa and enhance fluoroquinolone efficacy. *Angew. Chem. Int. Ed.* 2016, 55, 555–559. [CrossRef]
- 57. Plech, T.; Wujec, M.; Kosikowska, U.; Malm, A.; Rajtar, B.; Polz-Dacewicz, M. Synthesis and in vitro activity of 1, 2, 4-triazoleciprofloxacin hybrids against drug-susceptible and drug-resistant bacteria. *Eur. J. Med. Chem.* **2013**, *60*, 128–134. [CrossRef]
- 58. Ji, C.; Miller, P.A.; Miller, M.J. Syntheses and antibacterial activity of N-acylated ciprofloxacin derivatives based on the trimethyl lock. *ACS Med. Chem. Lett.* **2015**, *6*, 707–710. [CrossRef]
- Kassab, A.E.; Gedawy, E.M. Novel ciprofloxacin hybrids using biology oriented drug synthesis (BIODS) approach: Anticancer activity, effects on cell cycle profile, caspase-3 mediated apoptosis, topoisomerase II inhibition, and antibacterial activity. *Eur. J. Med. Chem.* 2018, 150, 403–418. [CrossRef]
- Rajulu, G.G.; Naik, H.S.B.; Abhilash, V.; Thiruvengadam, J.; Rajesh, K.; Ganesh, S.; Jagadheshan, H.; Kesavan, P.K. New hydroxamic acid derivatives of fluoroquinolones: Synthesis and evaluation of antibacterial and anticancer properties. *Chem. Pharm. Bull.* 2014, 62, 168–175. [CrossRef]
- Rajulu, G.G.; Naik, H.S.B.; Kumar, G.C.; Ramaraj, S.; Sambasivam, G.; Koppolu, K.P. New azetidine-3-carbonyl-N-methylhydrazino derivatives of fluoroquinolones: Synthesis and evaluation of antibacterial and anticancer properties. *Med. Chem. Res.* 2014, 23, 2856–2868. [CrossRef]
- Mermer, A.; Faiz, O.; Demirbas, A.; Demirbas, N.; Alagumuthu, M.; Arumugam, S. Piperazine-azole-fluoroquinolone hybrids: Conventional and microwave irradiated synthesis, biological activity screening and molecular docking studies. *Bioorganic Chem.* 2019, *85*, 308–318. [CrossRef] [PubMed]
- 63. Vu, T.H.; Ha-Duong, N.-T.; Aubry, A.; Capton, E.; Fechter, P.; Plesiat, P.; Verbeke, P.; Serradji, N. In vitro activities of a new fluoroquinolone derivative highly active against Chlamydia trachomatis. *Bioorganic Chem.* **2019**, *83*, 180–185. [CrossRef]
- Marquez, B.; Pourcelle, V.; Vallet, C.M.; Mingeot-Leclercq, M.-P.; Tulkens, P.M.; Marchand-Bruynaert, J.; Van Bambeke, F. Pharmacological characterization of 7-(4-(piperazin-1-yl)) ciprofloxacin derivatives: Antibacterial activity, cellular accumulation, susceptibility to efflux transporters, and intracellular activity. *Pharm. Res.* 2014, *31*, 1290–1301. [CrossRef]
- 65. Mohammed, H.H.; Abbas, S.H.; Abdelhafez, E.-S.M.; Berger, J.M.; Mitarai, S.; Arai, M.; Abuo-Rahma, G.E.-D.A. Synthesis, molecular docking, antimicrobial evaluation, and DNA cleavage assay of new thiadiazole/oxadiazole ciprofloxacin derivatives. *Mon. Für Chem.-Chem. Mon.* **2019**, 150, 1809–1824. [CrossRef]

- Szczupak, Ł.; Kowalczyk, A.; Trzybiński, D.; Woźniak, K.; Mendoza, G.; Arruebo, M.; Steverding, D.; Stączek, P.; Kowalski, K. Organometallic ciprofloxacin conjugates with dual action: Synthesis, characterization, and antimicrobial and cytotoxicity studies. *Dalton Trans.* 2020, 49, 1403–1415. [CrossRef]
- 67. Li, X.; Zhang, Y.-K.; Plattner, J.J.; Mao, W.; Alley, M.; Xia, Y.; Hernandez, V.; Zhou, Y.; Ding, C.Z.; Li, J. Synthesis and antibacterial evaluation of a novel tricyclic oxaborole-fused fluoroquinolone. *Bioorganic Med. Chem. Lett.* **2013**, *23*, 963–966. [CrossRef]
- Huang, J.; Wang, M.; Wang, B.; Wu, Z.; Liu, M.; Feng, L.; Zhang, J.; Li, X.; Yang, Y.; Lu, Y. Synthesis, antimycobacterial and antibacterial activity of 1-(6-amino-3, 5-difluoropyridin-2-yl) fluoroquinolone derivatives containing an oxime functional moiety. *Bioorganic Med. Chem. Lett.* 2016, 26, 2262–2267. [CrossRef]
- 69. Zhang, T.; Wu, J.; Chen, S.; Liu, K.; Lin, Y.; Guo, H.; Liu, M. Synthesis and antibacterial activity of amino acid and dipeptide prodrugs of IMB-070593, a fluoroquinolone candidate. *Molecules* **2014**, *19*, 6822–6837. [CrossRef] [PubMed]
- Salunke, R.A.; Shukla, M.; Kaul, G.; Bansal, B.R.; Chopra, S.; Chhibber, M. New fluoroquinolone compounds with endo-nortropine derivatives at C-7 position show antibacterial activity against fluoroquinolone-resistant strains of Staphylococcus aureus. *Chem. Biol. Drug Des.* 2019, *94*, 1626–1633. [CrossRef] [PubMed]
- Li, Q.; Xing, J.; Cheng, H.; Wang, H.; Wang, J.; Wang, S.; Zhou, J.; Zhang, H. Design, Synthesis, Antibacterial Evaluation and Docking Study of Novel 2-Hydroxy-3-(nitroimidazolyl)-propyl-derived Quinolone. *Chem. Biol. Drug Des.* 2015, 85, 79–90. [CrossRef]
- Abu-Sini, M.; Mayyas, A.; Al-Karablieh, N.; Darwish, R.; Al-Hiari, Y.; Aburjai, T.; Arabiyat, S.; Abu-Qatouseh, L. Synthesis of 1, 2, 3-triazolo [4, 5-h] quinolone derivatives with novel anti-microbial properties against Metronidazole resistant Helicobacter pylori. *Molecules* 2017, 22, 841. [CrossRef]
- 73. El-Megharbel, S.; Adam, A.; Megahed, A.; Refat, M. Synthesis and molecular structure of moxifloxacin drug with metal ions as a model drug against some kinds of bacteria and fungi. *Russ. J. Gen. Chem.* **2015**, *85*, 2366–2373. [CrossRef]
- 74. Long, T.E.; Keding, L.C.; Lewis, D.D.; Anstead, M.I.; Withers, T.R.; Hongwei, D.Y. Anionic fluoroquinolones as antibacterials against biofilm-producing Pseudomonas aeruginosa. *Bioorganic Med. Chem. Lett.* **2016**, *26*, 1305–1309. [CrossRef]
- Charushin, V.N.; Mochulskaya, N.N.; Antipin, F.V.; Kotovskaya, S.K.; Nosova, E.V.; Ezhikova, M.A.; Kodess, M.I.; Kravchenko, M.A. Synthesis and antimycobacterial evaluation of new (2-oxo-2H-chromen-3-yl) substituted fluoroquinolones. *J. Fluor. Chem.* 2018, 208, 15–23. [CrossRef]
- Ross, A.G.; Benton, B.M.; Chin, D.; De Pascale, G.; Fuller, J.; Leeds, J.A.; Reck, F.; Richie, D.L.; Vo, J.; LaMarche, M.J. Synthesis of ciprofloxacin dimers for evaluation of bacterial permeability in atypical chemical space. *Bioorganic Med. Chem. Lett.* 2015, 25, 3468–3475. [CrossRef]
- 77. Bartzatt, R.; Cirillo, S.L.; Cirillo, J.D. Antibacterial derivatives of ciprofloxacin to inhibit growth of necrotizing fasciitis associated penicillin resistant Escherichia coli. *J. Pharm.* **2013**, 2013, 517638. [CrossRef]
- 78. AA Abdel-Aal, M.; Abdel-Aziz, S.A.; Shaykoon, M.S.A.; Mohamed, M.F.; Abuo-Rahma, G.E.-D.A. Antibacterial and Urease Inhibitory activity of New Piperazinyl N-4 Functionalized Ciprofloxacin-oxadiazoles. *J. Mod. Res.* **2019**, *1*, 1–7. [CrossRef]
- 79. Fardeau, S.; Dassonville-Klimpt, A.; Audic, N.; Sasaki, A.; Pillon, M.; Baudrin, E.; Mullié, C.; Sonnet, P. Synthesis and antibacterial activity of catecholate–ciprofloxacin conjugates. *Bioorganic Med. Chem.* **2014**, *22*, 4049–4060. [CrossRef]
- 80. Riahifard, N.; Tavakoli, K.; Yamaki, J.; Parang, K.; Tiwari, R. Synthesis and evaluation of antimicrobial activity of [r4w4k]-levofloxacin and [r4w4k]-levofloxacin-q conjugates. *Molecules* **2017**, *22*, 957. [CrossRef] [PubMed]
- Chen, R.; Zhang, H.; Ma, T.; Xue, H.; Miao, Z.; Chen, L.; Shi, X. Ciprofloxacin-1, 2, 3-triazole-isatin hybrids tethered via amide: Design, synthesis, and in vitro anti-mycobacterial activity evaluation. *Bioorg. Med. Chem. Lett.* 2019, 29, 2635–2637. [CrossRef] [PubMed]
- Yan, X.; Lv, Z.; Wen, J.; Zhao, S.; Xu, Z. Synthesis and in vitro evaluation of novel substituted isatin-propylene-1H-1, 2, 3-triazole-4-methylene-moxifloxacin hybrids for their anti-mycobacterial activities. *Eur. J. Med. Chem.* 2018, 143, 899–904. [CrossRef]
- 83. Scroggs, S.L.; Offerdahl, D.K.; Flather, D.P.; Morris, C.N.; Kendall, B.L.; Broeckel, R.M.; Beare, P.A.; Bloom, M.E. Fluoroquinolone antibiotics exhibit low antiviral activity against SARS-CoV-2 and MERS-CoV. *Viruses* **2021**, *13*, 8. [CrossRef]
- 84. Sarma, P. Norfloxacin: A new drug in the treatment of falciparum malaria. Ann. Intern. Med. 1989, 111, 336–337. [CrossRef]
- Hiltensperger, G.; Hecht, N.; Kaiser, M.; Rybak, J.-C.; Hoerst, A.; Dannenbauer, N.; Müller-Buschbaum, K.; Bruhn, H.; Esch, H.; Lehmann, L. Quinolone amides as antitrypanosomal lead compounds with in vivo activity. *Antimicrob. Agents Chemother.* 2016, 60, 4442–4452. [CrossRef]
- Allaka, T.R.; Polkam, N.; Rayam, P.; Sridhara, J.; Garikapati, N.S.; Kotapalli, S.S.; Ummanni, R.; Anireddy, J.S. Design, synthesis and biological activity evaluation of novel pefloxacin derivatives as potential antibacterial agents. *Med. Chem. Res.* 2016, 25, 977–993. [CrossRef]
- 87. Wang, X.; Jiang, X.; Sun, S.; Liu, Y. Synthesis and biological evaluation of novel quinolone derivatives dual targeting histone deacetylase and tubulin polymerization as antiproliferative agents. *RSC Adv.* **2018**, *8*, 16494–16502. [CrossRef]