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Abstract: Development of novel derivatives to rein in and fight bacteria have never been more
demanding, as microbial resistance strains are alarmingly increasing. A multitude of new fluoro-
quinolones derivatives with an improved spectrum of activity and/or enhanced pharmacokinetics
parameters have been widely explored. Reporting novel antimicrobial agents entails comparing their
potential activity to their parent drugs; hence, parent fluoroquinolones have been used in research
as positive controls. Given that these fluoroquinolones possess variable activities according to their
generation, it is necessary to include parent compounds and market available antibiotics of the
same class when investigating antimicrobial activity. Herein, we provide a detailed guide on the
in vitro biological activity of fluoroquinolones based on experimental results published in the last
years. This work permits researchers to compare and analyze potential fluoroquinolones as positive
control agents and to evaluate changes occurring in their activities. More importantly, the selection of
fluoroquinolones as positive controls by medicinal chemists when investigating novel FQs analogs
must be correlated to the laboratory pathogen inquest for reliable results.

Keywords: ciprofloxacin; moxifloxacin; norfloxacin; fluoroquinolones; resistant bacteria; anticancer;
minimum inhibitory concentration

1. Introduction

Antimicrobial prescriptions for the treatment of infections caused in particular by
Staphylococcus aureus (S. aureus), Pseudomonas aeruginosa (P. aeruginosa), and Mycobacterium
tuberculosis (M. tuberculosis) have been affected by bacterial resistance [1]. Alarmingly, the
ever-increasing emergence of resistant strains has globally increased the mortality rates [2].

Several approaches have been followed to develop novel fluoroquinolones (FQs) with
enhanced antimicrobial activity and/or to enhanced pharmacokinetic properties to tackle
bacterial resistance [3–8]. With more than 500 newly introduced structural modifications on
FQs’ key scaffold [9]; 1-substituted 1,4-dihydro-4-oxo-pyridine-3-carboxylic acid (Figure 1)
and the recent approval of delafloxacin in 2017, researchers have focused on embracing the
biological activity of FQs, particularly against resistant bacterial strains [10,11].

Additionally, literature reviews pointed out FQs’ potential activities as anticancer,
antitumor, antiviral, and antifungal agents in addition to their antibacterial activity where
the latter is attributed to their ability to selectively inhibit bacterial type II topoisomerases,
DNA gyrase, and/or topoisomerase IV [12–15].

Currently, FQs are one of the most widely used antimicrobial drugs, with a wide
range of indications, covering respiratory infections, urinary tract infections (UTIs), gas-
trointestinal infections, and gynecologic infections [16]. Moreover, FQs are indicated as a
prophylactic treatment in immune-compromised neutropenic patients [17].
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Figure 1. Fluoroquinolone’s nucleus: 1-substituted 1,4-dihydro-4-oxo-pyridine-3-carboxylic acid; 
R’, R’’ are responsible for pharmacokinetic properties, and R’’’ is responsible for potency. 
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Figure 1. Fluoroquinolone’s nucleus: 1-substituted 1,4-dihydro-4-oxo-pyridine-3-carboxylic acid; R’,
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FQs are usually classified into four generations with enhanced efficacy and spectrum of
activity, along with enhanced safety and pharmacokinetic characteristics (Figure 2) [18,19].
Ciprofloxacin is the most prosperous derivative, both economically and clinically [20],
and the newer generations such as levofloxacin, gemifloxacin, and moxifloxacin offer
enhanced activity against aerobic Gram-negative bacilli and Gram-positive bacteria over
ciprofloxacin, e.g., against Streptococcus pneumoniae (S. pneumoniae) and S. aureus [20].
Ciprofloxacin and moxifloxacin retain enhanced in vitro activity against P. aeruginosa [21].
In terms of potency, moxifloxacin is more potent against Gram-positive and anaerobes
than ciprofloxacin and levofloxacin. Newer generations displayed potent activity against
penicillin-resistant and multidrug-resistant (MDR) pneumococcus and anaerobic bacteria.
Recently, delafloxacin was granted approval in 2017 for the systemic treatment of acute
bacterial skin infections [22].
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Figure 2. Spectrum and antimicrobial activities of fluoroquinolone based on their generations.
Widening of the antibacterial activity of fluoroquinolones in relation to their generation. Repro-
duced/adapted from ref. [13].

Appraisal of the newer FQs’ derivatives should be, in part, based on the relevant
references. Herein, commonly employed FQ acting as positive controls in antimicrobial
bioassays of up-to-date papers were reviewed. These results were reported in a constructive
and comparative manner to facilitate the process of developing novel FQs’ analogues. The
chemical structures and key physical properties of the frequently adopted standard FQs,
namely norfloxacin 1, ciprofloxacin 2, levofloxacin 3, and moxifloxacin 4 are summarized in
Table 1. This should provide a facile referral guide to recent research areas concerning FQs
derivatives antibacterial inhibitory effect, the adopted testing protocols, and generations-
based comparison between different FQs to be applied in innovative research. Choosing
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standard FQs will not only affect the assessment of the new counterparts, but also provide
a more comprehensive and efficient performance in assays.

Table 1. Most adopted standard fluoroquinolones, their chemical structures, and key physical properties.

Fluoroquinolone Structure Generation Physical Properties References

Norfloxacin
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2. Comparison of the In Vitro Antimicrobial Assays

A variety of methods and tactics could be adopted to evaluate the antibacterial ac-
tivity of potential agents, and to draw constructive conclusions. In this regard, choosing
and performing these assays varies according to the antimicrobial agents, availability of
equipment, and cost-related reasons. The most known and basic standard methods are
disk-diffusion [29] and broth or agar dilution methods [30]. The advantages and disad-
vantages of these assays are summarized in Table 2 and reviewed elsewhere [31,32], being
apart from the scope of this article. In brief, standardized antimicrobial bioassays (an-
timicrobial susceptibility testing) are nowadays published and approved by the Clinical
and Laboratory Standards Institute (CLSI) for bacteria and yeasts testing [33], herein the
most commonly reported bioassays and the antimicrobial values of various FQs analogues
are reported.
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Dilution methods afford quantitative evaluation of the in vitro antimicrobial activity,
which are usually expressed as minimum inhibitory concentration (MIC) values and rep-
resent the lowest concentration of the tested antimicrobial agent that inhibits the visible
growth of tested microorganism. A number of approved guidelines for dilution antimicro-
bial susceptibility testing of fastidious or non-fastidious bacteria, yeast, and filamentous
fungi are reported [30].

On the other hand, agar disk-diffusion method is the standard qualitative method
for routine antimicrobial susceptibility testing. This method provides qualitative results
by categorizing bacteria as susceptible, intermediate, or resistant based on the obtained
growth zones of inhibition (ZOI) diameters. However, important parameters, including the
growth media, temperature, period of incubation, and the required inoculum size should
be optimized to fulfil CLSI standards [22].

Differently, measuring the inhibition of supercoiling activity (catalytic activity) of DNA
gyrase or the concentration of compounds required for inhibiting 50% of gyrase supercoiling
activity (IC50) has been widely reported as an alternative assay to test the antibacterial
activity of different FQs derivatives, particularly if the mechanistic and catalytical activity
of the developed analogues are of concern [34,35].

Table 2. Advantages and disadvantages of commonly applied technique for the evaluation of drugs
antimicrobial activity.

Testing
Technique Advantages Disadvantages Reference

Disk-diffusion

- Can be used to for routine
susceptibility testing

- Ability to adjust the tested discs
- Simple
- Standardized
- Low cost
- Reproducible

- Diffusability of drug from disc must
be considered

- Results are qualitative
- Requires large inoculum size

1–2 × 108 CFU/ mL
- Can only approximate MIC based on

diameter of the zones of inhibition

[36,37]

Dilution methods

- Includes agar dilution, broth
microdilution and broth
macrodilution methods

- Can be used to accurately calculate
MIC against various bacteria, yeasts,
and fungi

- Can be used to monitor resistance
emergence

- Reproducible
- Low cost
- Can test multiple bacteria in one

platex using agar dilution method
- Agar dilution method can be

semi-automated

- Broth macrodilution has higher risk
of error

- Broth microdilution may not detect
contamination, inoculum viability
and the inhibitory effect of cosolvents
used (e.g., dimethyl sulphoxide)

- Agar dilution method requires
intense labor and high cost unless it is
automated

[31,38]

3. FQ’s Antibacterial Biological Activity
3.1. FQ’s Antibacterial Activity against Gram-Positive Bacteria

According to the reviewed literature in the past five years, and for the sake of including
up-to-date activities on the most common FQs applied as golden antimicrobial positive
controls in laboratories, herein, standard FQs and their antimicrobial activity against a
panel of laboratory microbes are reported (Table 3).

As reported, norfloxacin was used as a positive control in the pipeline publications,
including norfloxacin derivatives synthesis. Norfloxacin MIC against Gram-positive is pre-
sented in Table 3 [1,23,24,26,28,34–71]. In brief, norfloxacin inhibitory activity against a panel of
Gram-positive bacteria regardless of the strain varied relatively. For example, norfloxacin in vitro
antibacterial activity reported by Mentese et al. against E. faecalis ATCC 29212 varied from
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that reported by Seliem et al. (MIC ranged from <0.128 µM [46]−100.207 µM [47]). Similarly,
norfloxacin MIC against S. aureus ATCC 25923 ranged from <0.128 µM [46]–156.170 µM [45]
in the above-mentioned two different studies.

Table 3. Fluoroquinolones’ antibacterial activity against Gram-positive bacterial strains.

Fluoroquinolone
G +ve Bacteria Strain MIC (µM) Reference

Generation Name

Second Generation Norfloxacin

B. subtilis NCDC 71 15.658 [42]

B. cereus

8035 4.697 [44]

Roma 702 <0.128 [46]

Roma 709 8.267 [28]

B. polymyxa NCDC 64 78.289 [42]

E. faecalis ATCC 29212

<0.128 [46]

8.267 [28]

100.207 [47]

L. acidophilus RSKK 06029 2113.794 [28]

L. monocytogenes ATCC 43251 8.267 [28]

S. aureus

NCDC 110 31.315 [42]

ATCC 29213 3.132 [43]

ATCC 25923

156.170 [45]

4.134 [28]

<0.128 [46]

S. aureus 209p 1.221 [44]

MRSA 1.879 [28]

S. pneumonia ATCC 49619 19.572 [43]

Lomefloxacin
B. cereus 8035 17.931

[44]
S. aureus 209p 2.220

Ciprofloxacin

A. baumannii
24.144 [24]

ATCC 19606 2.354 [50]

B. cereus

ATCC 10876 0.360 [57]

Roma 702 0.181 [46]

Roma 709 3.954 [28]

B. polymyxa NCDC 64 30.180 [42]

B. subtilis

ATCC 6633

0.090 [57]

0.030 [58]

8.149 [34]

NCDC 71
60.361 [42]

72.433 [59]

E. Faecalis ATCC 29212

3.018 [56,60,61]

1.360 [51]

0.368 [46]

1.509 [55,62]

7.878 [28]
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Table 3. Cont.

Fluoroquinolone
G +ve Bacteria Strain MIC (µM) Reference

Generation Name

Ciprofloxacin

E. Faecalis

ATCC 33186 2.384 [50]

ATCC 51575 1.360 [51]

ATCC 51299 1.509 [55]

JH2-2 6.036 [63]

UCN41 3.018 [63]

E. faecalis 24.144 [47]

14-1 96.577 [53,54]

14-2 3.018 [53,54]

E. faecium

ATCC-19434T 3.018 [63]

BM-4147 12.072 [63]

ATCC 27270 2.651 [56]

ATCC 700221 >386.308 [55]

13-7 >386.308 [55]

14-2 96.577 [53,54]

14-5 386.308 [53,54]

14-6 >386.308 [53,54]

E. hirae ATCC 10541 24.144 [48]

K. pneumonia 193.154 [24]

L. acidophilus RSKK 06029 252.277 [28]

L. monocytogenes

ATCC 43251 3.954 [28]

EGD 12.072 [64]

CLIP21369 48.288 [64]

S. aureus

ATCC 6538

26.015 [65]

0.800 [66]

146.978 [49]

1.509 [48]

ATCC 29213

0.400 [66]

1.509 [48]

0.082 [67]

1.509 [60,61]

0.296 [50]

0.680 [51]

0.755 [55]

ATCC 25923

0.755 [64]

2.960 [57]

0.010 [52]

0.755 [26]

0.368 [46]

3.954 [28]

3.018 [62]
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Table 3. Cont.

Fluoroquinolone
G +ve Bacteria Strain MIC (µM) Reference

Generation Name

Ciprofloxacin S. aureus

S. aureus ATCC 25923 (clinical
isolate) 0.755 [63]

SAI 24.144 [64]

SAI24 48.289 [64]

SA036 96.577 [64]

N41120032 193.154 [64]

SG511 0.470 [58]

Microbank
14001 (MRSA) 1.480 [57]

S. aureus D15 MRSA 3.100 [66]

S. aureus D17 MRSA 3.100 [66]

S. aureus CIPR 50.000 [66]

S. aureus NCTC 4163 0.755 [48]

S. aureus HG001 (laboratory strain) 0.377 [63]

MSSA 12-1 0.755 [26]

MSSA 12-2 0.755 [26]

MSSA 12-4 0.755 [26]

MSSA 12-5 0.755 [26]

MSSA 14-1 96.577 [53,54]

MSSA14-3 0.377 [53,54]

MSSA 14-4 1.509 [53,54]

MRSA 3.954 [28]

MRSA 14-4 >386.308 [53,54]

MRSA 14-5 48.288 [53,54]

MRSA 12-2 193.154 [26]

MRSA 12-4 193.154 [26]

MRSA 12-5 96.577 [26]

CMCC 26003 1.509 [53,54]

S. aureus ATCC 700699 (resistant
isolate) >24.144 [63]

Healthcare-acquired MRSA NRS70 0.604 [50]

Community-acquired
MRSAUSA300 19.014 [50]

(MRSA) ATCC 33591

1.509 [60,61]

0.755 [55]

0.680 [51]

MRSA ATCC 33592 ≤0.083 [56]

NCDC 110 150.901 [42]

12.072 [47]

0.589 [49]

0.377 [24]
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Table 3. Cont.

Fluoroquinolone
G +ve Bacteria Strain MIC (µM) Reference

Generation Name

Ciprofloxacin S. epidermidis

ATCC 12228

0.400 [66]

1.480 [57]

0.755 [48]

ATCC 14990 0.377 [63]

ATCC 35984 ≤0.181 [63]

- 0.589 [49]

MSSE CANWARD-2008 81388 ≤0.083 [56]

MSSE ATCC 12228
0.377 [55]

0.340 [51]

MSSE 12-1 0.755 [26]

MSSE 12-3 6.036 [26]

MSSE 12-6 0.755 [26]

MSSE 12-8 12.072 [26]

MSSE 14-2 >386.308 [53,54]

MRSE CAN-ICU 61589 (CAZ > 32) 42.411 [56]

MRSE 12-1 24.144 [26]

MRSE 12-6 48.288 [26]

MRSE 13-3 193.154 [55]

MRSE 14-21 193.154 [54]

MRSE 14-22 386.308 [53,54]

MRSE 14-37 386.308 [53,54]

MRSE 14-39 386.308 [53,54]

MRSE 16-3 32.897 [54]

S. pneumoniae
ATCC 19615 6.036 [54]

ATCC 49619 0.331 [56]

R6 1.177 [50]

Cipro HCl

B. cereus Roma 709 1.636 [28]

E. faecalis ATCC 29212 3.435 [28]

L. acidophilus RSKK 06029 219.385 [28]

L. monocytogenes ATCC 43251 3.435 [28]

S. aureus
ATCC 25923 6.843 [28]

MRSA 3.435 [28]

Third Generation Levofloxacin E. faecalis

ATCC 29212
2.770 [51]

2.767 [55]

ATCC 51575
1.380 [51]

1.384 [55]

ATCC 700221 177.220 [51]

14-1
44.276 [68]

354.210 [53,54]
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Table 3. Cont.

Fluoroquinolone
G +ve Bacteria Strain MIC (µM) Reference

Generation Name

Third Generation Levofloxacin

E. faecalis
14-2

88.552 [68]

2.767 [53,54]

14-3 177.104 [68]

E. faecium

ATCC 700221 88.552 [55]

13-7 88.552 [55]

14-1 354.210 [68]

14-2 88.552 [53,54]

14-2 2.767 [68]

14-5 177.105 [53,54]

14-6 177.105 [53,54]

16-4 44.300 [51]

S. aureus

ATCC 25923
<0.022 [26]

0.166 [69]

ATCC 29213
0.350 [55]

0.350 [51]

CMCC 26003
0.346 [68]

0.346 [53,54]

MSSA 12-2 0.346 [26]

MSSA 12-4
0.166 [69]

0.344 [26]

MSSA 12-5 0.346 [26]

MSSA 14-1 22.138 [53,54]

MSSA 14-2 0.692 [68]

MSSA 14-3 0.346 [53,54,68]

MSSA 14-4 1.384 [53,54,68]

MRSA 12-1 177.105 [69]

MRSA 12-2 88.552 [26]

MRSA 12-4 88.552 [26]

MRSA 12-5 88.552 [26]

MRSA 14-4 177.105 [53,54,68]

MRSA 14-5 22.138 [26,53,54]

NARSA 10198 88.552 [70]

NARSA 10193 88.552 [70]

ATCC 29213 1.384 [70]

S. epidermidis

MSSE ATCC 12228
0.350 [51]

0.346 [55]

12-1 0.346 [26]

12-3 1.384 [26]

12-6 0.346 [26]
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Table 3. Cont.

Fluoroquinolone
G +ve Bacteria Strain MIC (µM) Reference

Generation Name

Third Generation Levofloxacin
S. epidermidis

12-8 11.069 [26]

12-1 11.069 [26]

12-6 88.552 [26]

MRSE 12-1 0.083 [69]

MSSE 14-2
>354.210 [53,54]

354.210 [68]

MSSE 12-3 1.384 [69]

MSSE 14-4 2.767 [68]

MSSE 14-6 5.534 [68]

MRSE 13-3 88.552 [55]

MRSE 14-21 177.105 [53,54]

MRSE 14-22 88.552 [53,54,68]

MRSE 14-37 177.105 [53,54,68]

MRSE 14-39 177.105 [53,54,68]

MRSE 16-3 5.540 [51]

S. pneumoniae ATCC 49619 0.346 [69]

ATCC 19615 1.384 [53,54,68]

Sparifloxacin B. cereus 8035 0.484
[44]

S. aureus 209p 0.484

Gatifloxacin

B. subtilis NCDC 71 213.109 [42]

B. polymyxa NCDC 64 26.639 [42]

S. aureus

NCDC 110 13.319 [42]

ATCC 29213 0.333 [71]

MSSA clinical isolates 0.333 [71]

MRSA clinical isolates 42.622 [71]

S. epidermidis

ATCC 12228 0.160 [71]

MSSE clinical isolates 0.160 [71]

MRSE clinical isolates 0.160 [71]

Moxifloxacin HCl

B. cereus Roma 709 <1.370 [28]

E. faecalis

ATCC 33186 0.891 [50]

14-1 18.296 [68]

14-2 36.539 [68]

14-3 18.296 [68]

E. faecium

ATCC 29212 <1.370 [28]

14-1 73.077 [68]

14-2 1.142 [68]

MSSE 12-3 0.284 [26,69]

MSSE 12-6 0.069 [26]

MSSE 12-8 2.284 [26]
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Table 3. Cont.

Fluoroquinolone
G +ve Bacteria Strain MIC (µM) Reference

Generation Name

Moxifloxacin HCl

E. faecium

MSSE 14-4 4.567 [68]

MSSE 14-6 4.567 [68]

MRSE 12-1 0.571 [26,69]

MRSE 12-6 16.539 [26]

MRSE 14-22 18.269 [68]

MRSE 14-37 18.269 [68]

MRSE 14-39 18.269 [68]

L. acidophilus RSKK 06029 92.785 [28]

L. monocytogenes ATCC 43251 <1.370 [28]

S. aureus

ATCC 25923
2.900 [28]

<0.018 [26,69]

CMCC 26003 0.137 [68]

MSSA ATCC 29213 0.057 [50]

MSSA 12-1 0.034 [26]

MSSA 12-2 0.018 [26]

MSSA 12-4 <0.018 [26,69]

MSSA 12-5 0.034 [26]

MSSA 14-3 <0.018 [68]

MSSA 14-4 <0.018 [68]

community-acquired
MRSAUSA300 3.654 [50]

healthcare-acquired
MRSA NRS70 0.057 [50]

MRSA 12-1 18.269 [69]

MRSA 12-2 18.269 [26]

MRSA 12-4 18.269 [26]

MRSA 12-5 18.269 [26]

MRSA 14-4 27.404 [68]

MRSA 14-5 18.269 [68]

MRSA <1.370 [28]

S. pneumoniae

ATCC 19615 0.034 [68]

ATCC 49619 0.137 [69]

R6 0.365 [50]

Acinetobacter baumannii (A. baumannii); American Type Culture Collection (ATCC); Bacillus cereus (B. cereus);
Bacillus polymyxa (B. polymyxa); Bacillus subtilis (B. subtilis); China Center of Industrial Culture Collection (CMCC);
Enterococcus faecalis (E. faecalis); Enterococcus faecium (E. faecium); Enterococcus hirae (E. hirae); Klebsiella pneumonia
(K. pneumonia); Lactobacillus acidophilus (L. acidophilus); Listeria monocytogenes (L. monocytogenes); Methicillin-
resistant staphylococcus aureus (MRSA); Methicillin-resistant staphylococcus epidermidis (MRSE); Methicillin-sensitive
staphylococcus aureus (MSSA); Methicillin- sensitive staphylococcus epidermis (MSSE); Nigeria Centre for Disease
Control (NCDC); Staphylococcus aureus (S. aureus); Staphylococcus enterica (S. enterica); Staphylococcus epidermidis
(S. epidermidis); Streptococcus pneumoniae (S. pneumoniae).

As illustrated in Table 3, ciprofloxacin was the most commonly adopted reference by the
cited researchers against different Gram positive and negative bacterial stains, ciprofloxacin
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MIC against Gram-positive bacteria including B. cereus spp. ranged from 0.181 µM [46]–
3.954 µM [28], S. aureus ATCC 6538 (ranged from 1.509 µM [48]−146.978 µM) [49], S. au-
reus ATCC 29213 (MIC ranged from 0.082 µM [67]−1.509 µM [48]), and S. aureus ATCC
25923 (MIC ranged from 0.010 [52] µM −3.954 µM [28]). Remarkably, ciprofloxacin MIC
varied within similar bacterial species, one example is S. epidermidis species, according
to Liu et al., strain MSSE 12-1 of S. epidermidis species was susceptible to ciprofloxacin
(MIC 0.755 µM) [26], whereas it showed very limited activity against MSSE14-2 strain
(MIC > 386.308 µM) [53,54]. Interestingly, discrepancy in MIC values was observed be-
tween similar bacterial strains as reported by different research groups with 100-fold
MIC difference [48,49]. Minor variation between the adopted testing protocol for MIC
determination, such as incubation temperature might be the driving factor for such a
difference [48,49].

Considering the third FQ reference, levofloxacin was adopted by many researchers’
as a reference control, and exhibited variable antimicrobial activity against E. faecalis
(MIC ranged from 1.384 µM for E. faecalis 51575 [55], 177.220 µM for E. faecalis ATCC
700221 [51]) as an example. A notable difference in levofloxacin potency against different
staph strains, including methicillin-sensitive S. aureus (MSSA) [26,53,54,68,69], methicillin-
resistant S. aureus (MRSA) [26,53,54,68,69], S. epidermidis, and S. pneumoniae was observed
(Table 3).

Following scientific reports in the literature, levofloxacin exhibited superior antibac-
terial activity against Gram-positive S. epidermis strains [51,55,63] and moxifloxacin is
generally the most potent amongst FQs a, gainst Gram-positive and negative bacteria [26].
Moxifloxacin was the latent agent against the food poisoning pathogen L. monocytogenes
ATCC 43251 (MIC < 1.370 µM [28]) when compared with other FQs as ciprofloxacin (MIC
3.954 µM−12.072 [28,64]) and norfloxacin (MIC < 8.267 µM [28]).

3.2. FQs Antibacterial Activity against Gram-Negative Bacteria

A summary of common laboratory tested Gram-negative bacteria and standard fluoro-
quinolones antibiotics are presented in Table 4. It is noticeable that ciprofloxacin has poten-
tial antibacterial activity against Gram-negative bacteria as P. aeruginosa and E. coli. [28,48].
Moreover, ciprofloxacin had prospective growth inhibitory activity against H. pylori NCTC
11916 and 12 more H. pylori clinical isolates as reported by Abu-Sini et al. [72]. Ciprofloxacin
broad spectrum of activity against aerobic and anaerobic Gram-negative bacteria is shown
in Table 4.

Nevertheless, Gorityala et al. [56] reported that ciprofloxacin potency against P. aerug-
inosa were superior compared to moxifloxacin. This pattern was also noticed in results
published by Türe et al. and Garza et al., [28,50].

Norfloxacin inhibitory activity against a panel of Gram-negative bacterial type, and
on the same bacterial strain is noted to be varied. For instance, norfloxacin in vitro an-
tibacterial activity reported by Pardeshi et al. against E. coli ATCC 25922 varied from that
reported by Leyva-Ramos et al. (MIC ranged from < 0.094 µM [24]−117.433 µM [45]). More-
over, norfloxacin and ciprofloxacin MIC against different P. aeruginosa strains ranged from
1.002 µM [1]−1565.773 µM [45] and <0.091 [62] µM−150.901 µM [42], respectively, in differ-
ent studies. On the contrary, ciprofloxacin MIC against a panel of Gram–negative pathogens
looks more consistent (A. haemolyticus ATCC 19002 (MIC 0.755 µM) [62], A. baumannii
ATCC17961 (MIC 0.24 µM) [58], A. calcoacetious ATCC 19606 (MIC 1.509 µM) [55], and C. fre-
undii ATCC 43864 (MIC 1.38 µM) [51]. However, a wide range in ciprofloxacin MIC against
E. coli ATCC 25922 is perturbing as MIC reported ranged from 0.002 µM [24]−61.869 µM [49]
in different publications. This fluctuation in ciprofloxacin antibacterial activities may explain the
current abundant application of levofloxacin and moxifloxacin as positive standards by medicinal
chemists when designing and synthesizing novel FQs analogues [24,28,53–55,68–70,73–75].
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Table 4. Fluoroquinolones’ antibacterial activity against Gram-negative bacterial strains.

Fluoroquinolone
G−ve Bacteria Strain MIC (µM) Reference

Generation Name

Second Generation Norfloxacin

E. coli

ATCC 8739 <0.251 [1]

ATCC 25922

3.132 [43]

<0.094 [24]

<1.879 [28]

117.433 [45]

0.128 [46]

ATCC 35218 6.263 [46]

F-50 0.595 [44]

NCDC 134 125.262 [42]

K. pneumoniae ATCC13883 4.134 [28]

P. aeruginosa

ATCC 9027
9.708 [44]

1.002 [1]

ATCC 27853
>1565.773 [45]

19.572 [43]

ATCC 43288 16.503 [28]

NCDC 105 46.973 [42]

PAO1 12.526 [47]

Y. pseudotuberculosis ATCC 911
1.879 [28]

0.128 [46]

Lomefloxacin
E. coli F-50 8.823 [44]

P. aeruginosa 9027 17.931 [44]

Ciprofloxacin

A. haemolyticus ATCC 19002 0.755 [62]

A. baumannii

ATCC17961 0.240 [58]

CIP 7010 0.377 [62]

CAN-ICU 63169 6.036 [21]

A. coacetius ATCC 19606
1.509 [55]

1.360 [51]

C. freundii ATCC 43864
≤0.091 [55]

1.380 [51]

E. aerogenes ATCC 13048
≤0.080 [51]

≤0.091 [55]

E. cloacae ATCC 43560
≤0.091 [55]

≤0.080 [51]

E. coli

ESBLs(+)14-11
24.144 [54]

48.289 [55]

ESBL+ 14-2 96.577 [54]

14-1 24.144 [54]

14-2 24.144 [54]
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Table 4. Cont.

Fluoroquinolone
G−ve Bacteria Strain MIC (µM) Reference

Generation Name

E. coli

ATCC-29213 ≤0.755 [21,52]

ATCC 25922

<1.811 [28,63]

0.024 [54,57]

0.031 [48]

0.010 [66]

61.869 [49]

0.091 [62]

0.002 [24]

NR 17663 0.002 [24]

NR 17666 0.045 [24]

NR 17661 96.577 [24]

ATCC 25922 ESBLs(-);
≤0.091 [55]

≤0.080 [51]

ATCC 25922 (wild type) ≤ 0.091 [76]

ATCC 35218

0.045 [60,61]

16.961 [34]

≤0.080 [51]

BW5328/pAH69
(wild type) ≤ 0.091 [76]

CAN-ICU 61714 (GEN-R) ≤0.755 [21]

CAN-ICU 63074 (AMK 32) ≤0.755 [21]

CANWARD-2011 97615 772.616 [21]

gyrA S83LD87N, parC
S80I E84G, AcrA+ >96.577 [76]

DC0 0.470 [58]

DC2 0.240 [58]

F-50 0.573 [44]

K12 0.604 [50]

K12 ∆lacU169 0.005

[67]

K12 ∆lacU169 tolC::Tn10 0.001

K12 ∆lacU169 tolC::Tn10
gyrA S83L 0.019

K12 ∆lacU169 tolC::Tn10
gyrA D87Y 0.009

imp-4213 (permeable
outer membrane) ≤0.091 [76]

JW5503-1 (∆toIC) ≤0.0.091 [76]

MC4100 (wild type) ≤0.091 [76]

NB27005-CDY0039 (∆tolC,
gyrA S83L D83G,
parC S80I)

6.036 [76]
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Table 4. Cont.

Fluoroquinolone
G−ve Bacteria Strain MIC (µM) Reference

Generation Name

E. coli

NCDC 134 75.451 [42]

NCTC 8196
0.031 [48]

0.040 [66]

ATCC 8739 28.007 [65]

Penicillin Resistant E. coli
0.377 µM
(68.9% survival
of bacteria

[77]

H. pylori NCTC 11916 1.811 [72]

Clinical isolate 0.905 [72]

K. pneumoniae

ATCC 13883

≤0.755 [21]

1.811 [28]

0.755 [62]

0.050 [66]

ATCC 35657 0.021 [60,61]

ATCC 700603 ESBLs (+)

1.509 [55]

1.360 [51]

0.755 [63]

7 ESBLs(-) ≤0.091 [55]

7 ESBLs (-) ≤0.080 [51]

ESBL+ 14–17 1.509 [54]

ESBL+ 14–18 1.509 [54]

ESBL+ 14–19 193.154 [54]

14-1 96.577 [54]

14-2 48.288 [54]

14-3 >386.308 [54]

14-4 96.577 [54]

K. pneumonia 40.160 [78]

M. catarrhalis ATCC 25238 0.091 [60,61]

M. morganii ATCC 25830
≤0.091 [55]

≤0.080 [51]

P. aeruginosa

ATCC 9027
0.720 [57]

1.177 [44]

ATCC 15442 0.755 [48]

ATCC 43288
<0.091 [62]

3.954 [28]

ATCC 27853

1.509 [48]

1.509 [54]

0.680 [51]

0.755 [55]
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Table 4. Cont.

Fluoroquinolone
G−ve Bacteria Strain MIC (µM) Reference

Generation Name

P. aeruginosa

ATCC 27853
0.755 [62,63]

3.018 [21]

CAN-ICU 62308 (GEN-R) 6.036 [21]

CANWARD-2011 96846 12.072 [21]

DSM 1117
Mueller–Hinton 0.755

[79]

DSM 1117 Succinate
minimum medium 0.755

DSM 1117 Succinate
minimum medium +
FeCl3 (1 lM)

0.755

AM 85 Mueller–Hinton 48.288

AM 85 Succinate
minimum medium 48.288

AM 85 Succinate
minimum medium +
FeCl3 (1 lM)

96.577

K799/wt 0.470 [58]

K799/61 0.240 [58]

K1542 (∆mexX, DmexB) 0.181 [76]

NCDC 105 150.901 [42]

NB52023-CDK005
(∆mexX, DmexB,
gyrA T83I)

1.509 [76]

NB52023-CDK006
(∆mexX, ∆mexB, gyrA
T83I, parC S87L)

12.072 [76]

PAO1 1.177 [50]

PA01 (Wild type) 0.377 [76]

- 5.030 [47]

- 0.589 [49]

14-9 1.509 [54]

14-14 3.018 [54]

14-15 3.018 [54]

14-16 3.018 [54]

P. mirabilis

ATCC 12453 0.045 [57]

ATCC 49565 ≤0.080 [51]

13-1 ≤0.091 [55]

P. rettgeri ATCC 31052
≤0.091 [55]

≤0.080 [51]

P. vulgaris ATCC 29905
≤0.091 [55]

≤0.080 [51]
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Table 4. Cont.

Fluoroquinolone
G−ve Bacteria Strain MIC (µM) Reference

Generation Name

S. marcescens ATCC 21074
0.160 [51]

0.181 [55]

S. maltophilia
ATCC 13636

5.450 [51]

12.072 [55]

CAN-ICU 62584 1.325 [56]

S. pneumoniae
ATCC 49619 0.755 [26]

12-18 3.018 [26]

Y. pseudotuberculosis ATCC 911 1.812 [28]

Ciprofloxacin HCl

E. aerogenes
ATCC 13048 0.086–0.172 [64]

CM64 01.363 [64]

E. coli ATCC 25922
<1.636 [28]

0.022 (pH 7.4) [64]

K. pneumoniae ATCC13883 <1.636 [28]

P. aeruginosa ATCC 43288 3.435 [28]

Y. pseudotuberculosis ATCC 911 <1.636 [28]

Third Generation Levofloxacin

A. coacetious ATCC 19606
0.346 [55]

0.350 [51]

C. freundii ATCC 43864
≤.0.083 [55]

≤0.080 [51]

E. aerogenes ATCC 13048
0.166 [55]

0.170 [51]

E. cloacae ATCC 43560
≤.0.083 [55]

≤0.080 [51]

E. coli

ATCC 25922

0.346 [68]

0.0412 [24]

<0.022 [69]

ATCC 25922 ESBLs−
≤0.083 [55]

88.610 [51]

ATCC 35218 ESBLs+ ≤0.080 [51]

NR 17663 0.083 [24]

NR 17666 0.083 [24]

NR 17661 88.552 [24]

12-6 0.692 [69]

12-11 11.069 [69]

ESBL+ 14-1

11.069 [54]

44.276 [69]

5.534 [68]
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Table 4. Cont.

Fluoroquinolone
G−ve Bacteria Strain MIC (µM) Reference

Generation Name

Third Generation Levofloxacin

E. coli

ESBL+ 14-2
21.810 [54]

21.810 [68]

14-1
21.810 [54]

10.905 [68]

14-2
21.810 [54]

10.905 [68]

K. pneumoniae

ESBL+ 14-17
1.363 [54]

10.905 [68]

ESBL+ 14-18
1.363 [54]

2.276 [68]

ESBL+ 14-19 174.482 [54,68]

- 11.069 [80]

14-1 43.621 [54,68]

14-2 21.810 [54]

14-3
87.241 [54]

43.621 [68]

14-4
43.621 [54]

21.810 [68]

ATCC 700603 ESBLs+ 1.364 [55]

1.380 [51]

ESBLs- ≤0.082 [55]

ESBLs- 0.170 [51]

12-4 0.082 [69]

12-7 1.363 [69]

P. aeruginosa

ATCC 27853
2.726 [54,55,68]

5.540 [51]

14-9
1.363 [54]

2.726 [68]

14-11 5.453 [68]

14-14 5.453 [54]

14-15 5.453 [54,68]

14-16 5.453 [54]

14-19 5.453 [68]

12-12 1.363 [69]

12-14 87.241 [69]

12-20 21.810 [69]

M. morganii ATCC 25830
≤0.083 [55]

≤0.080 [51]
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Table 4. Cont.

Fluoroquinolone
G−ve Bacteria Strain MIC (µM) Reference

Generation Name

Third Generation Levofloxacin

P. mirabilis
13-1 0.166 [55]

ATCC 49565 ≤0.080 [51]

P. rettgeri ATCC 31052
≤0.080 [51]

≤0.83 [55]

P. vulgaris ATCC 29905
≤0.080 [51]

≤0.083 [55]

S. maltophilia ATCC 13636
2.767 [55]

1.380 [51]

S. marcescens ATCC 21074
0.350 [51]

0.356 [55]

S. pneumoniae ATCC 49619 0.345 [26]

12-18 2.535 [26]

Sparifloxacin E. coli F-50 0.484 [44]

P. aeruginosa ATCC 9027 0.484 [44]

Gatifloxacin

E. coli
ATCC 700603 0.160 [71]

NCDC 134 266.387 [42]

K. pneumoniae ATCC 25922 2.664 [71]

P. aeruginosa NCDC 105 106.555 [42]

Moxifloxacin HCl

A. baumannii ATCC 19606 0.972 [50]

E. coli

ATCC 25922

0.137 [68]

<0.018 [69]

0.037 [24]

<1.370 [28]

NR 17663 0.037 [24]

NR 17666 0.075 [24]

NR 17661 79.715 [24]

12-6 1.142 [69]

12-11 36.539 [69]

ESBL+ 12-14 36.539 [69]

ESBL+ 14-1 4.567 [68]

ESBL+ 14-2 36.539 [68]

14-1 18.269 [68]

14-2 36.539 [68]

K. pneumoniae

ATCC 13883 <1.370 [28]

ESBL+ 14-17 18.269 [68]

ESBL+ 14-18 2.284 [68]

ESBL+ 14-19 146.155 [68]

14-1 18.269 [68]

14-2 18.269 [68]
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Table 4. Cont.

Fluoroquinolone
G−ve Bacteria Strain MIC (µM) Reference

Generation Name

Moxifloxacin HCl

K. pneumoniae

14-3 73.077 [68]

14-4 18.269 [68]

12-4 0.069 [69]

ESBL+ 12-7 1.142 [69]

S. pneumoniae ATCC 49619 0.137 [26]

12-18 1.142 [26]

P. aeruginosa

ATCC 27853 4.567 [68]

ATCC 43288 11.601 [28]

14-9 9.135 [68]

14-11 36.539 [68]

14-15 36.539 [68]

14-16 18.269 [68]

14-19 2.284 [68]

PA01 7.722 [50]

12-12 4.567 [69]

12-14 36.539 [69]

12-20 18.269 [69]

Y. pseudotuberculosis ATCC 911 <1.495 [28]

ZOI: Zone of Inhibition; NZ: No Zone; ND: Not Detected; Acinetobacter baumannii (A. baumannii); Acinetobacter
calcoaceticus (A. calcoacetius); Acinetobacter haemolyticus (A. haemolyticus); American Type Culture Collection
(ATCC); Citrobacter freundii (C. freundii); China Center of Industrial Culture Collection (CMCC); Enterobacter
aerogenes (E. aerogenes); Enterobacter cloacae (E. cloacae); Escherichia coli (E. coli); Extended spectrum beta-lactamases
(ESBL); Helicobacter pylori (H. pylori); Klebsiella pneumonia (K. pneumonia); Moraxella catarrhalis (M. catarrhalis);
Morganella morganii (M. morganii); Nigeria Centre for Disease Control (NCDC); Providencia rettgeri (P. rettgeri);
Pseudomonas aeruginosa (P. aeruginosa); Proteus mirabilis (P. mirabilis); Proteus vulgaris (P. vulgaris); Serratia marcescens
(S. marcescens); Stenotrophomonas maltophilia (S. maltophilia); Streptococcus pneumoniae (S. pneumoniae); Yersinia
pseudotuberculosis (Y. pseudotuberculosis).

As presented in Table 4, different studies reported the use of third generation lev-
ofloxacin as a positive control against a wide range of Gram-negative organisms includes
P. aeruginosa. For this infectious pathogen, MIC ranged from 5.453 µM [68] for P. aerugi-
nosa 14–19 strain to 87.241 µM [69] for P. aeruginosa 12–14 strain. Similarly, levofloxacin
MIC against K. pneumonia ranged from 0.082 µM [69] for K. pneumonia 12–4 strain to
87.241 µM [54] for K. pneumonia 14–3 strain. According to Zhang et al., [69] levofloxacin
is around five hundred time more potent against K. pneumonia 12–4 strain compared to
P. aeruginosa 12–14 strain, though both are Gram-negative pathogens. However, in another
by Huang et al. [68], levofloxacin was more potent against P. aeruginosa for 14–19 strain
compared to K. pneumonia for 14–2 strain. It is worth mentioning that the bacterial strain is
the variant factor in both articles. This indeed highlights the importance of referring to the
relevant standard control during laboratory investigation and comparisons.

A similar pattern of the wide range of MIC values against the same strain was observed,
where the MIC of norfloxacin against E. coli ATCC-25922 ranged from <0.094 µM [24] to
117.433 µM [45].

3.3. FQs’ Antimycobacterial Activity

FQs, particularly ciprofloxacin was included as a positive control along with isoniazid
and rifampicin against various Mycobacterium strains as shown in Table 5 [24,26–28,58,63,
65,68,75,81,82]. Furthermore, levofloxacin in vitro anti-mycobacterial activity was reported
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and found to be comparable to ciprofloxacin [26,68]. Recent studies by Hu et al., [82] and
Mohammed et al., [65] declared moxifloxacin in vitro anti-mycobacterial activity to be more
potent than both ciprofloxacin 1 and levofloxacin 3.

Table 5. Fluoroquinolones’ antimycobacterial activity.

Fluoroquinolone Mycobacterium
Bacteria

Strain MIC (mM) Reference
Generation Name

Second Generation

Norfloxacin M. smegmatis ATCC 607
16.503 [28]

No activity [46]

Ciprofloxacin M. tuberculosis

36.216–51.307 [63]

MTB H37Rv MIC90 1.780 [27]

3.018 [81]

MTB H37Rv ATCC 27294 0.755 [26,68]

MDR-TB 6.036 [81]

MDR-MTB 6133 resistant
to INH and RFP 0.377 [26]

MDR-MTB 11277 resistant
to INH and RFP 0.377 [26]

M. vaccae IMET10670 0.470 [58]

M. smegmatis ATCC607 >120.721 [28]

Cipro HCl M. smegmatis ATCC607 >109.052 [28]

Third Generation Levofloxacin

M. tuberculosis

H37RV 76? 1.384 [65]

MTB H37Rv ATCC 27294 0.692 [26,68]

MDR-MTB 6133 resistant
to INH and RFP 0.377 [26]

MDR-MTB 11277 resistant
to INH and RFP 0.692 [26]

R2012-123 (pan-sensitive) 0.692 [65]

MDR-TB ND [75]

M. abscessus 5.535 [24]

M. chelonae 5.535 [24]

M. fortuitum 0.346 [24]

M. avium ND [75]

M. terrae ND [75]

R-2012-59 (MDR) 0.692 [65]

R-2012-97 (XDR) 22.138 [65]

M. abscessus ATCC19977 >88.552 [65]

M. chelonae ATCC35752 1.384 [65]

M. fortuitum ATCC06841 0.346 [65]
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Table 5. Cont.

Fluoroquinolone Mycobacterium
Bacteria

Strain MIC (mM) Reference
Generation Name

Moxifloxacin

M. tuberculosis

H37Rv ATCC27294 0.311 [65]

MTB H37Rv 0.228 [82]

MDR-TB 0.274 [82]

R2012-123 (pan-sensitive) 0.137 [65]

M. smegmatis (MXF HCl) ATCC607 >91.347 [28]

Antituberculosis 0.440 [28]

R-2012-59 (MDR) ≤0.069 [65]

R-2012-97 (XDR) 4.567 [65]

M. abscessus ATCC19977 >73.077 [65]

M. chelonae ATCC35752 0.571 [65]

M. fortuitum ATCC06841 0.137 [65]

ND: Not determined; Mycobacterium abscessus (Mycobacterium abscessus); Mycobacterium avium (M. avium);
Mycobacterium chelonae (M. chelonae); Multi drug resistant Tuberculosis (MDR-TB); Mycobacterium fortuitum
(M. fortuitum); Mycobacterium smegmatis (M. smegmatis); Mycobacterium terrae (M. terrae); Mycobacterium
tuberculosis (MTB).

3.4. FQs’ Antifungal, Antiparasitic, and Anticancer Activity

Apart from their antibacterial activity, FQs were also tested for their antifungal activity
with little effect on most fungi. Since the late 1980s, studies revealed anti-trypanosomal
activity for the quinolones prototype, nalidixic, and oxolonic acid derivatives [14]. Other
studies illustrated the antiparasitic activity of norfloxacin against Plasmodium falciparum and
the inhibitory effect of other fluoroquinolones against Plasmodium family [14,83,84]. Today,
quinolone-amides related derivatives were used to design anti-trypanosomal compounds
with many of them presenting potential in vivo activity [85].

Anticancer activity of FQs were also evaluated against a range of cancer cell lines,
such as A549 Lung adenocarcinoma, HCT-116 colon cancer, MCF-7 breast cancer cell
lines, and others have been determined previously and compared with the developed
counterparts [48,50,61,66] as presented in Table 6.

Table 6. Fluoroquinolones’ antifungal and anticancer activity.

Fluoroquinolone Fungi and Cancer Strain Inhibitory Effect Reference
Generation Name

Second Generation Norfloxacin
C. albicans ATCC 60193 No zone of inhibition

[28]
S. cerevisiae RSKK 251 No zone of inhibition

Ciprofloxacin

A. clavatus No zone of inhibition [86]

C. albicans
ATCC 90873
amphotericin
B-resistant

MIC 97.784 µM [34]

C. albicans ATCC 60193 No zone of inhibition [86]

T. brucei 427/421 MIC 100 µM
GI50 30.9 ± 3.3 µM [66]

Lung
adenocarcinoma A549 MIC 50 µM [61]
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Table 6. Cont.

Fluoroquinolone Fungi and Cancer Strain Inhibitory Effect Reference
Generation Name

Ciprofloxacin

Colon cancer HCT-116 MIC 50 µM [61]

Breast cancer MCF-7 MIC 50 µM [61]

HEPG2, liver
hepatocellular
carcinoma cells

ATCC HB-8065 IC50 ≥ 1207.211 µM [50]

Vero, kidney
epithelial cells ATCC CCL-81. IC50 ≥ 1207.211 µM [50]

Human primary
colon cancer (SW480) IC50 160.4 ± 6.7 µM [48]

Human metastatic
colon cancer (SW620) IC50 200.4 ± 4.9 µM [48]

Human metastatic
prostate cancer (PC3) IC50 101.4 ± 3.6 µM [48]

Human immortal
keratinocyte cell
line from adult
human skin

(HaCaT) IC50 222.1 ± 5.2 µM [48]

LDH release HaCaT

LDH release % 4.6% at
60 µM
4.2% 40 µM
3.9% 20 µM
3.2% 10 µM

[48]

LDH release SW480

LDH release % 15% at
60 µM
14.5% at 40 µM
14.2% at 20 µM
12% at 10 µM

[48]

LDH release SW620

LDH release % 9.3% at
60 µM
9.1% at 40 µM
8.9% at 20 µM
8.1% at 10 µM

[48]

LDH release PC3

LDH release %
18% at 60 µM
17.5% at 40 µM
16.5% at 20 µM
14% at 10 µM

[48]

Urease inhibitory
activity 94.32 µM [78]

HL-60 MIC > 100 µM
GI50 > 100 µM [66]

Selectivity MIC > 1 µM ratio
GI50 > 3.2 µM ratio [66]

L929 GI50 >100 ± n.d. µM [66]

HeLa GI50 560 ± 22.6 µM [66]

DNA gyrase IC50 0.15 µM [66]
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Table 6. Cont.

Fluoroquinolone Fungi and Cancer Strain Inhibitory Effect Reference
Generation Name

Topoisomerase IV 4.00 µM [66]

Cytotoxicity >100 µM [27]

Cipro HCl C. albicans ATCC 60193 No inhibition [28]

S. cerevisiae RSKK 251 No inhibition [28]

Third Generation Levofloxacin

Vero Cells CC50 > 276.73 µM [70]

A549 76.3 ± 6.51 µM

[87]

HepG2 >100 µM

MCF-7 64.2 ± 5.67 µM

PC-3 >100 µM

HeLa 71.1 ± 4.98 µM

MCF-10A (Human
breast epithelial
cell line)

>100 µM

Moxifloxacin

S. cerevisiae RSKK 251 No inhibition [28]

HEPG2, liver
hepatocellular
carcinoma cells

ATCC HB-8065 ≥ 996.435 µM [50]

Vero, kidney
epithelial cells ATCC CCL-81 ≥ 996.435 µM [50]

Micrococcus luteus (M. luteus); Candida albicans (C. albicans); Saccharomyces cerevisiae (S. cerevisiae); Aspergillus clavatus
(A. clavatus); Trypanosoma brucei (T. brucei); lactate dehydrogenase (LDH); The half maximal inhibitory concentra-
tion (IC50). Minimum inhibitory concentration (MIC); Concentration causing 50% cell growth inhibition (GI50).

3.5. FQs Inhibitory Effect as Anti-Viral Agaents against SARS-CoV-2 and HIV-1

As researchers investigate several approaches to combat COVID-19 infection, there is
a wide interest in fluoroquinolones. Ciprofloxacin and Moxifloxacin were tested through in
silico molecular docking and showed the potential binding capacity to SARS-CoV-2 main
protease (Mpro) and low binding energy. Moreover, a recent study evaluated the potency
and cellular toxicity of selected FQs (enoxacin, ciprofloxacin, levofloxacin, and moxifloxacin)
against SARS-CoV-2 and MERS-COV. This study showed that a high concentration of the
tested FQs should be employed to prevent viral replication with enoxacin being the superior
(EC50 of 126.4) against SARS-CoV-2 [14,83,84]. Other studies evaluated FQs anti-HIV-1
activities. However, FQs standards activity were not presented [65].

4. Recommendations

Based on recently published research where FQs were used as positive controls against
several microorganisms and cancer cells, it is recommended to use the most active FQ
in future studies in addition to the parent drugs to compare the benefits and to have an
accurate insight when reporting results.

The difference perceived in FQs’ potency according to different research articles
is challenging and could be attributed to several factors, including the different testing
protocols implemented by each research group, solvents or broth used in bacterial culturing,
incubation time, bacterial concentration tested, bacterial growth phase, reader instrument
sensitivity, etc.

Ciprofloxacin is recommended to be used as a control against Gram-negative bacteria
whether resistant or susceptible. If mainly Gram-positive activity is concerned, levofloxacin
or moxifloxacin might be the best choices. The wide-spectrum and potent newer genera-
tions should be compared with, when broader comparison is desired. Choose moxifloxacin
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if the development of newer FQs derivatives is not a biologically-based design. This should
provide a proper perspective when reporting novel FQs and their activities. Working
against Mycobacterium stains, moxifloxacin was found to be more active compared to the
other FQs, thus it is advisable to consider it as a positive control.

Moreover, the authors spur adopting preliminary activity testing of the chosen strains
before commencing biological evaluation of interest as some of the stains might not be
susceptible to the reference drugs. Lastly, given that some stains exhibited varied MIC
values against the same drug, we recommend revising the adopted protocols beforehand
to get more accurate comparable results of the reference drug, which will be then more
reliable to base the conclusions upon.
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