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Screeningmammography is the most effective means for early detection of breast cancer. Although general rules for discriminating
malignant and benign lesions exist, radiologists are unable to perfectly detect and classify all lesions as malignant and benign,
for many reasons which include, but are not limited to, overlap of features that distinguish malignancy, difficulty in estimating
disease risk, and variability in recommended management. When predictive variables are numerous and interact, ad hoc decision
making strategies based on experience and memory may lead to systematic errors and variability in practice. The integration of
computer models to help radiologists increase the accuracy of mammography examinations in diagnostic decision making has
gained increasing attention in the last two decades. In this study, we provide an overview of one of the most commonly used
models, artificial neural networks (ANNs), inmammography interpretation and diagnostic decisionmaking and discuss important
features in mammography interpretation. We conclude by discussing several common limitations of existing research on ANN-
based detection and diagnostic models and provide possible future research directions.

1. Introduction

Breast cancer is the most common nonskin cancer and the
second leading cause of cancer deaths among American
women [1]. About one in eight American women are pro-
jected to develop breast cancer in their lives [2]. The Ameri-
can Cancer Society (ACS) estimates that 288,130 womenwere
diagnosed with breast cancer and 39,520 died from this
disease in 2011 [3].

Unfortunately, there is no foolproof method to prevent
breast cancer. However, when detected early, the disease is
often effectively curable. For example, 5-year survival rate
increases from 27% to 98% when breast cancer is detected in
an early stage [3]. That is why there is an intense interest in
screening modalities for early detection.

Mammography, a low-dose X-ray procedure for visualiz-
ing the internal structure of the breast, is the most effective
means to date for early detection of breast cancer [4]. Mam-
mograms can detect masses, tiny deposits of calcium referred

to as microcalcifications, and other subtle changes that may
indicate cancer. Early diagnosis through screeningmammog-
raphy is the most effective means of decreasing the death rate
from breast cancer. Randomized trials have shown that the
use of screening mammography in the general population
reduces breast cancer mortality by at least 24 percent [5].
It is estimated that more than 20 million mammograms are
performed in the US annually and approximately 70% of
women over age 40 have had a mammogram in the last two
years [6, 7].

All mammograms are overseen and interpreted by radi-
ologists. Subspecialty radiologists who are experts in the field
often have fellowship training in mammography and read
these studies exclusively. Community radiologists, who read
the majority of mammograms in the context of a diverse
general practice, on the other hand, have lower rates of cancer
detection and higher rates of biopsy [8]. It is reported that in
the US, only about 20% of women who have biopsies turn
out to have cancer [9]. While only about 3.5% of abnormal
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screening mammograms interpreted by community radiol-
ogists reveal cancer, subspecialty radiologists have a signifi-
cantly higher positive predictive value (PPV) [8]. Community
radiologists also have a lower sensitivity resulting in missed
breast cancers. While community radiologists detect about
3.0 breast cancers per 1,000 screeningmammograms, subspe-
cialty radiologists detect significantly more: about 5.3 cancers
per 1,000mammograms [10]. Furthermore, the US as a whole
appears to have different decision thresholds than other
countries. Smith-Bindman et al. [11] report that although
cancer detection rates are identical in the US and in the UK,
radiologists in the US declared many more mammogram
results uncertain or suspicious compared with their British
counterparts. As a result, American women with and without
cancer underwent at least double the number of followup
tests, like biopsies.

The American College of Radiology (ACR) has been
working on addressing these issues by attempting to stan-
dardizemammography reporting, reduce confusion in breast
imaging interpretations, and facilitate outcome monitoring.
For example, the ACR has developed a lexicon, the breast
imaging reporting and data system (BI-RADS), which stan-
dardizes mammogram feature distinctions and the terminol-
ogy used to describe them [12]. The BI-RADS lexicon, which
includes the descriptors that can predict benign or malignant
disease, is intended to guide radiologists and physicians in
the breast cancer decisionmaking process to facilitate patient
management. Furthermore, the results can be compiled in
a standard format that permits the collection, maintenance,
and analysis of demographic, mammographic, and outcomes
data.

Although general rules for discriminating malignant and
benign lesions exist, radiologists are unable to classify all
lesions as malignant and benign, as the successful diagnosis
requires systematic search patterns using numerous factors in
the presence of noise in images [13]. When predictive
variables are numerous and interact, ad hoc decision mak-
ing strategies based on experience and memory, the only
viable method for radiologists, may lead to errors [14] and
variability in practice [11, 15]. That is why there is intense
interest in developing tools that can calculate an accurate
probability of breast cancer to aid in decision making
[16–18].

To improve the accuracy ofmammography interpretation
and aid in detection and diagnosis of abnormalities, several
computer-aided detection (CAD) and computer-aided diag-
nostic (CADx) tools have been developed. The integration of
computermodels to help radiologists increase the accuracy of
mammography examinations in diagnosis [19–23] has gained
increasing attention since the last two decades. CAD and
CADxmodels may help radiologists in the detection and dis-
crimination of lesions as benign and malignant by providing
objective information, such as the risk of breast cancer [24].
In this paper, we provide an overview of one of the most
commonly used models, artificial neural networks (ANNs),
in CAD and CADx for mammography interpretation and
biopsy decision making and discuss important features in
breast cancer diagnosis. We present a list of the articles
described in this study in Table 1.

2. ANN Models in Breast Cancer
Detection and Diagnosis

ANNs are computer models that have the ability to dupli-
cate aspects of human intelligence while incorporating the
processing power of computers and are thus capable of
processing a large amount of information simultaneously by
learning fromprevious cases [25]. ANNs havemany desirable
properties that make them well suited for medical decision
making. ANNs are capable of “learning” complicated patterns
from data that are difficult for humans to identify [26]. They
can also often overcome ambiguous and missing data [27]
and provide accurate predications [28, 29]. The structure of
a generic ANN model built for aiding in mammography
interpretation is presented in Figure 1.TheANNmodels built
for aiding in mammography interpretation typically take
patients demographic risk factors (such as age and a family
history) and mammographic findings (such as mass or calci-
fication variables) as inputs and estimate the corresponding
breast cancer risk to aid in biopsy decision.

Microcalcifications are one of the major indicators of
breast cancer. A large proportion, 30%–50%, of breast can-
cers demonstrate microcalcifications on mammography, and
60%–80% of cancers exhibit microcalcifications on histologic
examination [30, 31]. Identifying microcalcifications, which
range in size between 0.1 and 1mm, is a difficult detection task
for radiologists [31, 32]. Furthermore, distinguishing between
malignant and commonly occurring benign microcalcifica-
tions is challenging.

There are two different ways of using ANNs to aid in
mammography interpretation. The first approach is to apply
the classifier directly to the region of interest (ROI) image
data. As a second approach, ANNs can also learn from
the features extracted from the preprocessed image signals.
Below, we summarize some of the noteworthy studies that
took the first approach.

Stafford et al. [33] developed a committee of three-layer
ANNs to examine digital mammograms after image prepro-
cessing.TheseANNswere trained and tested on 256mammo-
grams and transformed the original ROI images into output
images such that each pixel was assigned a value between
0 and 1. The committee consisted of four ANNs, each with
expertise on identifying microcalcifications within a certain
size range. In particular, the four ANNs were built by using
themicrocalcification sampleswith size ranges of 50–250𝜇m,
100–500 𝜇m, 200–1,000𝜇m, and 400–2,000𝜇m, respectively.
The committee took the highest output among these four
ANNs (the winner-take-all rule) as the output for each pixel.
The full system was tested on microcalcifications of size
ranging from 50–2,000𝜇m. The committee reached 84%
sensitivity at 75% specificity.

Zhang et al. [30] developed a novel neural network to
identify whether an ROI included more than a pre-under-
specified number of microcalcifications. In this proposed
neural network model, a subsequent layer did not depend
on the location patterns in the preceding layer, a special
structure called the shift-invariant property. Therefore, the
result of the shift-invariant ANN (SI-ANN) did not depend
on the location information in the input ROI images. If a
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Figure 1: Inputs to the network are lesion descriptors and family history of the patient. Nodes at each layer are connected to the nodes at
the succeeding layer by weighted arcs. Each hidden node in the first hidden layer performs a nonlinear weighted sum of all input values. The
outputs of the last hidden layer are then similarly combined to the output layer. The single output value shows the probability of the lesion
being malignant.

classical back-propagationANN(BP-ANN)was used instead,
then the locations of the microcalcification clusters implicitly
had to be encoded as the inputs of this neural network. The
performance of the SI-ANNwas evaluated using a database of
168 ROIs of 55×55 pixels and various network configurations.
Using this method, the highest area under the ROC curve
(𝐴
𝑍
) of 0.91 ± 0.02 was achieved. The neural network was

able to eliminate approximately 55% of false positive ROIs
without missing any of true-positive ROIs. Furthermore, the
SI-ANN showed a superior performance over the classic BP-
ANN [34].

Chan et al. [35] investigated the effectiveness of a convolu-
tional neural network (CNN) in detectingmicrocalcifications
on mammograms. The CNN was different from the classic
ANN in its structure where nodes in hidden layers were orga-
nized in groups. In the CNN, the same values were enforced
for the weights connecting the nodes in groups of subsequent
layers, which enabled the neural network to incorporate the
neighborhood information around each pixel on mammo-
grams during the training process. The output of the CNN

was a decision score. The performance of the CNN was
evaluated on a data set of 52 mammograms. The average 𝐴

𝑍

was 0.9, which was substantially robust to different network
configurations. The CNN further reduced the number of
false-positive clusters per image bymore than 70% at all true-
positive rates.

As a second approach, instead of learning directly from
images, ANNs can also learn from the features extracted from
preprocessed image signals. Several ANN applications for
reducing false-positive (FP) cases inmicrocalcification detec-
tion followed this approach [36–39]. Among these studies,
Nagel et al. [36], for example, built an ANN for identifying
microcalcifications based on five extracted features: area,
contrast, first moment of the power spectrum, mean pixel
value, and edge gradient. This ANN was trained on 39 mam-
mograms, and its output represented the likelihood of being
a microcalcification. A feature-wise threshold was computed
based on the training data to minimize the number of false
positives while maintaining a high enough true-positive (TP)
rate. For comparison purposes, a rule-based method of FP
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reduction was also built. The average number of FPs per
image were 1.9 for the rule-based method, 1.6 for the ANN,
and 0.8 for the combined method at a sensitivity of 83%,
when they were evaluated on an independent test set of 50
mammograms.

Following the detection of microcalcifications, radiolo-
gists should decide whether to biopsy or not. This decision
relies on the ability of the radiologist to accurately differ-
entiate benign and malignant features. To aid in biopsy
decision making, several ANN-based CADx models based
on radiologists’ observations have been developed since 1990s
[40–43].

As an alternative to feature extraction based on radiol-
ogists’ observations, algorithms were developed to automat-
ically extract features from digital mammography images.
These automatically extracted features can be used as input to
feed the CADx models. Chan et al. [44] provided a compre-
hensive summary of such methods. Jiang et al. [45] first inte-
grated the computerized feature analysis and discrimination.
Only the initial identification of microcalcification clusters
was performed by radiologists. Based on eightmorphological
features extracted from the image, the ANN identified 100%
of the malignant and 82% of the benign cases. The accuracy
was significantly higher than that of five radiologists without
computer aid (𝑃 = 0.03). In a follow-up study, Jiang et al.
[46] compared the automated discrimination methods and
routine clinical performance by ten radiologists using an
ROC analysis. The ROC index 𝐴

𝑍
increased from 0.61

without aid to 0.75 with computer aid (𝑃 < 0.0001). This
improvementwas also reflected in sensitivity (73.5% to 87.4%)
and specificity (31.6% to 41.9%). In the method proposed by
Huo et al. [47], mass regions were identified automatically
and then features related to the margin and density of each
mass were extracted. The results showed that the discrimi-
nation performance of the ANN (𝐴

𝑍
= 0.94) was slightly

better than that of an experienced mammographer (𝐴
𝑍
=

0.91) and significantly better than the average radiologists
(𝐴
𝑍
= 0.81, 𝑃 = 0.13). Similarly, in Kallergi [22], features

were automatically extracted from digital images by detec-
tion/segmentation methods. The ANN based on fourteen
morphological (for individual calcifications) and distribu-
tional (for the clusters) descriptors was shown to achieve
high sensitivity and specificity (100% and 85%), and be robust
against false positive signals.

In addition to morphological features extracted from
mammography images, texture featureswere also used to feed
ANNs in classifying malignant and benign microcalcifica-
tions, such as in the study by Chan et al. [48]. In this study,
thirteen texture features were derived from spatial grey level
dependence (SGLD) matrices, which were constructed from
the background-corrected ROIs. Several representative sub-
sets of features were evaluated by a stepwise procedure. The
feature set consisting of six features achieved the highest
accuracy (𝐴

𝑍
= 0.88).The sensitivitywas 100% at a specificity

of 24%when decision threshold was set to 0.85.The results of
this study showed that computerized methods were able to
capture the changes of texture features in malignant, which
were not visually apparent on mammograms.

∑ 𝑓

∑ 𝑓

∑ 𝑓

∑ 𝑓

∑ 𝑓

∑ 𝑓

External input
Symmetric bidirectional weight

Figure 2: Neurons are organized in a non-hierarchical structure
in constraint satisfaction neural network (CSNN). Each neuron
is assigned a value (activation level). These values represent the
network state. Inputs to each neuron include both the external input
and the activation levels of other neurons connected by the bidirec-
tional symmetric weights.The activation levels are updated by pass-
ing the weighted sum of input values through a transfer function.
The training is terminated when the network achieves a globally
stable state with all constraints satisfied.

Obviously, mammographic features are not the only con-
siderations for physicians in breast cancer diagnosis. Other
relevant findings, such as a patient’s medical history and
clinical factors, can also be informative for a successful
diagnosis. Baker et al. [41] built an ANNmodel based on ten
descriptors from breast imaging reporting and data system
(BI-RADS) and eight features of patients’ medical history
such as age, personal and family history of breast cancer, and
menopausal status. In this study, the specificity of the ANN
was significantly greater than that of radiologists (62% and
30%at 95% sensitivity,𝑃 < 0.01). Later, Lo et al. [42] observed
similar findings and showed that age was a strong diagnostic
predictor in the retrospective evaluation of the follow-up
study. Considering age together with seven BI-RADS find-
ings in the ANN significantly enhanced the discrimination
performance measured in 𝐴

𝑍
(𝑃 = 0.028).

In addition to mammographic features, some studies
built ANNmodels that also considered sonographic features.
Among them, the first one, Jesneck et al. [49] examined 803
breast mass lesions (296 malignant and 507 benign) from
737 patients. To assess the discrimination performance, ROC
analysis was used in a training, validation, and retest scheme.
Results showed that the ANN model achieved a high perfor-
mance (𝐴

𝑍
= 0.92 ± 0.01), and consideration of sonography

variables improved the performance.
Although ANNs have been successful in mammographic

diagnosis, they have often been regarded as black box since
they do not provide much clinical intuition. To overcome
this limitations, Tourassi et al. [50] proposed an innovative
ANN, the constraint satisfaction neural network (CSNN),
as illustrated in Figure 2. An appealing property of this



Computational and Mathematical Methods in Medicine 7

nonhierarchical and flexible CSNN model was the capability
to discover trends and hidden associations (e.g., to identify
the risk factors) and extract decision rules. As inputs, 10
mammographic and six patient clinical features of 500 breast
lesions (174 malignant and 326 benign) from BI-RADS
database were used. Based on a 50%-50% cross-validation
scheme, the ROC index 𝐴

𝑍
was shown to be 0.84 ± 0.02,

whichwas comparablewith the performance of a classicANN
[42]. Later, Tourassi et al. [51] validated this approach using a
larger testing data set of additional 1,030 cases.

In addition to improving diagnostic accuracy, ANNs
have also been useful in reducing variability in radiologists’
interpretations. In the literature, significant variability in
radiologists’ interpretations has been reported. For example,
a recent study by Beam et al. [52] showed that the sensitivity
of mammography ranged from 59% to 100% and specificity
ranged from 35% to 98%, depending on the reading radiolo-
gist. To reduce this interobserver variability, Jiang et al. [46],
for the first time, presented evidence for the ability of anANN
model to reduce variability of mammography interpretation
among radiologists. In another study, Jiang et al. [53] assessed
the variability in interpretation among radiologists with and
without an ANN model. The ANN estimated the likelihood
of malignancy, and ten radiologists were instructed in how
to utilize the output of the ANN. The findings of this study
verified that ANNs were not only useful for improving
diagnostic accuracy but also for decreasing variability in
mammography interpretation. In particular, they showed
that (1) the range in sensitivity was reduced from 35% to 26%
and the standard deviation (SD) of𝐴

𝑍
reduced by 46% (from

0.056 to 0.030); (2) on average, complete agreements were
achieved in 33 (32%) cases with computer aid compared with
13 (13%) caseswithout the aid (𝑃 < 0.001), and the occurrence
of conflicting was reduced from 43 (41%) cases to 28 (27%)
cases (𝑃 = 0.02); (3) substantial disagreements in recom-
mendation (biopsy versus routine follow-up, measured by
pairwise frequency and per-patient frequency (see [15]), were
reduced significantly with computer aid for all cases and for
cancer cases only (𝑃 < 0.04).

The results of mammography are often conveyed as posi-
tive or negative. In reality, however, the result of any test that
is imperfect would ideally be expressed in terms of a post-test
probability of disease which would help an individual better
understand his or her personal risk given the sensitivity and
specificity of the test. Recall that the output of an ANN is
often a probability indicating the similarity of the test case
to the malignant or benign findings. Then, a preset threshold
value is used to determine whether the test case is malignant
or benign. In this regard, ANNs can also be viewed as risk
assessmentmodels. However, most ANN studies in the litera-
ture have only focused on discrimination but did not consider
calibration.Orr [54] explored the value of quantifying the risk
of malignancy using an ANN. A standard back-propagation
network with a single hidden layer was trained and tested on
a dataset of size 1,288 (75% for training and 25% for testing).
The ROC index𝐴

𝑍
of the ANN in the test set was 0.89, which

was significantly better than that of the physicians alone
(𝐴
𝑍
= 0.86, 𝑃 < 0.01). In a retrospective examination of

the training data, the author observed that among the patients

with anANNoutput of 0, none had cancer, and for those with
an output greater than 0.75, 71% of them had cancer. To assess
the risk stratification capability of ANN (i.e., calibration),
patient data were divided into four quartiles, four subgroups
of almost equal size based on the magnitude of the ANN
output, where those in the lowest quartile had minimal risk
of malignancy. Results showed that the risks of cancer were
well separated among the four subgroups (2/391 = 0.5%,
7/272 = 2.6%, 37/341 = 10.9%, and 139/295 = 47.1%, resp.).

Risk estimations provided by ANNs could provide useful
information for physicians for a successful diagnosis, risk
stratification, and risk communication. As noted by Cook
[55], a comprehensive evaluation of such models should
include both discrimination and calibration.The discrimina-
tion ability represents the capability to separate themalignant
findings from the benign ones, as measured by ROC index
𝐴
𝑍
, sensitivity and specificity. Discrimination assessment is

commonly used as we see in studies reviewed above. How-
ever, discrimination measures cannot assess how well the
predictions agree with the actual observations, which needs
to be evaluated via the model calibration.The purpose of cal-
ibration is to improve the accuracy of risk prediction by esti-
mating the absolute risk of cancer. A well-calibrated model
means that the predicted risks match the observed risks
within each subgroup [56]. However, unlike discrimination,
calibration did not receive much attention in performance
assessment of the existing ANNmodels.

There is a tradeoff between discrimination and calibra-
tion, and perfect calibration and discrimination cannot be
achieved simultaneously in clinical practice [57–59]. Several
studies have shown that given a perfectly calibrated risk
estimation model, the ROC index 𝐴

𝑍
varied with the distri-

bution of the observed risk in the population.
Ayer et al. [43] revisited the use of ANNmodels in breast

cancer risk estimation and assessed both discrimination
and calibration. On a large data set consisting of 62,219
consecutive mammography findings, the risk prediction was
obtained using 10-fold cross-validation. The ANN model
achieved an𝐴

𝑍
of 0.965, which was significantly higher than

that of the radiologists, 0.939 (𝑃 < 0.001). The calibration
of the ANN was assessed by the Hosmer-Lemeshow (H-L)
goodness-of-fit statistic test. The H-L statistic was 12.46 (𝑃 >
0.1, df = 8), which indicated a good match between the risk
estimates and the actual malignancy prevalence.

In clinical practice, missing data is a common problem
[51]. Obviously, incomplete inputs may have an impact on
the prediction accuracy of a trained ANN. Markey et al. [27]
investigated the impact of missing data in classifying testing
data on ANNs. The ANNs were trained with complete data
and tested on a dataset with missing components. Four levels
of missing data (10%, 20%, 30%, and 40%) were tested in a
back-propagation ANN (BP-ANN) and a CSNN model. For
the BP-ANN, missing values were (1) replaced with zeros,
(2) replaced with mean value from the training set, and
(3) imputed by using a multiple imputation procedure. The
results showed that the replacing of the missing values with
zeros was not very efficient and could lead to misleading
results. The decrease of 𝐴

𝑍
was significant (𝑃 < 0.01) even

with only 10% missing data (0.84 ± 0.03) compared with
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the complete data (0.94 ± 0.01). The other two methods
were shown to be more accurate and efficient. Their findings
showed that with data imputation, the models achieved rea-
sonable performance for up to about 30% missing data.

Imbalanced data presents another challenge to ANN
development, testing, and performance. A data set is consid-
ered imbalanced if the number of instances of one class is
significantly smaller than that of the other class. In the context
of breast cancer, the proportion of patients with breast cancer
is significantly lower due to the actual prevalence of the dis-
ease. Mazurowski et al. [60] showed that this influence could
significantly reduce the performance of an ANN. In general,
two methods, undersampling and oversampling, are com-
monly used to compromise data imbalance. Undersampling
randomly chooses samples from themajority class so that the
size of themajority class is similar to that of theminority class.
Oversampling, on the other hand, will randomly duplicate or
interpolate the samples from the minority class to mitigate
this imbalance. Mazurowski et al. [61] investigated the effects
of imbalanced data on the discrimination performance for a
classic ANN. A database consisting 1,005 biopsy-proven
masses (370malignant and 645 benign) collected at the Duke
University Medical Center was used to compare the effects
of oversampling and undersampling. This study verified the
detrimental effects of the class imbalance in training dataset
and showed that oversampling in general achieved a higher
ROC performance compared with undersampling.

3. Discussion and Conclusions

Several studies have verified that ANNs have the potential to
successfully aid in mammography interpretation and breast
cancer diagnosis. However, for successful applications of
ANNs, both advantages and disadvantages of these models
should be well understood and be carefully considered by
researchers and the end users. Advantages and disadvantages
of ANNs have been previously discussed in several studies in
the literature (see, e.g., [62, 63]). To summarize, the advan-
tages of ANNs include the ease of model building, the
capability in capturing the interactions between predictors,
and ability to consider complicated nonlinearities between
predictors and outcomes (Table 2).

Besides the advantages, ANNs have several disadvantages
as well. In medical practice, the clinical insights obtained
from the prediction models obviously play an important
role. As Tu [63] noted, ANNs however suffer from the
limited capability to explicitly explain the causal relationships
between predictive factors and outcomes, which is probably
the most major drawback. Another drawback is that a well-
trainedmodel would be difficult to share with other research-
ers. This is because the knowledge discovered from the data
is all encoded into a huge weight matrix, which is difficult
to interpret and share. Furthermore, the complexity of the
model structure in ANNs makes it more prone to overfitting,
the case where the network overlearns and mimics the
training dataset but performs poorly when presented to an
external dataset. Ayer et al. [25] also noted the need for
confidence intervals, which are, unlike statistical methods,
not straightforward to obtain from ANNmodels.

Table 2: Advantages and disadvantages of ANNs.

Advantage Disadvantage
(i) Easy model building with
less formal statistical
knowledge required.

(i) Clinical interpretation of
model parameters is difficult
(black boxes).

(ii) Capable of capturing
interactions between predictors.

(ii) Sharing an existing ANN
model is difficult.

(iii) Capable of capturing
nonlinearities between
predictors and outcomes.

(iii) Prone to overfitting due to
the complexity of model
structure.

(iv) Users can apply multiple
different training algorithms

(iv) Confidence intervals of the
predicted risks are difficult to
obtain.
(v) The model development is
empirical. Few guidelines exist
to determine the best network
structures and training
algorithms.

4. Future Research in ANNs for Breast Cancer
Detection and Diagnosis

There is a growing interest in developing successful ANN
models for breast cancer detection and diagnosis, due to high
computational power and practical use of ANNs. However,
many studies in the literature share some common limita-
tions, which make their applications limited. As noted by
Schwarzer et al. [64], the most common major limitations
include (1) lacking a comprehensive assessment of the dis-
crimination accuracy, (2) overfitting, and (3) the complexity
issues. First, most studies in the literature do not evaluate
the performance of the trained ANNs using an independent
test set. If testing the model on an independent dataset is
not feasible due to data limitation or other concerns, at least
cross-validation should be done to minimize the potential
bias. However, many studies lacked such evaluations and as a
result, in most cases, the error rates were dramatically under-
estimated. Second, most studies did not pay close attention
to overfitting. The generalizability of the neural networks
substantially depends on the number of hidden nodes in the
hidden unit. When they are too few, the network is limited
in its capability of representing the causal relationships. On
the other hand, when they are excessive, the network is prone
to overfitting. Many studies in the literature reported the
use of very large the number of hidden nodes as compared
with the size of the training data but did not assess whether
overfitting occurred. Lastly, in many studies, the computa-
tional complexity of the ANN was not properly reported.
Some measured the complexity only using the number of
input units which would underestimate the computational
complexity. Properly reporting the complexity of an ANN
model is important because the computational power as well
as many potential problems such as overfitting are closely
related to the complexity of the model. The future studies in
this domain should carefully consider and overcome these
limitations for successful applications of ANNs in mammog-
raphy interpretation.
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