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ABSTRACT: Protein arginine deiminases (PADs) catalyze the post-translational hydrolysis of arginine residues to form
citrulline. This once obscure modification is now known to play a key role in the etiology of multiple autoimmune diseases (e.g.,
rheumatoid arthritis, multiple sclerosis, lupus, and ulcerative colitis) and in some forms of cancer. Among the five human PADs
(PAD1, -2, -3, -4, and -6), it is unclear which isozyme contributes to disease pathogenesis. Toward the identification of potent,
selective, and bioavailable PAD inhibitors that can be used to elucidate the specific roles of each isozyme, we describe tetrazole
analogs as suitable backbone amide bond bioisosteres for the parent pan PAD inhibitor Cl-amidine. These tetrazole based
analogs are highly potent and show selectivity toward particular isozymes. Importantly, one of the compounds, biphenyl tetrazole
tert-butyl Cl-amidine (compound 13), exhibits enhanced cell killing in a PAD4 expressing osteosarcoma bone marrow (U2OS)
cell line and can also block the formation of neutrophil extracellular traps. These bioisosteres represent an important step in our
efforts to develop stable, bioavailable, and selective inhibitors for the PADs.

■ INTRODUCTION

Protein arginine deiminases (PADs), members of the
amidinotransferase superfamily of enzymes, catalyze the
hydrolysis of arginine residues to form citrulline (Figure
1).1−3 There are five PADs (PAD1, -2, -3, -4, and -6) in humans
and other mammals.1−3 These enzymes are highly related with
50% interisozyme sequence identity and require micromolar
levels of calcium for full activity; calcium binding causes a
conformational change that allosterically activates the
enzymes.1−3 Although highly related, these enzymes display
unique tissue distribution patterns. For example, PAD2 is
expressed in most tissues and cell types, whereas PAD1 and
PAD3 are generally restricted to the skin and hair follicles and
PAD4 and PAD6 are primarily expressed in neutrophils and
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Figure 1. Protein arginine deiminases (PADs) convert arginine
residues into citrulline.
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oocytes, respectively.3 Although we are only beginning to
understand how the PADs contribute to normal human
physiology, it is known that these enzymes help control
myelination, differentiation, the epigenetic control of gene
transcription, the innate immune response, and the main-
tenance of pluripotency.4,5 In addition to these processes,
dysregulated PAD activity is associated with the onset and
progression of multiple inflammatory diseases (e.g., rheumatoid
arthritis, multiple sclerosis, lupus, inflammatory bowel disease,
and ulcerative colitis) and also some forms of cancer.3,6−14

Although it is not understood how the PADs contribute to
such a disparate number of diseases, common links include
their role in controlling the formation of neutrophil
extracellular traps (NETs) as well as their ability to modulate
the expression of both proliferative and antiproliferative
genes.15,16 The overwhelming evidence linking dysregulated
PAD activity to disease pathogenesis prompted the initiation of
several PAD inhibitor programs.17,18 Prior work in this area
includes the identification of several reversible PAD inhibitors
(e.g., Taxol, methylarginines, and minocycline); however, these
compounds are very weak PAD inhibitors or have multiple off
targets.19−27 As such, they have shown limited utility as tool
compounds to study PAD biology. By contrast, the
haloacetamidine class of compounds has provided key insights
into PAD biology.17,18 Cl-amidine, the most widely used
member of this compound class, has been used to demonstrate
PAD involvement in the maintenance of pluripotency, the
epigenetic control of gene transcription, and the formation of
neutrophil extracellular traps.16,28−32 Additionally, Cl-amidine
shows efficacy in multiple preclinical models of autoimmunity
and cancer including ulcerative colitis, lupus, rheumatoid
arthritis, and atherosclerosis as well as breast cancer.12,33−41

To enhance the potency, selectivity, and bioavailability of Cl-
amidine, we and others have generated a number of derivatives
including TDFA (a tripeptide F-amidine analog) and YW3-
56.12,42 However, these compounds are all peptide based and
subject to degradation by proteolysis. This is even the case for
Cl-amidine (Scheme 1) because the basic chemical scaffold
(i.e., benzoyl arginine amide, BAA) is a trypsin substrate.

Recently, we synthesized a series of D-ornithine based
compounds hypothesizing that these analogs would be more
stable relative to their L-amino acid counterparts.43 Although
subsets were potent PAD inhibitors, D-amino acid derivatives
showed only minor improvements in their overall stability. In
our continuous efforts to identify stable, potent, and selective
inhibitors for the PADs, we describe herein, the design,
synthesis, and biological evaluation of tetrazole analogs of Cl-
amidine.

■ RESULTS AND DISCUSSION

Chemistry. Given that tetrazoles are bioisosteres for
carboxylic acids and cis/trans amides,44−46 we hypothesized
that the replacement of the C-terminal amide bond in Cl-
amidine with a tetrazole ring would improve the stability of the
parent compound. Notably, the tetrazolium ring tends to be
ionized at pH 7.4, exhibiting a pKa value of 4.9, thereby
mimicking the electronegativity of the C-terminal carboxamide.
The synthesis of these tetrazole based analogs began with the
corresponding Bz-Orn(Boc)-amide (Scheme 2). The C-
terminal carboxamide was dehydrated with triethylamine and
TFAA to give the corresponding cyano compound. The cyano
ornithine was then heated with sodium azide in iPrOH/H2O to
generate the tetrazole. Deprotection of the Boc protecting
group with TFA led to the formation of two products in one
pot: the desired tetrazole and a tetrazole tert-butyl derivative.
The attachment of a tert-butyl group onto a highly acidic
tetrazolium ring during the course of Boc cleavage with TFA
has precedence in the literature.47 Note that these substituted
tetrazoles are no longer acidic because of substitution of the
acidic nitrogen. The tetrazole and tetrazole tert-butyl derived
ornithines were separated by HPLC, and then the chloro- and
fluoroacetamidine warheads were installed using standard
protocols.48 Purification yielded a series of tetrazole derived
haloacetamidines in good yield (68−78%) (Scheme 2).
With the tetrazole chemistry in place, we next considered

that replacement of the N-terminal benzoyl group with a
biphenyl benzoyl moiety would increase the hydrophobicity of
the compound to enhance cellular uptake. To this end, the
commercially available H2N-Orn(Boc)-OH was treated with 4-
phenylbenzoyl chloride to give biphenyl benzoyl ornithine
which was converted to the corresponding amide. The amide
was then further converted to the corresponding tetrazole and
tetrazole tert-butyl ornithine derivatives using the methodology
outlined in Scheme 3. The warheads were then attached to the
individual ornithine to give another set of compounds in good
yield (>68%).
Since o-Cl-amidine and o-F-amidine are highly potent PAD

inhibitors,35 we anticipated that the attachment of an o-
carboxylate on the phenyl group at the N-terminus of the
tetrazole based compounds would also enhance compound
potency and selectivity for the PAD isozymes. The synthesis of
o-carboxylates began with Fmoc-Orn(Boc)-amide which was
converted to the corresponding tetrazole compound in two
steps (Scheme 4). The Fmoc group was then cleaved with 20%
piperidine in DMF, and the resulting compound was treated
with phthalic anhydride in THF at room temperature to install
the o-carboxylate on the phenyl ring. The Boc group was then
cleaved with TFA, which afforded the tetrazole and tetrazole
tert-butyl ornithines in good yield. The chloro- and
fluoroacetamidine warheads were then installed to give the
desired o-carboxylate tetrazole derivatives (Scheme 4).

Compound Potency and Selectivity. With the tetrazole
analogs in hand (4−7, 11−14, 19−22), we next evaluated their
potency and selectivity by determining kinact/KI values for
PAD1, -2, -3, and -4. kinact/KI is used because it is the best
measure of potency for an irreversible inhibitor. PAD6 was not
tested because it shows no in vitro activity. Notably, the highest
potencies and selectivities were obtained for the o-carboxyl-
containing tetrazoles (Figure 2, Table S1). We have previously
reported that the installment of a carboxyl group ortho to the
N-terminal amide increases potency,35 likely because of the

Scheme 1. C-Terminal Bioisosteric Modification of Cl-
amidine
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formation of favorable H-bonding and/or electrostatic
interactions between the o-carboxylate and W347 and R374.35

For Cl-ortho tetrazole (19), the kinact/KI values are 82 000 and
159 000 M−1 min−1 for PAD1 and PAD4, respectively. Cl-ortho

tetrazole (19) also showed 15-fold selectivity versus PAD2 and
PAD3. F-ortho tetrazole (20) was similarly potent for PAD1
and exhibits 20- to 30-fold selectivity over PAD2 and PAD3
when compared to PAD1. Interestingly, the use of the

Scheme 2. Synthesis of Tetrazole Analogs of Cl-amidine and F-amidine

Scheme 3. Synthesis of Biphenyl Tetrazole Analogs of Cl-amidine and F-amidine

Scheme 4. Synthesis of o-Carboxylate Containing Tetrazole Analogs of Cl-amidine and F-amidine

Figure 2. Selectivity of tetrazole haloacetamidines: (A) selectivity of tetrazole analogs of Cl-amidine; (B) selectivity of tetrazole analogs of F-amidine.
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fluoroacetamidine warhead significantly reduces the potency of
this compound toward PAD4, indicating that significant
selectivity can be achieved by altering the identity of the
warhead. Moreover, introduction of the tert-butyl moiety
further altered the selectivity of the remaining compounds.
For example, both Cl-ortho tetrazole tert-butyl (21) and F-
ortho tetrazole tert-butyl (22) show a significant improvement
in their ability to inhibit PAD2. This trend was observed for the
other tert-butyl derivatives described herein. For example, the
kinact/KI values of tetrazole tert-butyl Cl-amidine (6) and
tetrazole tert-butyl-F-amidine (7) for PAD2 are 7500 and 6500
M−1 min−1 versus 1200 and 380 M−1 min−1 for Cl-amidine and
F-amidine, respectively. In a similar fashion, the biphenyl
derived tetrazole tert-butyl compounds possess higher selectiv-
ity toward PAD2. For example, tetrazole tert-butyl-F-amidine
(7) and biphenyl tetrazole tert-butyl-F-amidine (14) preferen-
tially inhibit PAD2 by 3- to 25-fold with the highest selectivity
being observed for PAD2 over PAD4. It is important to note
that both compounds 7 and 14 are highly selective PAD2
inhibitors relative to the other PADs. The preferential
inhibition of PAD2 suggests that the fluoroacetamidine
warhead is more suitably oriented within the PAD2 active
site. Note that since saturation was not observed in the plots of
the pseudo-first-order rates of inactivation versus concentration
of inhibitor, it is difficult to ascertain whether the different
potencies of the compounds toward the different isozymes are

driven by effects on the reactivity of the electrophile (i.e., kinact)
or differences in the inherent binding affinity of the inhibitors
(i.e., KI).

Cell Viability Studies. To examine the antiproliferative
activities of these tetrazole analogs, we next evaluated their
ability to inhibit the growth of U2OS cells using a fixed
concentration of inhibitor (i.e., 20 μM) (Figure 3A and Figure
3B). Cell viability was assessed with the colorimetric XTT
assay. Impressively, biphenyl tetrazole tert-butyl Cl-amidine
(13) completely abolished cell growth at 20 μM. Biphenyl
tetrazole tert-butyl-F-amidine (14) also inhibited cell growth,
although the effects of this compound were markedly
attenuated (more than 50% of cells are viable when cells
were treated with 20 μM of the fluoro analog) (Figure 3B). The
remaining compounds showed no effects on cell viability at this
concentration. To provide a more direct measure of the cellular
potency of our two best compounds (13 and 14), we
determined the concentration of compound that reduced cell
viability by 50%, i.e., the EC50 value (Figure 3C). Consistent
with our initial screening data, the EC50 of compound 13 (10 ±
2.5 μM) was significantly better than the value obtained for
compound 14 (EC50 = 45 ± 1.2 μM). Importantly, the EC50

values are 16- and 3.5-fold better than those obtained for the
parent compound Cl-amidine (EC50 = 160 ± 20 μM). This
improved cellular efficacy is likely due to the increased
hydrophobicity of the biphenyl compound enhancing cell

Figure 3. Cell efficacy studies. (A) Cell viability studies with the tetrazole analogs of Cl-amidine. U2OS cells were treated with compounds at final
concentration of 20 μM, and cell viability was measured by the colorimetric XTT assay. Biphenyl tetrazole tert-butyl Cl-amidine (13) completely
abolishes the growth of U2OS cells at 20 μM. (B) Cell viability studies with the tetrazole analogs of F-amidine. (C) EC50 of biphenyl tetrazole tert-
butyl compounds. Compounds 13 and 14 have lower EC50 values compared to Cl-amidine in U2OS cells. (D) Stability of tetrazole analogs of Cl-
amidine in mouse hepatic microsomes compared to Cl-amidine.

Journal of Medicinal Chemistry Article

DOI: 10.1021/jm501636x
J. Med. Chem. 2015, 58, 1337−1344

1340

http://dx.doi.org/10.1021/jm501636x


penetration. Although the o-carboxyl containing tetrazoles are
very potent in vitro PAD inhibitors, the presence of the
negatively charged carboxyl group likely reduces their overall
bioavailability. Overall, these data highlight the potential utility
of targeting the PADs for the development of an anticancer
therapeutic. This is especially true for the fluoroacetamidine
containing compounds because the inherent reactivity of this
warhead is quite low and shows few off targets.49,50 We do note,
however, that for the chloroacetamidine containing com-
pounds, it is difficult to directly link their cytotoxicity to PAD
inhibition versus an off target effect. We are currently using
these scaffolds to develop next generation activity-based protein
profiling reagents to address this possibility.
Microsomal Stability Studies. We next evaluated the

stability of a subset of compounds in a murine hepatic
microsome stability assay which utilizes liver microsomes. Liver
microsomes possess many of the enzymes responsible for drug
metabolism in vivo and are also a good predictor of drug
clearance properties.51 On the basis of these data, it is clear that
the fluoroacetamidine containing compounds are significantly
more stable than their chloroacetamidine containing counter-
parts whose half-lives are similar to that obtained for Cl-
amidine (Figure 3D). The one exception is the ortho carboxyl
derived tetrazole Cl-amidine (21) whose half-life mimics those
obtained for the fluoro analogs, suggesting that modification of
the N-terminus substantially improves the overall stability of
the compounds.
Neutrophil Extracellular Trap (NET) Inhibition Studies.

We and others have shown that PAD4 mediated histone
hypercitrullination induces heterochromatin decondensation
and chromatin unfolding to form NETs.52−56 Neutrophil
extracellular trap (NET) formation causes direct organ damage
and can trigger endothelial and epithelial cell death.37 Inhibition
of PAD4 reduces NET formation in mouse neutrophils in vivo
and human neutrophils in vitro.15 We have also shown that Cl-
amidine treatment blocks NET formation and modulates the
lupus phenotype in animal models.37 Furthermore, Cl-amidine
mitigates atherosclerosis in the apolipoprotein-E (Apoe)−/−

murine model40 and this activity correlates with decreased
NET formation. Given these precedents, we next investigated
whether our two best in vitro inhibitors, i.e., compounds 13 and
21, could block NET formation. To this end, mouse
neutrophils were treated with PMA to stimulate NET
formation in the absence and presence of increasing amounts
of Cl-amidine, compound 13, and compound 21. Cl-amidine
was used as the reference compound. NET formation was then
quantified using the DNA/neutrophil elastase overlap assay.
Though 21 is very potent in vitro, it inhibits NET formation
only at very high concentrations. The negatively charged
carboxyl group again likely limits its bioavailability. By contrast,
the biphenyl derivative 13 is significantly more potent than Cl-
amidine in the NET assays (Figure 4), despite its being a
significantly poorer PAD4 inhibitor in vitro. The enhanced
cellular activity likely reflects the hydrophobic nature of the
compound which enhances cellular uptake. We also evaluated
the toxicity of 13 and 21, our two best inhibitors, against
human neutrophils. The results of these studies indicate that 21
displays very limited cytotoxicity (EC50 = 985 ± 20). By
contrast, 13 (EC50 = 31 ± 1.0) is considerably more toxic.
Nevertheless, it is noteworthy that we see considerable
inhibition of NET formation at lower doses (EC50 ≈ 20 μM)
than those that cause cell killing.

■ CONCLUSIONS
In summary, we identified tetrazoles as a suitable C-terminal
bioisosteric modification of Cl-amidine. A subset of the analogs
show enhanced potencies and selectivities relative to Cl-
amidine. Importantly, we confirmed that installation of an o-
carboxylate enhances the in vitro potency of the compounds by
up to 30-fold highlighting the importance of this pharmaco-
phore. We also showed that incorporation of a tert-butyl group
on the tetrazolium ring markedly increased the selectivity of the
compounds for PAD2. Finally, our data indicate that enhanced
cellular permeability can be achieved by increasing the
hydrophobicity of the compounds. These design characteristics
will be incorporated into future analogs as part of our
continuing efforts to develop isozyme specific inhibitors for
all of the PADs.

■ MATERIALS AND METHODS
Chemicals. Dithiothreitol (DTT), 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (HEPES), ammonium iron(III) sulfate
dodecahydrate, tris(2-carboxyethyl)phosphine (TCEP), and thiosemi-
carbazide were acquired from Sigma−Aldrich. Diacetylmonooxime
(DAMO), N-α-benzoyl-L-arginine ethyl ester (BAEE), and N-α-
benzoyl-L-arginine amide (BAA) were obtained from Acros. Detailed
synthetic procedures are described in the Supporting Information.
PAD1, -2, -3, and -4 were purified analogously to previously described
methods.35,57

Inactivation Kinetics. The kinetic parameters of inactivation were
determined by incubating PAD1, -2, or -4 (2.0 μM) or PAD3 (5.0
μM) in a prewarmed (10 min, 37 °C) inactivation mixture (50 mM
HEPES, 10 mM CaCl2, and 2 mM DTT, pH 7.6, with a final volume
of 60 μL) containing various concentrations of inhibitor. Aliquots were
removed at various time points (0, 2, 6, 10, 15, 20, and 30 min or 0,
0.5, 1, 1.5, 2, 4, and 6 min) and added to a prewarmed (10 min, 37 °C)
reaction mixture (50 mM HEPES, 50 mM NaCl, 10 mM CaCl2, 2 mM
DTT, and 10 mM BAEE or 10 mM BAA in the case of PAD3; pH
7.6). After 15 min, reactions were quenched in liquid nitrogen and
citrulline production quantified using the COLDER assay.58,59 Data
were plotted as a function of time and fit to eq 1,

= −v v e k t
o

obs (1)

Figure 4. Biphenyl tetrazole tert-butyl Cl-amidine (13) and o-carboxyl
tetrazole tert-butyl Cl-amidine (21) inhibit NET formation. The
DNA/neutrophil elastase overlap assay suggests that compound 13
significantly reduces NET formation compared to Cl-amidine.
Compound 21 also inhibits NET formation at higher doses: (∗) p <
0.05 and (∗∗) p < 0.01.
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using GraFit, version 5.0.11, where v is velocity, vo is the initial velocity,
kobs is the pseudo-first-order rate constant of inactivation (i.e., kobs),
and t is time. The kobs values were then plotted against inhibitor
concentration, and the data were fit to eq 2,

=k k K[I]/( )obs inact I (2)

using GraFit, version 5.0.11. Since saturation was not observed in any
of the plots, kinact/KI was calculated from the slope of the line. kinact
corresponds to the maximal rate of inactivation, and KI is the
concentration of inhibitor that gives half-maximal inactivation. For a
subset of the less potent compounds, kinact/KI values were determined
by dividing the kobs value at a single concentration by the
concentration of the inhibitor tested.
Cell Viability. The human osteosarcoma (U2OS) cell line was

plated (2.5 × 106 cells/well) in a 96-well plate. The next day the cells
were treated with compounds (5 μL, 20 μM final), DMSO (5 μL),
Triton X-100 (5 μL), or various concentrations of 13 or 14 and
incubated for 72 h. Cell viability was measured using the XTT reagent
kit (ATCC) by reading the absorption at 475 nm using a Spectramax
plate reader. EC50 values for cell growth inhibition were determined by
fitting an eight-point dose−response curve to eq 3,

=
+

+
( )

Y
range

1
backgrounds

[I]
EC50 (3)

using GraFit5.0.11, where range is the uninhibited value minus the
background and s is the slope factor. For in vitro cytotoxicity assays
with neutrophils, freshly isolated human neutrophils were resuspended
in RPMI 1640 medium containing 10% fetal bovine serum and then
seeded into poly-L-lysine coated 96-well plates at 40 000 cells/well.
After the cells were allowed to adhere for 1 h, neutrophils were
incubated for 4 h with 13 or 21 at concentrations ranging from 1 to
500 μM. Cell viability after drug exposure was measured using the
XTT cell viability kit as described above.
Neutrophil Isolation. C57BL/6 mice were purchased from The

Jackson Laboratory. Bone marrow neutrophils were isolated essentially
as described previously.60 Briefly, bone marrow was flushed from
femurs and tibias with Hank’s balanced salt solution supplemented
with 15 mM EDTA. Cells were then spun on a discontinuous Percoll
gradient (52%, 69%, 78%) at 1500g for 30 min. Cells from the 69−
78% interface were collected, and red blood cells were lysed. Cells
were >95% Ly-6G-positive and had typical segmented nuclei by
microscopy.
NET Quantification and Microscopy. A protocol similar to what

we have described previously was followed.61 Briefly, 1.5 × 105

neutrophils were seeded onto glass coverslips coated with 0.001%
poly-L-lysine (Sigma). PAD inhibitors were used at the indicated
concentrations, including a 30 min pretreatment in Locke’s solution
(150 mM NaCl, 5 mM KCl, 2 mM CaCl2, 0.1% glucose, and 10 mM
HEPES buffer, pH 7.3). Stimulation was with 100 nM PMA (Sigma)
for 3−4 h in RPMI-1640 supplemented with L-glutamine, 2% BSA, and
10 mM HEPES buffer. Cells were then fixed with 4% paraformalde-
hyde (PFA) for 20 min, followed by blocking with 10% fetal bovine
serum; cells were not specifically permeabilized. DNA was stained with
Hoechst 33342 (Invitrogen), while protein staining was with a rabbit
polyclonal antibody to myeloperoxidase (A0398, Dako) followed by
FITC-conjugated anti-rabbit IgG (4052-02, SouthernBiotech). After
staining, coverslips were mounted in Prolong Gold antifade reagent
(Invitrogen). Images were collected with an Olympus microscope
(IX70) and a CoolSNAP HQ2 monochrome camera (Photometrics)
with Metamorph Premier software (Molecular Devices), typically at
400× magnification. Statistical background correction and image
overlays were with Metamorph, and the recorded images were loaded
onto Adobe Photoshop for further analysis, at which time NETs were
manually quantified by two blinded observers. Decondensed nuclei
that also stained positively for myeloperoxidase were considered NETs
and digitally recorded to prevent multiple counts. The percentage of
NETs was calculated as the average of at least five fields and
normalized to the total number of cells.
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