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Abstract

Articular cartilage is an important load-bearing tissue distributed on the surface of diarthrodial joints.

Due to its avascular, aneural and non-lymphatic features, cartilage has limited self-regenerative prop-

erties. To date, the utilization of biomaterials to aid in cartilage regeneration, especially through the

use of injectable scaffolds, has attracted considerable attention. Various materials, therapeutics and

fabrication approaches have emerged with a focus on manipulating the cartilage microenvironment

to induce the formation of cartilaginous structures that have similar properties to the native tissues. In

particular, the design and fabrication of injectable hydrogel-based scaffolds have advanced in recent

years with the aim of enhancing its therapeutic efficacy and improving its ease of administration.

This review summarizes recent progress in these efforts, including the structural improvement of

scaffolds, network cross-linking techniques and strategies for controlled release, which present new

opportunities for the development of injectable scaffolds for cartilage regeneration.
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Introduction
Articular cartilage is a highly organized tissue which has remarkable

load-bearing and low friction properties that allow for smooth move-

ment of diarthrodial joints [1, 2]. The cartilage component contains

sparsely distributed chondrocytes which are embedded within the ex-

tracellular matrix (ECM), mainly comprised water, type II collagen

and glycosaminoglycans that provide the tissue with sufficient me-

chanical properties for several biofunctions, such as load-bearing and

low friction capabilities [3, 4]. Due to the avascular, aneural and non-

lymphatic characteristics of cartilage, cartilage has limitations in its

self-regeneration and intrinsic repair [3]. Thus, cartilage regeneration

still remains a challenge in tissue engineering [1].

Currently, strategies of repairing cartilage defects include de-

bridement and lavage, microfracture, as well as autografts (cell and

tissue transplantation) [5–7]. Although these therapies have exhib-

ited some efficacy in the repair of cartilage defects, there are still cer-

tain limitations, such as poor integration with healthy cartilage, lack

of nutrients, and the formation of fibrous tissue instead of hyaline

cartilage that has a consistent morphology and function in clinical

applications [8]. Typically, the inadequately regenerated cartilage

does not have normal mechanical properties and zonal organization,

which could most likely result in further degeneration [9]. The limi-

tations of current therapies for cartilage regeneration have hence led

to cartilage tissue engineering, which aims to combine engineering
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with biological principles to induce the regeneration of cartilage and

to treat osteoarthritis [10–12].

To further expand the utilization of biomaterials in cartilage

regeneration, injectable hydrogel-based scaffolds have attracted con-

siderable attention these years in cartilage tissue engineering [13,

14]. Hydrogels are notably swollen and porous with 3D polymeric

networks, where various solutes and nutrients can be located and

able to diffuse [15–18]. Furthermore, as illustrated in Fig. 1, inject-

able scaffolds can be delivered in a non-invasive or minimally inva-

sive manner via either direct injection or arthroscopy. Injectable

hydrogels can not only provide a biocompatible, biodegradable and

highly hydrated 3D structure analogous to cartilaginous ECM and

improve the supply of nutrients and cellular metabolites via elastic

properties [19–22], but also encapsulate cells and deliver bioactive

molecules efficiently and effectively through stimuli-responsive re-

lease mechanisms to targeted sites for cartilage regeneration [13,

23–26].

An ideal injectable scaffold for cartilage regeneration should typ-

ically meet the following criteria: (i) ease of administration under

physiological conditions, (ii) guaranteed injectability (gelation upon

injection via either chemical or physical cross-linking), (iii) excellent

biocompatibility and potential biodegradability, (iv) the ability to

mimic cartilaginous ECM features and promote chondrogenic po-

tential of cells, (v) the ability to easily fill defect sites inside the joint

and integrate with the surrounding native cartilage tissue rather

than shifting readily and (vi) a sustained release profile if associated

with local drug delivery [13, 15, 27–29]. This review aims to pro-

vide an overview of the current advances of injectable scaffolds in

cartilage regeneration with an emphasis on the components of scaf-

folds and cell sources.

The structure of injectable scaffolds

Hydrogels possess high water content and elastic properties with

cross-linked, multiporous networks [30]. The potential of hydrogels

as efficient biomaterials have been reported since the latter half of

the 20th century, beginning with the use of nondegradable methac-

rylate gels to fabricate soft contact lenses [31, 32]. Thereafter, peo-

ple have investigated hydrogels for various biomedical applications,

including drug delivery, wound healing and tissue engineering [33].

Hydrogels can be broadly classified based on the source material

(natural or synthetic) and biodegradability (biodegradable or

non-biodegradable). Natural hydrophilic macromolecules used for

hydrogel scaffold fabrication are often biodegradable and mainly

consist of proteins and polysaccharides [34]. Natural polysacchar-

ides used to prepare injectable hydrogels for tissue engineering

include chitosan (CS), alginate, agarose and hyaluronic acid (HA)

[35]. Protein-based materials, such as collagen, gelatin and fibrin,

are also popular for engineering bioactive scaffolds because of their

advantages in mimicking the extracellular environment [36–39].

Hydrogels derived from synthetic polymers are more chemically

programmable and tunable to systematically determine their cell–

matrix interactions [30]. Some examples of synthetic polymers that

have been utilized in cartilage regeneration engineering include

poly(ethylene glycol) (PEG), poly(vinyl alcohol) (PVA), polydioxa-

none as well as poly(lactic acid) [23]. For example, PEG has been ex-

tensively investigated for biomedical applications because of its

good tissue compatibility, nontoxicity and hydrophilicity [30].

Notably, as aforementioned, because biodegradability is an essential

characteristic of injectable scaffolds for cartilage tissue engineering,

several degradable PEG-based synthetic polymeric systems have

also been developed to form hydrogels, including copolymers of

PEG with a diverse array of synthetic degradable polymers, such as

poly(propylene fumarate), poly(lactic-co-glycolic) acid (PLGA),

PVA, polyanhydrides, poly(propylene oxide) and polyphosphazenes

[40]. In cartilage tissue engineering, these biomimetic polymers,

either natural or synthetic, are designed to mimic crucial aspects

of the native extracellular environment by distinctly adjusting

mechanical, chemical and biological properties of hydrogels [41].

Multilayer structure of injectable scaffolds
Articular cartilage in joints is divided into the superficial, middle,

deep and calcified zones (Fig. 2A). These zones have different cell

morphologies, compositions, structural arrangements of the ECM

and mechanical properties [42]. Clinically, the most symptomatic

cartilage damage is the osteochondral injury with involvement of

both the cartilage and subchondral layers. To simulate the complex

zonal architecture of cartilage and the zones likely damaged by

osteochondral defects in the joint, as shown in Fig. 2B, multilayer in-

jectable hydrogels attract particular interest for cartilage tissue engi-

neering. In the early stages of work toward this goal, a bilayer

hydrogel system was developed, which constituted a simple form of

a multilayer matrix [43]. Cui et al. [44] and Sun et al. [45] investi-

gated bilayer hydrogels by both 3D printing and projection of ster-

eolithography. Nguyen et al. [46] designed a PEG-based tri-layer

hydrogel with the first layer comprising chondroitin sulfate (CHS)

and matrix metalloproteinase-sensitive peptides, the second layer

comprising CHS and PEG, and the third layer comprising PEG and

HA. It was demonstrated that this complex construct could encapsu-

late a single line of stem cells in all layers and could increase the pro-

duction of type X collagen and proteoglycans. Kang et al. [47]

fabricated a single-unit tri-layer scaffold to engineer osteochondral

Figure 1. The schematic of the applications of injectable scaffolds for cartilage

regeneration
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tissues in vivo, including a biomineralized bottom layer mimicking a

calcium phosphate (CaP)-rich bone microenvironment, a middle hy-

drogel layer with anisotropic pore structure and a top hydrogel layer

(Fig. 3). These tri-layer scaffolds contributed to the regeneration of

osteochondral tissue with a lubricin-rich cartilage surface, which

was similar to the native tissue. Furthermore, this scaffold signifi-

cantly enhanced the sustained differentiation of transplanted cells to

form neocartilage tissue and the recruitment of the surrounding en-

dogenous cells to form bone tissues through the bottom layer. In ad-

dition to the osteochondral tissue repair, theoretically, it is also

ineffective for monolayer scaffolds to be used for cartilage regenera-

tion due to the complex hierarchical structure of cartilage. It

remains to be seen how advances in the design of hydrogels will im-

pact their ability to mimic the structure, properties, and arrange-

ment of cells and collagen fibers of the native ECM.

Interpenetrating polymer network of scaffolds
Mechanical integrity is a crucial design criterion for hydrogels in

cartilage regeneration. However, networks of traditional hydrogels

are generally based on a single polymer, resulting in reduced me-

chanical properties, which are inferior to those of natural cartilage

[10]. To enhance the mechanical properties of hydrogels to better

mimic natural hyaline cartilage, as shown in Fig. 2B, the research fo-

cus is transitioning from conventional hydrogels that consist of a

single polymer to the hydrogel systems integrated with two or more

independent networks with superior functions [48, 49].

Interpenetrating polymer network (IPN) hydrogels were devel-

oped aiming to enhance its mechanical properties [50]. IPN, a type

of unique mixture of polymers, is composed of two or more cross-

linked networks, which are partially intertwined with each other

rather than covalently linked [51]. According to recent reports,

hydrogels with IPNs tend to exhibit superior mechanical properties

compared with those formed by a single type of polymer. Snyder

et al. [52] demonstrated that an IPN of cross-linked HA improved

the mechanical strength of hydrogel constructs and increased the ex-

pression of the chondrogenic transcription factor Sox9 by the loaded

human mesenchymal stem cells (MSCs). Gan et al. [50] investigated

the incorporation of a primary network consisting of dextran and

gelatin with a PEG-based secondary network. This IPN hydrogel

showed high toughness and increased proliferation, clustering and

matrix deposition of encapsulated nucleus pulposus cells when the

quantity of the primary network was 4-fold greater than the second-

ary one. Chen et al. [51] investigated the combination of a sodium

Figure 2. (A) The schematic of the anatomy, cell morphology and zonal features of articular cartilage, and its progression to different types of osteoarthritis.

(B) The schematic of different structure scaffold networks utilized in the cartilage regeneration engineering

Figure 3. The implantation of the cell-laden trilayer scaffold resulted in the formation of osteochondral tissue with a lubricin-rich cartilage surface. This figure was

adapted with permission from Kang et al. [47]
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hyaluronate/sodium alginate (HA/SA)-based scaffold with berberine

and found that this system could stimulate the regeneration of carti-

lage as well as subchondral bone. Furthermore, Guo et al. [53] in-

vestigated a tri-component IPN hydrogel (consisting of collagen,

methacrylate-modified CHS and HA), which can better mimic the

natural materials in articular cartilage.

Furthermore, double IPN networks and dual IPN networks have

been investigated with the aim of developing injectable scaffolds. A

double network consists of two polymers combined with different

mechanical properties (rigid versus ductile), which leads to a hydro-

gel matrix with greater toughness than the corresponding single

polymer network alone [54]. Therefore, double networks have

attracted much interest in cartilage tissue engineering. A study com-

paring double-network hydrogels and traditional single-network

hydrogels of either poly(2-acrylamido-2-methylpropanesulfonic

acid) (PAMPS) or poly(N,N0-dimethyl acrylamide) (PDMAAm)

demonstrated that the double-network hydrogel structure showed

superior cartilage regeneration by histological and biochemical scor-

ing [55]. Stagnaro et al. [56] built a porous scaffold based on algi-

nate–polymethacrylate hybrid hydrogels and demonstrated that this

matrix mimicked the microenvironment of the ECM in cartilage tis-

sue by overcoming mechanical limitations. Levett et al. [57] gener-

ated a double-network hydrogel formed by gelatin and HA. Due to

the high reactivity of methacrylate groups, this hydrogel matrix sys-

tem exhibited advantages in terms of the compressive modulus and

chondrification by encapsulating human chondrocytes [57]. In con-

trast to the double networks, the dual networks consist of two mate-

rials with similar cross-linking mechanisms. However, these two

similar components have different and mutually beneficial proper-

ties. For example, a dual-network hydrogel consisting of HA with a

high molecular weight (>1600 kDa) with PVA with a low molecular

weight (27 kDa) was constructed by Pirinen et al. [58], which were

further chemically cross-linked by the reaction between aldehydes

and primary amines. The swelling properties can be tuned by vary-

ing the size of the PVA component. Enhanced cell viability of encap-

sulated bovine knee chondrocytes was observed with the addition of

HA [58].

Nanocomposites integrated in scaffolds

In bone or cartilage tissue engineering, the load-bearing property of

the material is a crucial feature. The stiffness of hydrogel scaffolds is

2 orders of magnitude lower than natural cartilage [59]. The high

water content of hydrogels and their limited stiffness are the two

main drawbacks of the progression of cartilage regeneration in vitro

and in vivo [60]. Researchers have reported that these hindrances

could be alleviated if nanomaterials were added into hydrogel scaf-

folds [61]. Thus, nanocomposite hydrogel systems have attracted in-

creasing attention in recent years.

Hybrid hydrogels integrated with nanoscale composites are de-

fined as hydrated polymeric networks which are either physically

or chemically cross-linked with nanoparticles (NPs) or other nano-

structures [62]. Nanoparticles can act as fillers to improve the me-

chanical properties of hydrogel scaffolds [63]. Different types of

NPs, including carbon-based nanomaterials (such as carbon nano-

tubes, graphene and nanodiamonds), inorganic/ceramic NPs (such

as hydroxyapatite, silica, silicates and calcium phosphate), poly-

meric NPs and metal/metal oxide NPs (such as gold, silver and iron

oxide), can be incorporated in the polymeric network to form

nanocomposite hydrogels [62]. Nanoscale composites with large

surface area-to-volume ratios can not only improve the surface re-

activity but also provide enhanced mechanical properties. In

addition, because they can easily penetrate into the focal tissue via

narrow or small capillaries or the epithelial lining, the efficacy of

loaded therapeutic agents and bioactive agents can be enhanced

[64–66].

Several nanomaterials have been developed as injectable scaf-

folds to mimic the ECM of cartilage. For example, Zhang et al. [67]

synthesized a hybrid hydrogel (MagGel), composed of type II colla-

gen, HA, PEG and magnetic NPs for cartilage regeneration. The

MagGel showed similar microstructure and chemistry as hyaline

cartilage and was cytocompatible with bone marrow mesenchymal

stem cells (BMSCs) in vitro. Interestingly, MagGel could be used to

direct the scaffold remotely to the cartilage defect site using an exter-

nal magnet [67]. Radhakrishnan et al. [68] investigated a semi-

interpenetrating network hydrogel scaffold formed by CHS NPs and

nanohydroxyapatite used in chondral and subchondral hydrogel

layers, respectively. The regeneration of subchondral bone and carti-

lage tissue was enhanced by this hybrid hydrogel [68]. Boyer et al.

[69] developed a hybrid interpenetrating network mixed with lapon-

ites, known as a nano-reinforcing clay, and silated hydroxylpropyl-

methyl cellulose, which increased the hydrogel mechanical

properties without compromising its oxygen diffusion capability,

cytocompatibility, the self-organization of chondrogenic cells and

generation of ECM components. Collectively, the functions of the

added nanocomposite are as follows: (i) mechanical reinforcement,

(ii) biological activity and biomimetic function, (iii) integration of

cartilage with bone tissue and (iv) transport of drugs and growth

factors [70, 71].

Formation of scaffolds

To guarantee the injectability of scaffolds, the scaffolds are typically

in a solution state before administration and proceed to an in situ

gelation after administration. Furthermore, while developing an

ideal injectable hydrogel scaffold that can undergo in situ gelation

for better usage in cartilage tissue engineering, it should also ideally

meet the following criteria: (i) solubility in aqueous media with gela-

tion occurring under physiological changes (such as temperature,

pH and ionic concentration), (ii) no release of harmful byproducts

during gelation and (iii) a suitable rate of gelation for practical use

[30]. The process of hydrophilic polymers undergoing in situ gela-

tion in response to various stimuli has been developed by either tun-

ing the components of polymers or specifying the sensitive units in

polymer chains. As shown in Table 1, the stimulation of gelation ap-

plied for cartilage tissue engineering includes functions of chemical

agents, physiological stimuli and light.

Physically cross-linked hydrogels
Thermosensitive hydrogels are one of the most extensively studied in-

jectable hydrogel systems for tissue engineering. The sol–gel transition

occurs either above or below a critical temperature, termed as lower

critical solution temperature or upper critical solution temperature.

The most commonly used thermogels in cartilage tissue engineering

include Pluronics [72], p(NIPAAm) [73, 74], poly(N-vinylcaprolac-

tam) [75] and PLGA–PEG–PLGA [76–78]. For instance, Li et al. [76]

loaded kartogenin (KGN) into PLGA–PEG–PLGA thermogel as an

injectable scaffold for BMSCs, which exhibited good mechanical

properties and effective cartilage regeneration in vivo. Moreover,

these polymers are often mixed or conjugated with other natural

polymers, such as gelatin [79, 80], cellulose [81] and HA [82, 83]

to improve the biocompatibility and mechanical properties of

the thermogels. [75, 84]. For example, Lynch et al. reported
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poly(N-vinylcaprolactam)-graft-HA with a lower critical solution

temperature of around 33�C. This injectable thermosensitive hydrogel

improved cell compatibility and promoted the generation of ECM

proteins even under hypoxic conditions [75]. CS has attracted great

attention as an injectable hydrogel scaffold for cartilage repair be-

cause of its structural similarity to glycosaminoglycan [81, 85, 86].

Formation of CS-based thermosensitive hydrogels can be achieved

by mixing with b-glycerophosphate (GP), which can increase the pH

of the CS solution to a range of 7.0–7.4 and allow for gel formation

at body temperature [87]. The CS/GP thermogel has been widely

applied to cartilage regeneration [88–91]. The mixture of CS with

other polymers has also been investigated [92, 93]. For example, Qi

et al. [92] designed a CS/PVA-based thermoresponsive hydrogel com-

bined with rabbit BMSCs transfected with hTGFb-1 to repair rabbit

articular cartilage defects. The non-degradable PVA can postpone

the degradation of the CS/PVA gel, thereby prolonging the self-

repair duration. pH-responsive injectable scaffolds have also been

investigated for cartilage tissue engineering. The formation of pH-

responsive hydrogels mostly engages dissociation and association

with Hþ in response to the changes of environmental pH. This type

of hydrogel is studied extensively for biomedical applications because

the pH profiles at pathological tissues (such as inflammation, infec-

tion and cancer) differentiate from that of normal tissues. Strehin

et al. [94] developed pH-responsive CHS–PEG adhesive hydrogels

with potential applications in regenerative medicine including carti-

lage repair. The stiffness, swelling properties and gelation kinetics of

the hydrogel can be tuned by adjusting the initial pH values of the

precursor solutions. Halacheva et al. [95] reported a poly(methyl

methacrylate-co-methacrylic acid)-based pH-sensitive hydrogel with

high porosity, elasticity and ductility. The enhanced mechanical prop-

erties of the injectable hydrogel make it a good candidate for regener-

ative medicine.

Ion-sensitive injectable hydrogels have also been developed for

cartilage regeneration. The hyaluronate-g-alginate solution can eas-

ily form a hydrogel by adding Ca2þ [96]. This ionically cross-link-

able hydrogel provided an appropriate scaffold to transplant

chondrocytes, resulting in efficient chondrogenic differentiation in

cartilage regeneration.

Chemically cross-linked hydrogels
Chemically cross-linked hydrogels have been extensively utilized for

tissue engineering [30]. Versatile chemistry enables the integration

of functional groups into the polymers, allowing for in situ cross-

linking. A variety of chemical reactions have been investigated to

generate injectable hydrogels for cartilage regeneration, including

Schiff base reaction, click chemistry, Michael addition, enzyme-

catalyzed cross-linking and photo-cross-linking.

Gel formation by Schiff base reaction

Injectable hydrogels formed by Schiff base reaction between amine

and carbonyl groups have been widely utilized for cartilage regener-

ation applications, owing to the high reaction rate, mild reaction

conditions as well as good biocompatibility [97, 98]. CS, carrying

abundant amino groups, is an excellent polymer candidate for syn-

thesizing injectable hydrogels through Schiff base cross-linking. For

example, Tan et al. [99] reported an injectable CS–HA hydrogel via

Schiff base reaction for potential cartilage tissue engineering.

Gelation time, degradation profile and mechanical properties can be

controlled by adjusting S-CS/A-HA ratios. Cao et al. [100] designed

a chemically cross-linked hydrogel via Schiff base reaction using gly-

col CS and aldehyde-functionalized PEG (poly(EO-co-Gly)-CHO)

with a flexible capability to tune the properties of hydrogels.

Gel formation by click chemistry

Click chemistry involves a wide range of reactions, such as azide–

alkyne cyclo-addition reactions, thiol–ene couplings, Diels–Alder

reactions and tetrazine–norbornene chemistry [101]. These reactions

have been widely used to fabricate injectable hydrogels, owing

to their rapid reaction kinetics and low reactivity with cellular

components [102, 103]. Wang et al. [104] reported dextran-based

hydrogels formed by metal-free biorthogonal click chemistry. They

used non-toxic metal-free azide–alkyne addition to form injectable

hydrogels, which made it applicable for in vivo use. Yu et al. [105]

prepared an in situ formed HA/PEG hydrogel via a two-step cross-

linking method. The first step was the enzymatic cross-linking

between tyramine groups of furylamine-grafted HA and the second

Table 1. Advances in formation of injectable scaffolds for cartilage regeneration

Formation of hydrogels Major materials

Physically cross-linked hydrogels Thermosensitive Pluronics [72]

P(NIPAAm) [74]

PLGA-PEG-PLGA [76]

CS/GP [88–91]

Thermosensitive Gelatin-Pluronic copolymer [79]

CS/hydroxyethyl cellulose [81]

CS/HA [83]

pH-responsive CHS–PEG [94]

Poly(methacrylic acid) [95]

Ion-responsive Hyaluronate-g-alginate [96]

Chemically cross-linked hydrogels Schiff base reaction CS/aldehyde HA [99]

Glycol CS/poly(EO-co-Gly)-CHO [100]

Click Chemistry Azadibenzocyclooctyne-modified and azide-modified Dextran [104]

Michael addition reaction Amino derivative of HA/divinylsulfone [110]

Enzyme-catalyzed cross-linking Heparin-tyramine/dextran-tyramine/HRP [115]

Photo-cross-linking Poly(ethylene glycol)dimethacrylate/UV [117]

Sericin methacryloyl/UV [118]

Methacrylated glycol CS and HA/Visible light [116]
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step was the Diels–Alder click chemistry between unreacted

furan-modified HA and dimaleimide PEG. The two-step cross-link-

ing showed improved mechanical properties of the hydrogel.

Gel formation by Michael addition reaction

The Michael addition reaction has been commonly used to prepare

injectable hydrogels, ascribed to its mild reaction condition and con-

trollable reaction time [106–108]. Jin et al. [109] reported on an in-

jectable hydrogel based on thiolated HA and PEG vinylsulfone via

Michael addition. The gelation and degradation time can be ad-

justed by varying polymer concentrations and molecular weights of

polymers. Fiorica et al. [110] prepared two kinds of HA-based in-

jectable hydrogels by Michael addition, using the amino derivative

of HA (HA-EDA), a-elastin-grafted HA-EDA and a,b-poly(N-2-

hydroxyethyl)-DL-aspartamide derivatized with divinylsulfone. The

controllable swelling and degradation kinetics and its ability to inte-

grate articular chondrocytes of the hydrogel suggested that this scaf-

fold processed desirable properties for cartilage regeneration.

Gel formation by enzyme-catalyzed cross-linking

The enzyme-catalyzed chemical cross-linking method has attracted in-

creasing attention for hydrogelation, due to its fast gelation rate, high

site specificity, ability to work at normal physiological conditions and

low cytotoxicity [111]. There have been many attempts to produce en-

zymatically cross-linked hydrogels for cartilage tissue engineering, in-

cluding transglutaminase, tyrosinase, phosphopantetheinyl transferase,

lysyl oxidase, plasma amine oxidase and horseradish peroxidase (HRP)

[112–114]. Particularly, Teixeira et al. showed that the HRP-mediated

cross-linking systems can covalently bind the phenol-conjugated poly-

mers (heparin-tyramine and dextran-tyramine conjugates) to the ECM

proteins of the surrounding tissues, which is beneficial in maintaining

the structural integrity for arthroscopic cartilage repair [115].

Gel formation by photo-cross-linking

Photo-cross-linking involves multiple steps, including initiation, propa-

gation and termination, under light illumination. This method requires

the introduction of free radical groups, such as vinyl and methacrylate

residues together with photo-initiators. In recent years, the photo-cross-

linking method has been widely applied to synthesize injectable

hydrogels for cartilage tissue engineering owing to the flexible ability

to control the timing and location of hydrogel cross-linking [116].

For example, Papadopoulos et al. [117] reported a swine auricu-

lar chondrocyte encapsulated poly(ethylene glycol)dimethacrylate

copolymer-based hydrogel by photo-cross-linking for cartilage repair.

Neocartilage resembled both composition of ECM and cellular popula-

tion of the native cartilage, indicating the promise for cartilage regener-

ation. Qi et al. [118] designed a sericin methacryloyl (SerMA)-based

UV cross-linking hydrogel, which was adhesive to chondrocytes and

promoted the proliferation of attached chondrocytes even in a nutri-

tion-deficient condition. In vivo implantation of chondrocyte-loaded

SerMA hydrogels adequately formed artificial cartilages. Although UV-

mediated cross-linking is characterized by low cytotoxicity, UV radia-

tion may still have a negative influence on cells, proteins and tissues.

Hence, considerable attempts in visible-light-initiated polymerization

for cartilage repair have been investigated. For instance, Park et al.

[116] reported a visible light-induced photo-cross-linking of methacry-

lated glycol CS and HA hydrogels. Choi et al. [119] also reported the

incorporation of cartilaginous ECM components into an injectable CS

hydrogel designed to undergo gelation upon exposure to visible light.

Incorporating cells into injectable scaffolds

Hydrogels are versatile and their various properties, such as high

water content, biodegradability, porosity and biocompatibility, al-

low them to be used often for cell therapy [16, 120]. In cartilage tis-

sue engineering, properly engineered hydrogel scaffolds are able to

control cell proliferation and differentiation. Using advanced techni-

ques, cell encapsulated hydrogels can also be fabricated with person-

alized geometries and compositions [30, 121, 122]. Over the last

decade, various types of cell-loaded injectable hydrogel systems have

been investigated for cartilage regeneration [30, 122]. Incorporation

of cells into hydrogels can be realized by either seeding cells into the

prefabricated porous scaffolds or encapsulating cells during scaffold

formation. However, the cell lines that can be used for injectable

scaffolds in cartilage regeneration are limited. Table 2 lists the

examples of cells that have been incorporated in the injectable hy-

drogel scaffolds for cartilage regeneration [123–133].

Fully differentiated chondrocyte-encapsulated

hydrogels
Autologous chondrocyte implantation has been successfully used in

clinic to treat cartilage defects [5]. However, it is still challenging to

Table 2. Examples of incorporation of cells into injectable scaffolds for cartilage regeneration

Cell source Major materials Advantages

Chondrocytes (fully

differentiated cells)

Chondrocytes CS Prolonged cell survival, retained cell morphology and

improved chondrogenesis when cultured in vitro [137]

Chondrocytes CS and type II collagen Improved cellular condensation and chondrogenesis of

embedded chondrocytes to promote cartilage

regeneration [136]

Chondrocytes Oligo(lactic acid)-b-PEG-

b-oligo(lactic acid) (PEG-LA)

Improved formation of cartilage matrix of aggrecan and

collagen type II/VI [138]

Stem cells ESCs PEG Promoted ESC differentiation into chondrogenic cells and

formation of neocartilage ECM [141]

MCS Agarose, hyaluronan acid, PEG or alginate Increased chondrogenic differentiation of the cells for the

cartilage reconstruction [50, 144–146]

iPSCs Polylactic Prompted cartilage regeneration of an osteochondral defect

[150]

PBMCs Graphene oxide (GO)-polyethylenimine (PEI) Easily obtained from peripheral blood and have a similar

potential of chondrogenic differentiation and cartilage

generation compared with MSCs [151]
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directly fix a chondrocyte graft in a focal cartilage defect site with a

complex shape by invasive orthopedic surgeries [123]. Therefore, in-

jectable scaffolds have been proposed to overcome this challenge.

Many reports indicate that chondrocytes can proliferate well in

hydrogels and express cartilage-related proteins or genes with well-

maintained cell morphologies and phenotypes [124, 134–136]. Jin

et al. [137] developed an injectable CS-based hydrogel and found

that it could support long-term chondrocyte survival and retain cell

morphology in vitro. During in vitro culture, chondrogenesis oc-

curred with the formation of cartilage ECM, including type II colla-

gen and aggrecan, which were homogenously distributed

throughout the entire hydrogel. Roberts et al. [138] demonstrated

that a chondrocyte-laden hydrogel consisting of oligo(lactic acid)-b-

PEG-b-oligo(lactic acid) improved the formation of a cartilage ma-

trix consisting of aggrecan and collagen types II/VI. Although

chondrocyte-based biomaterial therapy has demonstrated promising

in cartilage tissue engineering, two notable limitations should be

considered. First, chondrocyte harvesting involves collecting healthy

cartilage tissues from non-load-bearing areas and long-term in vitro

culturing (�1 month) [139, 140]. Because of the low quantity of

chondrocytes, and because cartilage defects cannot regenerate, the

donor area can become necrotic using this approach. Second, autol-

ogous chondrocyte therapy is nearly ineffective in elderly patients

due to the low bioactivity and proliferation capacity of autologous

primary chondrocytes.

Stem cells encapsulated in hydrogels
Biomedical therapies incorporating stem cells and hydrogels for car-

tilage regeneration commonly include ESCs, MSCs, induced pluripo-

tent stem cells (iPSCs) and predifferentiated MSCs. ESCs, isolated

from the tissues of early embryos, show an unlimited self-renewal

capacity while maintaining a pluripotent differentiation potential

[127]. However, stem cell pluripotency leads to difficult control

over differentiation. Hwang et al. [141] have reported that combin-

ing these cells with biomimetic hydrogels and growth factors (such

as transforming growth factor b1 and bone morphogenetic protein)

created a synergistic environment for chondrogenesis. The encapsu-

lated ESCs were able to differentiate into chondrogenic cells and

promote the production of neocartilage ECM [141]. MSCs, derived

from a variety of tissue sources, including bone marrow, adipose tis-

sue, periodontal ligament, muscle, lung, liver, amnion, thymus,

spleen, placenta, umbilical cord blood and corneal stroma, can inter-

act with local biochemical stimuli to generate growth factors for

multiple biofunctions for tissue regeneration [142, 143]. MSCs have

become the most extensively used stem cells in biomedical applica-

tions due to their abundant cell sources, low immunogenicity, no

ethical concerns and minimal teratoma risk [142]. Ample studies re-

garding the encapsulation of MSCs in chondrogenic 3D injectable

hydrogels, such as agarose, hyaluronan acid, PEG and alginate, have

been reported for the chondrogenic differentiation of cells and for

the targeted reconstruction of cartilage [52, 144–147]. Notably,

in vitro research has demonstrated that MSC proliferation and dif-

ferentiation potential decreases with aging and with aging-related

diseases [148], likely preventing their clinical applications in elderly

individuals.

Recently, iPSCs have attracted significant attention because they

exhibit pluripotency that is quite similar to ESCs in terms of multi-

ple differentiation routes, thus resulting in increasingly widespread

applications in regenerative medicine, which can be obtained from

somatic cells including fibroblasts [129, 149]. Xu et al. [150] have

demonstrated that human-derived iPSCs can maintain their

pluripotency in a polylactic-based scaffold and are capable of regen-

erating cartilage in an osteochondral defect within 6 weeks in rab-

bits. Currently, it is feasible to produce iPSCs by using an

integration-free approach with the development of cellular reprog-

ramming techniques, which is safer and more amenable from a regu-

latory perspective for their future clinical applications [151].

Recently, predifferentiated MSCs, which can be easily obtained

from peripheral blood with minimal invasiveness, have been

reported to have a similar potential for chondrogenic differentiation

and cartilage generation ability compared with MSCs [152].

However, their application potential in injectable scaffolds requires

further study.

Controlled-release drug delivery scaffolds

Many therapeutics exhibit limited efficacy due to the rapid clearance

of the drugs in joints. Injectable scaffolds, on the other hand, can

sustain drug release and extend the drug retention time. Numerous

studies have investigated natural and synthetic biomaterials to de-

velop scaffolds with unique properties, such as improved joint artic-

ular dwelling time with sustained drug release while ameliorating

the biodegradation of delivery systems. Strategies investigated for

the release of biologics with biological activity for treating cartilage

defects have developed from simple bolus injections into the focal

cartilage defect to multifunctional delivery systems.

Microparticles (MPs) and NPs are desirable formulations for

controlled drug release due to their high surface area to volume ra-

tios, small dimensions, high drug encapsulating efficiencies and the

capacity to quickly respond to surrounding environmental stimuli,

such as temperature, pH, magnetic fields or ultrasound [153–155].

Recently, there have been many advancements in the application of

MP and NP delivery vehicles for cartilage repair. One material that

has received attention for the construction of MPs and NPs is the

synthetic PLGA polymer, because of its controllable degradation

profiles, ease of fabrication and safety in other FDA-approved appli-

cations [156]. Spiller et al. [157] have recently designed a hybrid

scaffold system composed of PVA and PLGA loaded with insulin-

like growth factor 1 (IGF-1). They used a double emulsion technique

to form evenly dispersed PLGA MPs (11.3 6 6.4 lm) containing

IGF-1 throughout the PVA hydrogel, resulting in the release of IGF-

1 in a linear and sustained manner for at least 45 days. Researchers

have also designed NPs to deliver growth factors [158–160].

Recently, the Shi group reported that KGN can be encapsulated into

biodegradable PLGA NPs through an emulsion-based formulation

method, embedded in photocross-linked acrylated HA injectable

hydrogels, and the release rate of KGN associated with the HA ma-

trix integrated with KGN-NPs was nearly linear without an appar-

ent burst release during the 2-month experimental period (Fig. 4)

[161]. This injectable scaffold with a sustained release of KGN facil-

itated the filling of the defects and generation of hyaline cartilage. In

another study, it has shown that NPs with a diameter of <10 nm

can penetrate bovine cartilage explants, while NPs over 15 nm were

limited to the superficial cartilage layer. Of note, a positive fixed

charge density promoted the uptake of protein and enhanced protein

retention to over 15 days, which was much longer compared with

neutrally charged protein [162].

Summary and future outlook

To date, injectable scaffolds have provided a promising therapeutic

platform for cartilage regeneration. As surveyed above, a number of
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hydrogel-based scaffolds have been developed with inherent capabil-

ities in cartilaginous tissue engineering, and sufficient mechanical

properties for repairing cartilage defects to restore normal joint

function. First, to enhance the mechanical properties of scaffolds,

traditional single-network hydrogels have been supplemented with

either additional networks or mixtures of polymers, and many nano-

composites have been utilized to vary the mechanical properties of

scaffolds. These strategies have also been used to produce hydrogels

which can improve the integration with surrounding cartilage while

promoting chondrogenesis of stem cells encapsulated in hydrogels

in vivo. Second, to enhance the efficiency and duration of the deliv-

ery of growth factors or other pharmaceuticals, advanced formula-

tions such as MPs and NPs have been investigated in scaffolds for

controlled drug delivery. These advances have also garnered interest

in presenting biochemical cues in a controllable manner.

Looking ahead, there are still limitations of injectable scaffolds that

restrict the complete regeneration of articular cartilage. First, it is essen-

tial that the injectable scaffolds can fill the defect area with a smooth

interface that is similar to the native cartilage, without integrating into

the surrounding healthy tissue. Second, the progressive degradation of

hydrogels before they can be replaced by the de novo ECM could com-

promise their mechanical stability and long-term therapeutic efficacy.

One option to overcome this issue is to incorporate appropriate exoge-

nous cells, such as MSCs, within these scaffolds, which could poten-

tially replace the scaffolds as they degrade with newly formed tissue.

Third, signaling pathways and particular mechanisms from stem cells

to specific cartilaginous cells need further in-depth understanding.

It emphasizes more fundamental biological studies of cartilage develop-

ment and regeneration, which could significantly contribute to the opti-

mization of the injectable scaffolds in the long run. It is also essential to

highlight the potential translation of the systems at the beginning of the

design. Factors, such as biocompatibility of materials, ease of adminis-

tration, feasibility of large-scale manufacturing and overall cost should

be thoroughly evaluated. Lastly, the next generation of cartilage tissue

engineering could be combined with noninvasive/minimally invasive di-

agnostic technologies to provide real-time assessment of the disease sta-

tus and overall treatment performance, leading to personalized

therapy.
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