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Vertebrate pancreas organogenesis is a stepwise process regulated by a

complex network of signaling and transcriptional events, progressively

steering the early endoderm toward pancreatic fate. Many crucial players

of this process have been identified, including signaling pathways, cis-

regulatory elements, and transcription factors (TFs). Pancreas-associated

transcription factor 1a (PTF1A) is one such TF, crucial for pancreas devel-

opment. PTF1A mutations result in dramatic pancreatic phenotypes associ-

ated with severe complications, such as neonatal diabetes and impaired

food digestion due to exocrine pancreatic insufficiency. Here, we present a

brief overview of vertebrate pancreas development, centered on Ptf1a func-

tion and transcriptional regulation, covering similarities and divergences in

three broadly studied organisms: human, mouse and zebrafish.

Introduction

The pancreas of most vertebrates consists of two com-

partments with distinct functions. The exocrine pan-

creas is composed of enzyme-secreting acinar cells and

duct cells, which transport these enzymes into the gas-

trointestinal tract. The endocrine pancreas comprises

numerous discrete islets, embedded in the exocrine tis-

sue, made up of different hormone-producing cell

types, including a-cells (glucagon), b-cells (insulin), d-
cells (somatostatin), PP cells (pancreatic polypeptide),

and e-cells (ghrelin) [1,2]. Pancreas development in ver-

tebrates is an intricate process through which various

cell lineages develop from common endodermal

progenitors and converge to form a single organ [3,4].

During early development, the endodermal epithelium

evaginates and through signaling pathways based on

diffusible molecules or cell–cell interactions, cis-

regulatory elements (CREs) and transcription factors

(TFs), gives rise to the dorsal and ventral buds [5,6]

that contain multipotent pancreatic progenitor cells

(MPCs). One important player is the pancreas-

associated TF 1a (Ptf1a), a basic helix-loop-helix

(bHLH) TF that forms the trimeric pancreas TF 1

complex (PTF1) with two other proteins: an E protein

and Rbpj, or its pancreas-restricted paralogue Rbpjl
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[7]. During vertebrate pancreas development, Ptf1a is

thought to be required for pancreatic specification [8],

exocrine versus endocrine fate decision [9,10], and

maintenance of acinar cell identity [8,11], in addition

to neurodevelopmental roles [12]. Furthermore,

pancreatic MPCs have been characterized by

co-expression of Pdx1 and Ptf1a [8,13]. Loss-of-

function mutations in the human PTF1A gene result in

developmental defects such as cerebellar and pancreatic

agenesis [14]. Importantly, mutations in CREs that reg-

ulate its expression in the pancreas also result in pan-

creatic agenesis, associated with permanent neonatal

diabetes mellitus and exocrine insufficiency [15]. More-

over, loss of Ptf1a results in pancreatic MPCs switch-

ing to alternative cell fates in mice [13]. In zebrafish,

ptf1a morphants display impaired development of the

ventral pancreatic bud [16]. Thus, the vital role of

Ptf1a in pancreas organogenesis is indisputable. Still,

the precise mechanisms by which Ptf1a controls pan-

creatic development are not yet fully understood.

Vertebrate pancreas patterning and
commitment

Vertebrate pancreas patterning and specification

During vertebrate pancreas development, several gradi-

ents of signaling molecules are established, many ema-

nating from adjacent tissues, providing positional cues

for the developing pancreas. By binding to cell surface

receptors, these ligands restrict the field of MPCs, cul-

minating in the expression of specific TF-encoding

genes such as Pdx1, Nkx6.1 and, more importantly in

the context of the present review, Ptf1a [3,17,18].

In mouse, the endoderm folds to form the primitive

gut tube, divided into foregut, midgut, and hindgut.

Pancreas specification occurs in the foregut–midgut

boundary, starting around embryonic day 7.5 (E7.5)

(Fig. 1) [19,20]. In most vertebrates, the foregut endo-

derm is located adjacently to the notochord, an organ

that plays a crucial role in pancreatic development

[21–23]. Activin (bB) and FGF2, both emanating from

the notochord repress endodermal Shh, thus allowing

the expression of Pdx1 [24]. This pro-Pdx1 role is rein-

forced by the diffusion of Nog2 from the notochord

[23], antagonizing the Pdx1 repressive signal of BMP

that emanates from the lateral plate mesoderm [25],

controlling pancreas size [23] (Fig. 1). Pdx1 is one of

the best characterized MPC TFs, and it is required for

Ptf1a expression in the ventral pancreatic bud and par-

tially in the dorsal bud of the mouse [26]. Additionally,

Ptf1a binds to the promoter of Pdx1 [27] and is likely

required for its expression, the two TFs being required

for proper MPC identity [8,13].

Mesenchymal cells are other nonautonomous fac-

tors, crucial for pancreatic development. Among the

signals produced by mesenchymal cells are BMPs,

Fgf10, retinoic acid (RA), and Wnt [25,28–30]. Fgf10
is not required for initial bud formation but is impor-

tant for the proliferation of Pdx1+ MPC [28,31]. In

Xenopus, exposure to soluble Wnt5a induced MPC

gene expression, specifically Pdx1 and Ptf1a [30]. Fur-

ther supporting the important role of Wnt signaling in

the identity of MPCs, it was observed that cis-

regulatory modules active in human MPCs are associ-

ated with Wnt signaling target genes [32], in agreement

with the pro-pancreatic role observed in mouse [30].

Fig. 1. Signaling pathways involved in vertebrate pancreas

patterning and specification. Fgf10 is important for the proliferation

of pancreatic progenitor cells [28] and interacts with both Wnt and

Shh signaling, establishing a cross-regulation by feedback loops

[86]. Wnt signaling has been observed to promote pancreatic fate,

by expression of progenitor markers Pdx1 and Ptf1a [30]. Activin

(bB) and FGF2 are released from the notochord and regulate

pancreas development, by repression of endodermal Shh [87].

Another signal from the notochord, Nog, inhibits BMPs emanating

from the lateral plate mesoderm, controlling the pancreas size and

location [23]. RA signaling is known to be crucial for pancreatic

development [33] and the interaction between RA and Cdx factors

is thought to be important for correct AP patterning [34].
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The RA signaling pathway is required for proper pan-

creatic specification in zebrafish [33], being repressed

by Cdx4 in the posterior endoderm [34] (Fig. 1).

Two temporal waves of embryonic endocrine differ-

entiation have been observed in mouse embryos, the

primary and secondary transitions [6]. However, in

human embryos, an early phase of pancreatic endocrine

differentiation, corresponding to the mouse primary

transition, has not been detected [22] (Fig. 2). Human

MPC shows expression of PTF1A [32], and its function

is crucial for pancreas development [15]. MPCs in

human ventral and dorsal pancreatic buds are also

marked by expression of PDX1, NKX6.1, SOX9, and

GATA4 encoding TFs [35], essential for pancreatic spec-

ification, defining the MPC cell population. These cells

are responsible for the formation of the dorsal and ven-

tral pancreatic buds, during initial steps of pancreatic

morphogenesis. After this, as differentiation starts, sub-

groups of progenitor cells appear at different locations.

Central duct-like structures (composed of trunk cells)

are involved in the formation of duct and endocrine

cells, whereas more peripheral clustered cells (tip cells)

differentiate to form acinar cells of the exocrine pan-

creas [35]. This regionalization is observable by patterns

of gene expression. Trunk cells are known to express

NKX6.1 and SOX9 and to have less GATA4, while tip

cells remain NKX6.1+/SOX9+/GATA4+ [35] (Fig. 2).

Shortly after, tip cells lose NKX6.1 expression [22], sug-

gesting an early segregation of the PTF1A+ acinar com-

partment [18,36,37], which initiates prior to the major

wave of endocrine differentiation [35]. The segregation

of PTF1A and NKX6 expression into mutually exclusive

domains suggests that a mutual repression mechanism

is triggered just previous to endocrine and exocrine

specification. Indeed, it has been suggested that through

co-repression, Nkx6.1 and Ptf1a function as antagonis-

tic lineage determinants in MPCs, in an equilibrium

that governs endocrine versus exocrine fate decision [18]

(Fig. 2).

In mouse, MPCs have been characterized by the

expression of several TF-encoding genes: Ptf1a, Pdx1,

Nkx6.1, Sox9, Nkx2.2, Hnf1b, and Cpa1 [3,37]. Dur-

ing secondary transition, similarly to human, tip cells

of the branching epithelium adopt an acinar fate,

being marked by the expression of Ptf1a and Cpa1

[3,37], while cells in the trunk become restricted to a

ductal or endocrine fate and are characterized by the

expression of Nkx6.1 and Hnf1b [3,37].

Endocrine pancreas determination in mammals

As MPCs segregate into endocrine and exocrine cellu-

lar compartments, they acquire expression of specific

TF-encoding genes. The dynamics of this process is

controlled by Notch signaling [38]. MPCs are under

high levels of Notch signaling; however, when this

pathway is inactivated, they become committed to an

endocrine fate, becoming endocrine progenitor cells

(EPCs) and activating genes encoding TFs required for

endocrine differentiation [38,39]. In mouse, progenitor

cells within the central duct-like structures acquire

expression of Ngn3 [40,41], marking the EPC popula-

tion. Importantly, in human development, NEUROG3

expression coincides with the appearance of the first

fetal b-cells [35]. SOX9 is one other important player

in pancreas development. Its expression in MPCs of

the human dorsal and ventral pancreatic buds has

been observed to start around Carnegie stage 12

(CS12) [22]. It is absent from EPCs expressing NEU-

ROG3 and from differentiated endocrine cells. How-

ever, its expression persists in pancreatic duct cells

[22].

Finally, EPCs differentiate into several hormone-

producing cells, forming the pancreatic islets: a-cells—
expressing glucagon, b-cells—expressing insulin, d-cells
—expressing somatostatin, and e-cells—expressing

ghrelin. Preceding differentiation, intermediate states

exist where specific TFs control specific endocrine cell

fates. Examples of such TFs are Pax4, Arx, Mafa,

Mafb, Foxa2, or Pou3f4 [42]. Loss of either Pax4 or

Arx in mouse has been observed to not affect the total

number of endocrine cells but instead changing the rel-

ative distribution of endocrine subtypes [43,44].

Divergent paths in zebrafish pancreas

development

As in mouse, the zebrafish pancreas develops from two

anlagen arising from foregut endoderm and containing

MPCs, called dorsal and ventral buds [45]. The dorsal

bud generates the first wave of endocrine cells, cluster-

ing at 24 hours postfertilization (hpf) to form the prin-

cipal islet [46–48]. This first wave of differentiation

only originates endocrine cells, contrasting with mam-

mals, amphibians, and birds [49], leading to the

hypothesis that the zebrafish dorsal bud is not truly

analogous to the mammal one [10]. Indeed, whereas in

mammals Ptf1a is expressed in both buds [8], the zeb-

rafish protein is only required for the later developing

ventral bud [16]. This most likely explains why the

zebrafish dorsal bud only gives rise to endocrine cells.

Moreover, while Ngn3 is expressed in mouse EPCs,

this is not the case in zebrafish, where its role is

replaced by two other genes: ascl1b and neurod1 [50].

The double knockdown of ascl1b and neurod1 impairs

endocrine differentiation, resulting in an almost
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complete absence of endocrine cell types [50]. In zebra-

fish, expression of ascl1b starts at 10 hpf [50], suggest-

ing that the first cells in the pancreatic domain acquire

an endocrine identity, even before the expression of

key MPC markers such as pdx1 (14 hpf) [50]. This spe-

cies specificity of the zebrafish dorsal bud development

in absence of ptf1a expression might help to better

understand the potential role of ptf1a in pancreas

development. Later, at 32hpf, the zebrafish ventral

bud emerges anteriorly to the dorsal bud and gives rise

to acinar, ductal, and a second wave of endocrine cells

[16,45,51]. Differentiation of these later-appearing

endocrine cells has been proposed to be equivalent to

the secondary transition in mammals [52]. After this,

secondary islets appear along the pancreatic tail, which

forms by growing in a posterior direction, after the

envelopment of the principal islet (Fig. 2). Similar to

what is seen in mouse, TF-encoding genes such as

pdx1, nkx6.1, and ptf1a are expressed in zebrafish

MPCs of the dorsal bud [13,53] (Fig. 3), arguing in

favor of conserved pancreatic developmental genetic

networks.

The role of Ptf1a in pancreas
development

Ptf1a cDNA was first isolated from a rat exocrine

pancreatic cell line and was considered as a

Fig. 2. Representation of the major morphogenetic events of pancreatic development in human [ 35,89], mouse [18,90,91], and zebrafish

[51,53,92] , with corresponding developmental times (gray arrows). Primary and secondary transitions [90,91] are annotated, as well as the

second wave of islet differentiation in zebrafish (‘Forming secondary islets’; [93] ). Expression of Ptf1a, as well as other selected key MPCs

TFs encoding genes, as Pdx1 and Nkx6.1, is annotated. In the top right corner, orange cells represent the progressively restricted domain of

Nkx6.1- and Ptf1a-positive cells that will give rise to mutually exclusive domains. Dashed lines highlight an overview of the main

developmental processes during primary and secondary transitions in mouse and human, and during the second wave of islet differentiation

in zebrafish. A, anterior; CACs, centroacinar cells; D, dorsal; DB, dorsal pancreatic bud; E, embryonic day; P, posterior; V, ventral; VB, ventral

pancreatic duct.
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transcriptional regulator of digestive enzymes such as

amylase and elastase, in adult acinar cells [54]. In

mouse, Ptf1a is expressed in early pancreatic MPCs

during the primary transition [8] and later at the sec-

ondary transition, where it is restricted to MPC pro-

acinar progenitors in the tip epithelium [3]. It is also

expressed in differentiated acinar cells but not in duc-

tal or endocrine tissue [54]. Ptf1a is a bHLH TF that

forms the trimeric PTF1 complex with two other pro-

teins: an E protein and Rbpj, or its pancreas-restricted

paralogue Rbpjl [7] (Fig. 4). In mouse early develop-

ment, Ptf1a is expressed in the MPC domain, along

with other TF-encoding genes, as described above,

such as Pdx1 and Nkx6.1 [3,8,18,55]. Rbpj/Ptf1a func-

tions at these earlier stages, activating Rbpjl expression

that, later on during acinar cell development, replaces

Rbpj function favoring the Rbpjl/Ptf1a complex

[56,57] (Fig. 4). Unsurprisingly, mice encoding the

Ptf1aw298a mutant protein that does not bind to Rbpj

[7], but does to Rbpjl, phenocopy null mutants for

Ptf1a, including absence of pancreatic ventral bud and

delay of dorsal bud growth [56]. Additionally, in Rbpj-

deficient pancreata, amylase-expressing acini and islets

are formed during late embryonic and postnatal devel-

opment, suggesting an essential role of Rbpj in early

but not late development.

Rbpj can function by a Notch-dependent and

Notch-independent way, in the latter case co-binding

to Ptf1a [56]. These functions are nonoverlapping,

being the Notch dependent related with the mainte-

nance of a progenitor state, inhibiting ectopic endo-

crine progression [38,58], while the Ptf1a-bound Notch-

Fig. 3. Pancreatic development of the zebrafish, showing two suggested models. Key TFs involved in this process are shown. (A) In Wang

et al. [51], the authors suggest that there is an early segregation of Ptf1a-positive cells and PNCs that differentiate to form separated

domains of the pancreas (exocrine versus endocrine/ductal, respectively). (B) Another view, supported by the data in Ghaye et al., suggests

that multipotent progenitors expressing both nkx6.1 and ptf1a might progressively become responsive to Notch signaling, then starting to

repress ptf1a expression, leading cell differentiation to a specific fate—endocrine/ductal [53]. In both, the progenitor cells that are known to

be maintained in the adult zebrafish pancreas are also represented. These are called CACs—centroacinar cells [88].

5125The FEBS Journal 289 (2022) 5121–5136 ª 2021 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies

M. Duque et al. Ptf1a in pancreas development



independent function is required for the growth and

morphogenesis of pancreatic epithelia [56]. Moreover,

the inactivation of Notch1 and Notch2 did not inhibit

pancreatic development, suggesting that these are not

essential for pancreatogenesis, contrary to Rbpj [59].

These results suggest that the early function of Rbpj is

more linked with the activity of Ptf1a than to Notch

signaling.

Ventral and dorsal buds have different requirements

for early development. In mouse, loss-of-function of

Ptf1a, Pdx1, or double loss-of-function, ablates ventral

bud development [13]; however, the dorsal bud is yet

able to develop alpha and beta cells [13]. In mutants

for Ptf1a, the dorsal bud generates an extremely

reduced endocrine pancreas with a reduced beta cell

mass [8,13,60] but acinar cells are never observed

[8,61]. Regarding the ventral pancreas, lineage tracing

in Ptf1a mutant background shows labeling in gut

cells, where normally Ptf1a is not expressed, suggesting

that Ptf1a is required for the ventral pancreatic bud

identity [8]. Additionally, independent double lineage

tracing for Ptf1a- and Pdx1-expressing cells showed

that the vast majority of pancreatic cells are derived

from double Ptf1a+ and Pdx1+ cells. Although some

Pdx1+ Ptf1a- derived beta cells were found, these had

lower levels of insulin, suggestive of a lesser mature

state, compared to the Pdx1+/Ptf1a+ derived beta cells,

highlighting the importance of Ptf1a in the develop-

ment of mature beta cells [62]. This role in MPC iden-

tity is also corroborated by experiments of ectopic

transient expression of Ptf1a in mouse embryonic stem

cells, moderately inducing all lineages of pancreas

development, including mature beta cells [63]. Addi-

tionally, Ptf1a likely contributes to the precise specifi-

cation of pancreas, since Ptf1a-derived cells are

detected only in the pancreas, contrasting with Pdx1-

derived cells, found in the mouse pancreas, gastric

antrum, and duodenum [62].

After this important early contribution to pancreas

development, Ptf1a gets restricted to the tip of pancre-

atic branches formed during the secondary transition

(Fig. 2). Lineage tracing experiments of Ptf1a-

expressing cells show labeling in all acinar and most of

duct and islets cells [8]. Conditional lineage tracing

shows that at the primary transition, Ptf1a+ cells give

rise to even parts of endocrine, duct, and acinar pan-

creas. At E13, already in the secondary transition, tip

MPCs give rise mainly to acinar cells, with increasing

proportions at E14 and E15, becoming almost fully

committed to acinar progenitors [11]. This change in

the multipotent potential of MPCs coincide with the

mutually exclusive domains of expression of Ptf1a and

Nkx6.1. Although at the primary transition (E10.5),

there is co-expression of Nkx6.1 with Ptf1a [18], and

at E12.5, Nkx6.1 is more restricted to the trunk and

Ptf1a to the tip [18] (Fig. 2). By E14.5, when tip cells

have fully committed to an acinar fate [3], Nkx6.1 is

almost completely excluded from the tip forming a

sharp boundary with Ptf1a [18]. This is possible by a

mutual repression of Nkx6.1 and Ptf1a that becomes

effective in the secondary transition [18]. NR5A2 is a

member of the nuclear hormone receptor family [64],

and its expression is controlled by the Ptf1 complex,

being important for the formation and maintenance of

the MPCs of the secondary transition, converting

MPCs to an acinar lineage, and for expansion and dif-

ferentiation of pre-acinar cells [65]. After differentia-

tion of acinar cells, Ptf1a is required to maintain

acinar cell identity in adult mice, since its conditional

Fig. 4. The PTF1 complex. Ptf1a interacts in a trimer complex with

an E protein (HEB/E2A) and Rbpjl (top panel) or Rbpj (middle

panel), binding to a DNA E-box and a TC-box. Rbpj can operate in a

Notch-independent way, by interacting with Ptf1a (middle panel),

or in a Notch-dependent way, by interacting with the Notch

intracellular domain (NotchIC; bottom panel).
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loss-of-function in acinar cells results in loss of expres-

sion of digestive enzymes. Furthermore, the transcrip-

tome of these cells is more similar to prenatal pancreas

than to adult pancreas [66–68].
Observations in human genetic alterations have

highlighted that PTF1A might have similar functions

as described in mouse. A mutation in the PTF1A gene,

resulting in a protein truncation, leads to cerebellar

and pancreatic agenesis, that causes neonatal diabetes

[14]. Additionally, alterations in pancreas-specific cis-

regulatory regions of PTF1A induce pancreatic agene-

sis and neonatal diabetes, without clear cerebellar phe-

notypes [15,69–71]. These observations suggest that

PTF1A might have an early role in endocrine and exo-

crine pancreas development, followed by a strong later

requirement for exocrine proper differentiation. This is

reinforced by the fact that single-cell RNA-seq in

human pancreatic cells shows that PTF1A+/SOX9+ of

the tip have a MPC-like profile [72].

In zebrafish, as in mammals, ptf1a plays an impor-

tant role in acinar cell fate [16,73]. The dorsal bud

never shows expression of ptf1a, giving rise only to

the endocrine cells composing the principal islet [46].

This first wave of endocrine differentiation has some

similarities to the mice primary transition. Interest-

ingly, mouse embryos mutant for Ptf1a show a simi-

lar potential for early endocrine differentiation

arising from the dorsal bud, in a Ptf1a-independent

manner [13]. In zebrafish, ptf1a expression starts at

32hpf in the ventral bud, after endocrine differentia-

tion of the principal islet from the dorsal bud [16],

in cells that are pdx1+ and nkx6.1+ [9] (Figs 2 and

3). Later in development, ventral bud cells migrate

in a dorsal and posterior direction enveloping the

principal islet (Fig. 2). Similar to the mammal sec-

ondary transition, ventral bud cells give rise to endo-

crine cells that contribute to the principal islet

between 48 and 120 hpf [74]. After 5–6 days of

development, more endocrine cells appear along the

pancreatic duct, forming secondary islets. In ptf1a

loss-of-function, acinar cells and secondary islets are

not detected, being only present the principal islet,

while ptf1a lineage-labeled cells were converted into

gall bladder and other nonpancreatic cell types [10].

Additionally, reduced levels of ptf1a present in a

hypomorphic condition show a delay in ventral pan-

creas specification, accompanied by an exocrine to

endocrine fate switch, suggesting that lower levels of

Ptf1a can function, in a cell autonomous manner, to

promote endocrine fate, whereas high levels repress it

[9]. Accordingly, reduced Ptf1a dosage has been

observed to promote a greater contribution toward

nonacinar lineages [10].

It has been suggested that the zebrafish ventral bud

contains two distinct progenitor cell populations: a

population of Pancreatic Notch-responsive cells

(PNCs) and a ptf1a-expressing population [51]. Ghaye

and colleagues [53] hypothesized that Notch signaling

responsiveness could be the key factor in the segrega-

tion of these cells into endocrine/ductal (nkx6.1+/pt-

f1a+/Notch on) or acinar cells (nkx6.1+/ptf1a+/Notch

off). In this study, it was hypothesized that nkx6.1+

cells progressively become PNCs, since initiation of

nkx6.1 expression is independent of Notch signaling

[53]. Moreover, after transient co-expression of nkx6.1

and ascl1b in the pancreatic anlagen, these cells segre-

gate in two different domains, one expressing both

genes and the other only nkx6.1. Through loss and

gain-of-function experiments, the same authors have

observed that Notch signaling works to maintain

nkx6.1 expression in PNCs, while repressing ascl1b.

Therefore, only when Notch is inactivated, Notch-

responsive cells transit into an endocrine progenitor

state. Altogether, these results allow two different

interpretations for how ventral MPCs are defined

(Fig. 3). The first is that there is an early segregation

of ptf1a+ cells and PNCs that differentiate to form sep-

arate domains (exocrine versus endocrine/ductal,

respectively), supported by the fact that a unique pro-

genitor domain has not been detected in the zebrafish

[51]. Another view is that MPCs expressing both

nkx6.1 and ptf1a might progressively become respon-

sive to Notch signaling, consequently repressing ptf1a

expression, leading cells to a specific fate—en-

docrine/ductal [53]. On the other hand, cells retaining

high Ptf1a levels (and Notch-unresponsive) differenti-

ate over time to generate the acinar compartment.

The vital role of Ptf1a in vertebrate pancreas

organogenesis is indisputable. Ptf1a has an early role

in endocrine and exocrine pancreas development, fol-

lowed by a later requirement for exocrine proper dif-

ferentiation and maintenance of acinar fate.

Importantly, these roles are dependent on the levels of

expression of Ptf1a in specific cell types of the devel-

oping pancreas. The mechanisms regulating the expres-

sion of Ptf1a will be further discussed below.

Mechanisms of regulation of Ptf1a
expression

Enhancers regulating expression of Ptf1a in

vertebrates

The tissue-specific functions of Ptf1a require precise

spatiotemporal regulation of its expression levels by

the activity of multiple noncoding CREs. In mice,
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Ptf1a levels are maintained by an autoregulatory

enhancer (m50-AR) located 13.4kb upstream of the

Ptf1a transcriptional start site (TSS) and conserved

among mammals [57,75] (Fig. 5A). m50-AR contains

two consensus binding sites for PTF1 validated in vitro

[57,75] and Ptf1a protein binds to this sequence in

mouse embryonic neural tube and adult pancreas

[57,75,76]. In mouse transgenic reporter assays, m50-
AR drives reporter expression exclusively in Ptf1a+

cells [57,75,77]. These results strongly suggest that m50-
AR maintains Ptf1a levels through a positive autoreg-

ulatory loop. Additionally, m50-AR fails to be acti-

vated in Ptf1a loss-of-function mice [75], showing that

its activity requires pre-existing Ptf1a protein. Indeed,

in luciferase assays, the enhancer is inactive in Ptf1a-

negative cells but is activated when cells are co-

transfected with plasmids expressing Ptf1a [57]. Like-

wise, in chick electroporation assays, reporter expres-

sion is restricted to Ptf1a-expressing domains but is

induced in other domains when Ptf1a is ectopically

expressed [75,77]. Thus, pre-existing Ptf1a is required

and sufficient to activate m50-AR. A similar CRE is

present in zebrafish (z50-AR; Fig. 5A). The z50-AR is

located 3 to 5kb upstream of ptf1a TSS, containing

three consensus PTF1 binding sites, where the two

most proximal are necessary and sufficient to drive

reporter expression, suggesting that its activity is

PTF1-dependent [78]. A bacterial artificial chromo-

some (BAC) spanning the ptf1a locus [79] and express-

ing morpholino (MO)-resistant ptf1a rescues pancreas

development in zebrafish ptf1a morphants, but rescue

fails when the z50-AR is deleted [78], further illustrat-

ing how the z50-AR is necessary to maintain the ptf1a

levels required for pancreas development.

During neural development, Ptf1a expression gradu-

ally ceases following inhibitory neural fate specifica-

tion. Therefore, there must exist a mechanism that

overturns the m50-AR-mediated autoregulatory loop.

This mechanism likely involves PR domain containing

13 (Prdm13), a direct downstream target of Ptf1a that

can bind the Ptf1a-bound m50-AR, blocking its activity

[77]. Given the dependence of PTF1 for m50-AR activ-

ity, the interaction of Prdm13 with Ptf1a is thought to

disrupt the PTF1 complex. However, the precise man-

ner through which Prdm13 represses m50-AR activity

and whether this mechanism is present or not in other

tissues is currently unknown.

While the elements responsible for the trigger of

Ptf1a expression in mice are unknown, an early-acting

enhancer was identified in zebrafish (z30-EA). z30-EA is

located 1–6 kb downstream of the TSS and drives

reporter expression in the cerebellum and pancreas

during early development [78]. In the pancreas,

reporter expression is first detectable at 34 hpf [78],

coinciding with the onset of ptf1a expression in pan-

creatic progenitor cells [78,79]. In contrast, z50-AR-

driven reporter expression is only detectable at 42 hpf

[78] (Fig. 5B,C). Moreover, z30-EA activity decreases

as acinar cell differentiation begins [78], suggesting

that z30-EA is the early trigger of ptf1a expression,

which is subsequently maintained by the z50-AR-

mediated positive autoregulatory loop. Deletion of z30-
EA from a BAC encoding MO-resistant ptf1a fails to

rescue normal pancreas development in ptf1a mor-

phants. However, the fish still form a hypoplastic pan-

creas [78]. Therefore, while the z30-EA is required for

proper pancreas development, there may be other ele-

ments capable of triggering ptf1a expression.

In mice, a large fragment that spans from 2.4 to

14.8kb downstream of Ptf1a (m30-12.4 kb region;

Fig. 5A) drives reporter expression in the Ptf1a-

expressing regions of the hindbrain, spinal cord, and

retina [57,75]. However, reporter expression precedes

Ptf1a expression. This, along with the fact that m30-
12.4kb region activity is still observed in Ptf1a-null

mice [75], suggests that this enhancer has a role in the

initial activation of Ptf1a expression in neural develop-

ment. The m30-12.4kb region also contains a 1.1kb

fragment (m50-DNT) that drives reporter expression in

Ptf1a+ cells of the dorsal neural tube (DNT) from

E10.5 to E12.5 [80], but in a broader pattern than the

intact m30-12.4 kb region, suggesting that the latter

contains elements that spatially restrict the activity of

the m50-DNT [80]. Surprisingly, mice homozygous for

m50-DNT deletion reach adulthood with only a minor

decrease of Ptf1a mRNA levels in the neural tube

(E11.5) [81]. Thus, m50-DNT may be only one of sev-

eral enhancers responsible for early Ptf1a expression in

neural development. For instance, there is evidence for

the existence of a mouse cerebellar-specific enhancer

(m30-DcE). The cerebelless (cbll) mutant mice harbor a

313 kb deletion, 60 kb downstream of Ptf1a that

results in cerebellar agenesis while their pancreas devel-

ops normally [82]. In fact, Ptf1a expression is lost in

the cerebellum of cbll mice but maintained in other

Ptf1a-expressing domains, including the pancreas.

Therefore, the region likely contains one or more

cerebellar-specific enhancers required for Ptf1a expres-

sion during cerebellar development.

Like in mouse, multiple sequences downstream of

the zebrafish ptf1a gene display enhancer activity in

the developing nervous system [78] (Fig. 5A) but, more

recently, a zebrafish enhancer crucial for pancreas

development was uncovered, 39kb downstream of the

ptf1a TSS [83]. This ptf1a distal pancreatic enhancer

(z30-DpE; Fig. 5A) is active in MPCs and
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differentiated acinar and duct cells. Similar to the 50-
AR, z30-DpE-driven reporter expression is weaker in

progenitors and stronger in differentiated exocrine cells

and the sequence interacts with the ptf1a promoter,

suggesting that the z30-DpE also regulates ptf1a

expression directly [83]. However, unlike the z50-AR,

the z30-DpE does not contain PTF1 consensus binding

sequences.

A similar element is present in the human genome

(Fig. 5A). Recessive mutations within a 400 bp non-

coding sequence, 25 kb downstream of PTF1A, were

identified in families with pancreatic agenesis. More-

over, chromatin conformation capture experiments in

hESC-derived human MPCs revealed that the human

PTF1A distal enhancer (h30-DpE) also interacts

directly with the PTF1A promoter [15]. In contrast

with PTF1A coding mutations, which result in pancre-

atic and cerebellar agenesis, neurological features are

absent in reported cases of h30-DpE mutations [15].

This illustrates how cis-regulatory mutations can have

far greater tissue specificity than their disease-

associated coding mutation counterparts.

Despite showing no sequence conservation with the

human enhancer (Fig. 5A), z30-DpE is likely function-

ally equivalent to h30-DpE, with deletion of z30-DpE

resulting in pancreatic agenesis [83]. Interestingly, h30-
DpE is active in human MPCs but inactive in adult

exocrine pancreatic cell lines [15], while z30-DpE shows

Fig. 5. (A) Regulatory landscape of Ptf1a. (Top) Human PTF1A distal pancreatic enhancer (h30-DpE, blue). (Middle) Mouse autoregulatory

enhancer (m50-AR, orange), neural enhancers cluster region (m30-12.4 kb region, light purple), and DNT-specific enhancer (m30-DNT, dark
purple). (Bottom) Zebrafish autoregulatory enhancer (z50-AR), early-acting enhancer (z30-EA), neural enhancers (z30 + 6, z30 + 11, z30 + 24,

and z30 + 36), and distal pancreatic enhancer (z30-DpE, blue). Sequence conservation across mammals (black) or fish (green) is shown for

each panel and putative ortholog sequences between species are indicated by the colored boxes. z3’-DpE shows no sequence conservation

with the human h3’-DpE enhancer; however, they likely represent functional equivalents, as assessed by functional assays. In mouse, there

is a fragment with high degree of conservation with the h3’-DpE downstream of Ptf1a that could correspond to its functional equivalent,

although this hypothesis has not been tested by functional assays. B) Summary of reported Ptf1a enhancers. Ptf1a expression during

vertebrate development is regulated by multiple CREs, including an upstream autoregulatory enhancer (50-AR), a proximal downstream early-

acting enhancer (30-EA) and multiple distal cell type-specific enhancers spread across a large genomic region. 50-DpE, distal pancreatic

enhancer; 50-DcE, distal cerebellar enhancer (Adapted from [80]). (C) Reported activity of the z50-AR (orange), z30-EA (pink), z30-DpE (blue),

and neural enhancers (purple) throughout zebrafish embryonic development. Endogenous ptf1a expression is presented in red at 16hpf (14-

somites), 35hpf (prim-22), 42hpf (high pec), 120hpf (larva), and adult zebrafish.
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activity in zebrafish MPCs but remains active in the

adult zebrafish exocrine pancreas [83]. Therefore,

although the two enhancers have equivalent functions

during early pancreas development, the zebrafish

sequence also contains cis-regulatory information rele-

vant for adult pancreas function.

Collectively, the activity of the zebrafish ptf1a down-

stream enhancers recapitulates the reporter expression

pattern observed for the mice 30-12.4 kb region, but

also exhibit activity in cerebellum and pancreas, which

was absent for the mouse sequence [57,75]. To date,

the presence of pancreas-specific enhancers down-

stream of the mouse Ptf1a gene has not yet been

demonstrated. However, there is a fragment with high

degree of conservation with the h30-DpE downstream

of the mouse Ptf1a that may correspond to its func-

tional equivalent (Fig. 5A).

The CRE network controlling Ptf1a expression

A comparison of the findings from humans, mice, and

zebrafish reveals an intricate network of CREs that

regulate Ptf1a transcription during development

(Fig. 5A), as well as direct links between noncoding

mutations and adverse phenotypic effects resulting

from disruption of progenitor cell expansion and cell

fate decision. Yet, these findings are only a glimpse

into the complex enhancer interactions underlying the

spatiotemporal control of Ptf1a levels and several piv-

otal questions remain to be answered.

Firstly, what elements trigger initial Ptf1a expres-

sion? A good candidate is the 30-EA, whose activity

coincides with the onset of Ptf1a expression [78]. How-

ever, the 30-EA is not strictly required for the

induction of Ptf1a expression, at least in the pancreas

[78], and the existence of other downstream enhancers,

active early in development and inactive in adult tis-

sues, may indicate that additional regulatory elements

are required to establish the Ptf1a levels needed for

the activation of 50-AR (Fig. 6). In support of this the-

ory, in humans, the distal h30-DpE shows enhancer

activity in early MPCs and its deletion affects very

early events of pancreas development, causing pancre-

atic agenesis [15], a phenotype recapitulated in zebra-

fish by the deletion of z30-DpE [83]. These results

suggest that these CREs may aid 30-EA to establish

initial proper Ptf1a levels to activate the 50-AR-

mediated autofeedback loop. The identification of

other CREs, within the regulatory landscape of Ptf1a,

active early in development and inactive in adult tis-

sues, will help to identify additional functional CREs

that may contribute to the activation of 50-AR. In

addition to this, the TFs that bind to the 30-EA and

are responsible initiate its activity are still unknown.

Secondly, the activity of the Ptf1a autoregulatory 50-
AR may be more nuanced than described, with dis-

crepancies between species and cell types. For instance,

the two PTF1 binding sites of the m50-AR display dif-

ferent properties, with the PTF1-J/PTF1-L complex

binding slightly more effectively to the proximal bind-

ing site (P-site, 13.6 kb upstream of Ptf1a) than to the

distal site (D-site, 14.8 kb upstream) in vitro [57].

Moreover, there is greater enrichment for Ptf1a ChIP-

seq signal at the P-site than the D-site in adult mouse

pancreas tissue [57]. Conversely, no significant differ-

ences in enrichment were reported in mouse neural

tube (E11.5) [75]. In a rat pancreatic acinar cell line

(AR4-2J cells), the ablation of just one of the two

Fig. 6. (A) Model of enhancer functions during acinar cell differentiation. Ptf1a expression in pancreatic precursors is initiated by the

downstream proximal early-acting enhancer (30-EA) in combination with the distal pancreatic enhancer (30-DpE). The resulting Ptf1a protein

forms the PTF1-J complex with an E protein and Rbpj. PTF1-J binds the upstream autoregulatory enhancer (50-AR) directly, initiating a

positive autoregulatory loop that maintains Ptf1a levels after the activity of the early-acting enhancers subsides (in the zebrafish,

exceptionally, 50-DpE remains active). During the secondary transition, Ptf1a expression is superinduced by an unknown mechanism in

combination with the activity of 50-AR, and cells begin the acinar developmental program. Increased Ptf1a levels lead to the expression of

Rbpjl that gradually replaces Rbpj in the PTF1 complex (PTF1-L). PTF1-L binds and maintains the activity of the 50-AR and the Rbpjl promoter

resulting in two positive loops that sustain the elevated levels of PTF1-L required for transcription of downstream regulators of acinar

development and genes encoding secretory digestive enzymes (Adapted from [57]). (B) Transient Ptf1a expression during the specification

of spinal cord neurons. In this model, Ptf1a expression in the neural progenitors is initiated by the downstream proximal early-acting

enhancer (30-EA) in combination with one or more neural enhancers. The Ptf1a protein, in the PTF1-J complex, binds to the upstream

autoregulatory enhancer (50-AR) to regulate its own transcription. Ptf1a also activates transcription of inhibitory-neuron-specifier genes, such

as Pax2, and indirectly suppresses the excitatory neuronal gene program by activating transcription of Prdm13. Prdm13 inhibits gene

expression programs for excitatory neuronal lineages through multiple mechanisms, including interaction with the bHLH factor Ascl1 to

repress Ascl1-dependent activation of Tlx3 expression [77]. Prdm13 negatively regulates its own expression through a negative retro-control

of its activator, Ptf1a, by interrupting the autoregulatory loop, possibly through the displacement of Rbpj in the PTF1-J complex [77,85].

Additionally, Prdm13 may directly suppress its own expression through an unknown mechanism [85].

C
o

5130 The FEBS Journal 289 (2022) 5121–5136 ª 2021 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies

Ptf1a in pancreas development M. Duque et al.



5131The FEBS Journal 289 (2022) 5121–5136 ª 2021 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies

M. Duque et al. Ptf1a in pancreas development



PTF1 binding sites has a dramatic impact on enhancer

activity [57]. In contrast, while adult mice with

homozygous deletions spanning the two PTF1 binding

sites have adverse somatosensory phenotypes, mice

that retain at least one of the sites develop normally

[81]. To date, there are no studies documenting the

phenotypic outcome in the pancreas of ablating only

one PTF1 binding site. Additionally, in zebrafish, a

third PTF1 binding site of unknown importance exists,

although seemingly unnecessary for enhancer activity

in the pancreas [78]. The selective use of PTF1 binding

sites with slightly different binding properties may

translate into variations in enhancer activity between

tissues or species. However, as of yet, it remains unex-

plored.

Thirdly, what are the elements that super-induce

Ptf1a expression? The 50-AR subsequently maintains

the elevated Ptf1a levels, but there is no evidence to

suggest that it is responsible for the super-induction

step, and none of the reported ptf1a enhancers seem to

fulfill that function.

Finally, what elements halt the positive autoregula-

tory loop during neural development? Despite the

growing understanding of how Ptf1a expression can be

induced and sustained, to date, only one mechanism

has been suggested to counteract the activity of the 50-
AR: an incoherent feedforward loop [84], in which

Ptf1a upregulates both its expression and the expres-

sion of its repressor Prdm13 [77,85] (Fig. 6). This

interplay between Ptf1a and Prdm13 in m50-AR

observed in neural development can help explain how

the activity of 50-AR is modulated in other tissues

where Ptf1a is transiently expressed.

Concluding remarks

Ptf1a is a key player in pancreas specification.

Although its function is not completely understood, it

has been shown that Ptf1a has an early role in MPCs,

followed by a later requirement for exocrine proper

differentiation and maintenance of acinar fate. Loss-

of-function mutations in the human PTF1A gene have

long been associated with developmental defects of the

pancreas and nervous system, including cerebellar and

pancreatic agenesis associated with neonatal diabetes.

More recently, the finding that cis-regulatory muta-

tions are sufficient to reproduce equivalent defects, in

a tissue-specific manner, highlights the importance of

understanding the regulatory networks controlling

Ptf1a levels during development.

Studies in mouse, human, and zebrafish show that

Ptf1a expression is regulated by a set of functionally

equivalent CREs, scattered throughout

the Ptf1a regulatory landscape, including a highly con-

served autoregulatory enhancer, a proximal down-

stream early-acting enhancer, and a series of tissue-

specific distal downstream enhancers (Fig. 5B,C). Ini-

tial Ptf1a expression likely depends upon tissue-specific

early-acting enhancers. After Ptf1a levels reach a cer-

tain threshold, the autoregulatory enhancer is activated

and maintains proper Ptf1a expression through a posi-

tive autoregulatory loop. These complex dynamics

seemingly coordinate Ptf1a expression across verte-

brate species. However, most of the TFs and molecu-

lar mechanisms responsible for the initiation of Ptf1a

expression are yet unknown, opening new horizons for

the identification of top hierarchical components of

pancreas developmental gene networks. The identifica-

tion of such factors will be of great relevance as these

are essential for the identity of MPCs. Finally, expand-

ing our knowledge of the cis-regulatory machinery that

controls Ptf1a expression to the molecular targets of

Ptf1a should prove invaluable for better understanding

pancreatic diseases such as pancreatic cancer and dia-

betes and improve protocols for in vitro pancreas dif-

ferentiation.
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