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Purpose: Bisretinoids such as A2E that accumulate as components of the lipofuscin of retinal pigment epithelial cells are
implicated in some retinal disease processes. These compounds undergo light-induced oxidation and cleavage with the
latter releasing of a mixture of aldehyde-bearing fragments, including dicarbonyl methylglyoxal. We tested for the
reactivity of photooxidation and photodegradation products of A2E with thiol-containing glutathione (GSH).

Methods: In cell-free assays, we measured the ability of photooxo-A2E to competitively inhibit the GSH-mediated
reduction of the thiol reagent 5,5’-dithiobis-(2-nitrobenzoic acid). Cellular GSH was assayed colorimetrically. Products
of GSH reduction and GSH-adducts were detected by electrospray ionization mass spectrometry (ESI-MS) and GSH and
oxidized GSH (glutathione disulfide [GSSG]) were quantified from chromatographic peak areas.

Results: We found that GSH can donate hydrogen atoms to, and form conjugates with, photooxidized forms of the
bisretinoid A2E and with its photocleavage products. Reaction with non-photooxidized A2E was not observed. Chemical
reduction by GSH involved the donation of a hydrogen atom from each of two GSHs. The ratio of GSH consumed to
GSSG formed was consistent with GSH being used for both reduction and adduct formation. With the aid of synthesized
standards, methylglyoxal-GSH adducts were identified within mixtures of GSH and photooxidized A2E; the adducts
formed noncatalytically and by glutathione-S-transferase mediation.

Conclusions: Reduction and adduct formation by GSH likely limits the reactivity of bisretinoid photoproducts and may
aid their elimination from the cells. These findings are significant to forms of macular degeneration associated with
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bisretinoid formation and maculopathy stemming from GSH synthase deficiency.

The tripeptide glutathione (L-y-glutamyl-L-cysteinyl-
glycine; GSH?) protects cells against electrophiles such as
aldehydes and ketones, and against reactive oxygen species;
GSH does so by donating a hydrogen atom (H" + ¢°) from the
thiol (-SH) group of its cysteine residue. With the loss of an
electron, GSH is converted to a radical (GSe) that
subsequently reacts with a second oxidized GSH molecule,
thereby creating glutathione disulfide (GSSG) [1]. In addition,
GSH can form conjugates with small molecules in reactions
that occur nonenzymatically or that are catalyzed by
glutathione-S-transferase enzymes (GST); the latter enzyme-
catalyzed reaction proceeds at a rate that is many times faster
[1]. The formation of GSH conjugates is important for the
detoxification of many compounds.

GSH is present in cells in millimolar concentrations [1].
It is synthesized in the cytosol by two ATP (ATP)-requiring
processes. First, the dipeptide gamma-glutamylcysteine is
synthesized from L-glutamate and cysteine in a rate-limiting
step catalyzed by glutamate cysteine ligase; then glycine is
added via the enzyme GSH synthetase. The synthesis of GSH
is also controlled by cysteine availability [2].
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All cells must contend with reactive oxygen species
(superoxide anion, hydrogen peroxide) that are produced
within mitochondria as a result of the incomplete reduction of
oxygen, the final acceptor in the electron transport chain [1].
In addition, however, retinal pigment epithelium (RPE) cells
of the eye are confronted with an unusual source of oxidative
insult—the photooxidative processes that originate within the
bisretinoid compounds that comprise the lipofuscin of these
cells. The bisretinoids of the RPE constitute a complex
mixture that originates in photoreceptor cell outer segments
from reactions mediated by all-trans-retinal, the retinoid that
forms upon photoisomerization of the visual pigment
chromophore 11-cis-retinal [3]. Deposition of the bisretinoids
in RPE cells occurs during the normal process of outer
segment shedding and phagocytosis. To date, numerous
components of RPE lipofuscin have been structurally
characterized, including A2E and its isomers [4-7]; A2-
dihydropyridine-ethanolamine ~ (A2-DHP-E) [8]; and
compounds of the all-frans-retinal dimer series: all-trans-
retinal dimer, all-trans-retinal dimer-
phosphatidylethanolamine (all-frans-retinal dimer-PE) and
all-trans-retinal dimer-ethanolamine (all-trans-retinal dimer-
E) [9]. A structural feature common to all of these di-retinal
pigments is dual conjugation systems that confer absorbances
in both the ultraviolet and visible light spectrum (A2E: Amax,
335,439 nm; A2-DHP-PE: Anax 333, 490 nm; all-trans-retinal
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dimer: Amax, 290, 432 nm). In the case of all-frans-retinal
dimer-PE and all-trans-retinal dimer-E, an additional red-
shift to 510 nm is associated with protonation of the Schiff
base nitrogen [9]. Using A2E as a bisretinoid model, we have
shown through a variety of approaches that this pigment
serves as both a photogenerator and quencher of singlet
oxygen with photooxidation-induced cleavage of the
molecule occurring at sites of molecular singlet oxygen
cycloaddition [10-12]. The mixture of aldehyde-bearing
products released upon photodegradation of A2E includes
methylglyoxal (MG), a low molecular weight reactive
dicarbonyl that is an agent responsible for advanced glycation
endproduct (AGE) modification of proteins [13]. It is
significant that AGE-modified proteins are detected in
deposits (drusen) [14-16] that accumulate below RPE cells in
vivo; drusen have been linked to age-related macular
degeneration pathogenesis [17]. These findings suggest a
possible association between RPE lipofuscin photooxidation/
photodegradation and drusen formation.

Here, we sought to determine whether GSH could
neutralize photodegradation products of A2E by donating
reducing equivalents and/or by forming conjugates.

METHODS

Cell culture: A human adult retinal pigment epithelial cell line
(ARPE-19; American Type Culture Collection, Manassas,
VA) lacking endogenous A2E was grown to confluence in
Dulbecco’s Modified Eagle Medium (Invitrogen, Carlsbad,
CA), 5% fetal calf serum (Invitrogen, Carlsbad, CA), 2 mM
glutamine (Invitrogen) and gentamicin sulfate [18].
Subsequently, synthesized A2E (10 uM in culture medium)
was introduced to the cultures for accumulation in the
lysosomal compartments of the cells [18]. Cells were exposed
to 430 nm (20 nm) light (1.38 mW/cm?; 20 min).

Synthesis of compounds: A2E was synthesized by incubating
all-trans-retinal with ethanolamine as published [6] and all-
trans-retinal dimer was synthesized by treating all-trans-
retinal with sodium hydride as previously described [19]. To
prepare photooxidized A2E (photooxo-A2E), stock A2E in
DMSO (DMSO) was diluted in 200 pl PBS to obtain 50, 100,
and 200 uM concentrations. Samples were irradiated (430+20
nm) for 3 (50 uM) 5 (100 uM) and 15 (200 uM) min. In other
experiments, A2E and all-trans-retinal dimers (200 uM) were
irradiated for 7 min. Peroxy-A2E was synthesized by reaction
with 1,4-dimethylnaphthalene endoperoxide, as previously
described [20].

Colorimetric assay of reactivity between between glutathione
and oxidized-A2E: Reactivity of oxo-A2E with GSH was
assayed by measuring residual GSH available for reduction of
5,5'-dithiobis-(2-nitrobenzoic acid; DTNB) to the yellow-
colored product 2-nitro-5-thiobenzoic acid (TNB).
Accordingly, GSH (100 microM; ApoGSH Glutathione
Colorimetric Detection Kit; BioVision Research Products,
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Mountain View, CA) in buffer containing 1% sulfosalicylic
acid was incubated with and without 50, 100, and 200 microM
photooxo-A2E, peroxy-A2E, and/or photooxo-all-trans-
retinal dimer for 3 h at 37 °C. Where indicated, the reaction
mixture included GSH reductase and nicotinamide adenine
dinucleotide  phosphate-oxidase (NADPH; BioVision
Research Products; reagents of ApoGSH kit). Subsequently,
DTNB (60 uM; BioVision Research Products) was added and
after 10 min, absorbance at 405 nm was read in an MRX
Revelation microplate reader (Dynex Technologies, Inc.,
Chantilly, VA). Background absorbance (photooxo-A2E-
only samples) was subtracted and normalization to GSH-only
values was performed as indicated. In all experiments, data
were collected in duplicate.

Assaying cellular glutathione: Supernatants from cell lysates
containing 1% sulfosalicylic acid were submitted to GSH
colorimetric assay in the presence of GSH reductase,
NADPH, and DTNB, as per kit instructions (BioVision
Research Products). Absorbance was read at 405 nm, GSH
concentration was determined by reference to a GSH
calibration curve, and protein concentrations were measured
by Bio-Rad protein assay kit (Bio-Rad, Hercules, CA).

High-performance liquid chromatography and ultra-
performance liquid chromatography—mass spectrometry
analysis: Mixtures of A2E (200 uM; 180 ul) and GSH (0.5—
20 milliM) were irradiated at 430+£20 nm for 20 min. When
indicated, A2E (200 puM) in water was irradiated then
extracted with chloroform and evaporated under argon gas.
Pooled samples were redissolved in PBS, GSH (20 mM) and
GST (1 pg/ul) were added, and the mixture was incubated for
1 h at room temperature. In control samples, water was
substituted for GSH. In other experiments, A2E (200 uM) and
all-trans-retinal dimer (200 uM) were irradiated at 430 nm for
0, 15, 30, 60, 120, and 240 s. Additionally, MG (50 mM;
Sigma-Aldrich, St. Louis, MO), GSH (100 mM), and GST
(1 pg/ul) were incubated for 1 h before ultra-performance
liquid chromatography (UPLC)-MS analysis.

For  high-performance  liquid  chromatography,
compound elution was achieved using an Alliance system
(Waters Corp Milford, MA) with a Delta Pak® C4 (5 pm,
3.9x150 mm; Waters) or an Atlantis® dC18 (3 pm,
4.6x150 mm; Waters) column. Chromatographic solvents
were obtained from Sigma-Aldrich or Fisher Scientific
(Pittsburgh, PA). The mobile phase for the C4 column was a
gradient of acetonitrile in water with 0.1% trifluoroacetic acid:
0-5 min, 75% acetonitrile, flow rate, 0.8 ml/min; 5-30 min,
75%—-100% acetonitrile, flow rate, 0.8 ml/min; 30-35 min,
100% acetonitrile, flow rate, 0.8—1.2 ml/min; 35-50 min,
100% acetonitrile, flow rate, 1.2 ml/min. With the dC18
column, a gradient of acetonitrile in water with 0.1%
trifluoroacetic acid was used: 75%-90% acetonitrile (0—30
min); 90%-100% acetonitrile (30—40 min); and 100%
acetonitrile (40-100 min) with a flow rate of 0.5 ml/min.
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Absorbance (Waters 2996 Photodiode Array) and
fluorescence (Waters 2475 Multi A Fluorescence Detector; 18
nm bandwidth) were detected at the wavelengths indicated.

UPLC-MS analysis was performed on a Waters Acquity
UPLC system (Waters Corp, Milford, MA) that was coupled
online with a Waters SQD single quadrupole mass
spectrometer and both PDA el and fluorescence (FLR;
Waters) detectors. The mass spectrometer was equipped with
electrospray ion multimode ionization and ion trap analyzer
operating in full-scan mode from a mass to charge ratio (m/
z) of 300-1200. For GSH elution, an Atlantis® dC18 column
(3.0 pm, 150 x 2.1 mm I.D.) was used for the stationary phase
with an isocratic mobile phase (2%) of a 1:1 mixture of
acetonitrile and methanol (0—5 min) with 0.1% formic acid, a
flow rate of 0.5 ml/min, and injection volume of 10 pl. For
GSSG elution, a Luna C18 column (3.0 pm, 50x2.0 mm I.D.)
was used for the stationary phase and 0.1% formic acid (A)
and a 1:1 mixture of acetonitrile and methanol with 0.1%
formic acid (B) were used (0.0-0.5 min, 0% B; 0.5-0.6 min,
0%-97% B; 0.6—-2.0 min, 97% B) for the gradient elution. The
flow rate was 0.6 ml/min with an injection volume of 10 pl.
GSH and GSSG were quantified by comparison to external
calibration curves obtained by analyzing a series of
sequentially diluted solutions of GSH (0.05, 0.25, 0.5, and 1.0
milliM) and GSSG (3.125, 12.5, 50, and 200 uM).

For A2E elution, an Xbridge® C18 column (2.5 um,
3.0x50 mm I.D.) was used with a linear gradient (65%—90%)
of a 1:1 mixture of acetonitrile and methanol (0—-8 min) with
0.1% formic acid, a flow rate of 0.5 ml/min, and an injection
volume of 5.0 microL. For all-trans-retinal dimer elution, an
Xbridge® C8 column (2.5 pm, 50%3.0 mm I.D.) was used with
a gradient of formic acid (0.1%; A) and acetonitrile/methanol
(1:1) with 0.1% formic acid (B; 0.0—4.5 min, 85% B; 4.5-5.0
min, 85%—100% B; 5.0—10 min, 100% B). The flow rate was
0.6 pul/min with an injection volume of 5.0 pl.

Statistical analysis: One-way ANOVA and Newman Keul
Multiple Comparison test were applied using statistical
software (Prism, GraphPad Software).

RESULTS

Reaction of photooxidized-A2E with glutathione: To examine
for reaction between photooxo-A2E and GSH, we began by
measuring the ability of photooxo-A2E to competitively
inhibit GSH-mediated reduction of the thiol reagent DTNB, a
reaction that produces the yellow-colored product TNB. By
colorimetric assay in the absence of GSH reductase, the rate
of TNB generated is directly proportional to the amount of
GSH present [21]. Accordingly, in samples of GSH that had
been incubated with photooxo-A2E, we observed a
concentration-dependent decrease in absorbance at 405 nm,
indicative of a decline in TNB formation due to diminished
availability of GSH (Figure 1A). In keeping with the latter
observation, we also measured a 20% decrease in intracellular
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GSH when ARPE-19 cells that had accumulated A2E were
irradiated at 430 nm (Figure 1B). To probe for evidence that
GSH could react with a specific form of oxidized A2E, we
synthesized peroxy-A2E, an oxidized species that carries an
endoperoxide due to the cycloaddition of singlet oxygen.
Incubation with this synthesized form of oxidized A2E
resulted in similar decreases in TNB formation (Figure 1C).

Photooxidation of the bisretinoid all-trans-retinal dimer
by exposure to 430 nm light also reduced GSH-associated
DTNB reduction (Figure 1D); here, the inhibition associated
with the photooxidized all-trans-retinal dimer was modestly
greater than that mediated by photooxo-A2E (photooxo-A2E,
50% decrease; photooxo-all-trans-retinal dimer, 59%). The
latter difference reflected a greater capacity for all-trans-
retinal dimer to photooxidize, since when we compared the
tendencies of A2E and all-trans-retinal dimer to undergo
photooxidation as measured by loss of corresponding
bisretinoid, consumption of the all-frans-retinal dimer
occurred at a faster rate (Figure 2).

The disulfide dimer GSSG that forms upon oxidation of
GSH can be recycled back to GSH by GSH reductase using
NADPH as a cofactor. The regenerated GSH subsequently
reacts with DTNB to produce more TNB. As expected,
therefore, inclusion of glutathionine reductase and NADPH
in the reaction mixture amplified the production of TNB
(Figure 1E). Nevertheless, with the addition of photooxo-
A2E, the 405 nm absorbance due to TNB production was still
diminished.

Ultraperformance liquid chromatography-mass spectrometry
analysis: For further evidence of activity between GSH and
photooxidation products of A2E, we irradiated A2E at 430 nm
in the absence and presence of GSH (307 Da) and analyzed
by MS using an ESI source operating in positive ion mode.
The ESI spectra revealed a considerable reduction of the m/z
(mass-to-charge ratio) 592 peak attributable to A2E (Figure
3A, inset) together with a display of molecular ion peaks (m/
z 608, 624, 640, 656, 672, 688, 704, 720) known from our
previous work to reflect A2E photooxidation products [11]
(Figure 3A). We have previously demonstrated by nuclear
magnetic resonance (NMR), that the oxygen-containing
moieties generated within photooxidized-A2E include furans
and endoperoxides [11]. The addition of GSH to the irradiated
sample changed the MS pattern in the region of the spectrum
occupied by photooxidized species of A2E (m/z 600-750;
Figure 3B-D). Specifically, in this region some m/z peaks
became coupled to additional m/z signals exhibiting a mass
shift of +2 Da (e.g., m/z 640/642, 656/658, 672/674, 688/690,
704/706, 720/722) (Figure 3B-D;Figure 4B;m/z 736/738 is
also detected in Figure 4B). This change is consistent with
donation of hydrogen atoms from the thiol groups of each of
two GSH molecules. Interestingly, these adducts
preferentially formed with photooxidized forms of A2E to
which three or more oxygen atoms had been added at former
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Figure 1. Reaction of photooxidized bisretinoid with glutathione and glyceraldehyde-3-phosphate dehydrogenase. Data are mean+standard
error of mean (SEM) of 3—5 experiments. A: Incubation of glutathione (GSH) with photooxidized-A2E (photooxo-A2E) results in a
concentration-dependent decrease in GSH-mediated reduction of 5,5'-dithiobis-2-nitrobenzoic acid (DTNB) to 2-nitro-5-thiobenzoic acid
(TNB). Background absorbance (DPBS) and absorbance values for photooxo-A2E samples alone were subtracted. B: Total glutathione (GSH/
GSSG) in ARPE-19 cells that had accumulated A2E and were exposed to 430 nm light. Total glutathione was measured in a DTNB-based
assay in the presence of glutathione reductase and nicotinamide adenine dinucleotide phosphate (NADPH), and values were normalized to
untreated controls. C: Incubation of GSH (650 pM) with photooxo-A2E and peroxy-A2E (100 uM) diminishes the ability of GSH to
subsequently reduce DTNB to TNB. DPBS and absorbance values for photooxo-A2E and peroxy-A2E alone were subtracted and data were
normalized to GSH control. D: A2E and all-frans-retinal dimer were irradiated in the presence of GSH, after which DTNB was added. The
background was subtracted and values normalized to the GSH control. E: Prior incubation of GSH with photooxo-A2E decreases the ability
of GSH to reduce DTNB even in the presence of GSH reductase (GR) and NADPH. DPBS and absorbance values for photooxo-A2E samples
alone were subtracted and data were normalized to GSH only.

sites of carbon-carbon double bonds (m/z >640). Further = m/z 613 peak attributable to GSSG (Figure 3D). A mixture of
evidence of GSH oxidation was provided by detection of the lower molecular weight m/z signals (m/z 350-500) was also
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present in the sample of A2E irradiated in the absence of GSH,
some of which (m/z 422, 432, 438; Figure 4A-D), with our
previous structural characterization, were revealed to be
photooxidation-induced cleavage products of A2E [12]. It was
noted that at the highest GSH concentration, at least one of
these peaks (m/z 432) was absent, a change indicative of GSH
adduct formation (Figure 3A-D).

Extending the m/z range (m/z 300—1200) in an additional
experiment provided further evidence of the formation of
GSH-conjugates (Figure 4). Here, irradiation of A2E was
accompanied by photooxidized species of A2E typically
observed in the m/z region 600—750 while A2E photocleavage
products resided in the region of m/z 350-500. Significantly,
with the addition of GSH to A2E before irradiation, two
changes in the MS pattern were observed. First, the m/z signals
corresponding to A2E photooxidation products (600750 m/
z) exhibited a mass shift of +2 Da, which was indicative of
hydrogen transfer from GSH. Second, a series of higher
molecular weight peaks (m/z 931, 947, 963, 979, 995, 1011,
1027, 1043) appeared that were indicative of GSH-adduct
formation involving nonenzymatic nucleophilic attack of
photooxidized forms of A2E by GSH (592+(n*16)+GSH,
n=2, 3, 4...). Interestingly, these adducts preferentially
formed with photooxidized forms of A2E to which two or
more oxygen atoms have been added at former sites of carbon-
carbon double bonds. Evidence of hydrogen atom donation by
GSH was also provided by the appearance of the m/z 613 peak
attributable to GSSG (Figure 4B).

Quantification of GSH and GSSG from chromatographic
peak areas revealed that the ratio of GSH consumed/GSSG

formed was higher when GSH was present during A2E
irradiation (Figure 5 A) as opposed to being added after A2E
irradiation (Figure 5 B). Although one equivalent of GSSG
forms upon hydrogen atom donation from two equivalents of
GSH, the ratio of GSH consumed/GSSG formed was greater
than 2:1, consistent with GSH being used both for donation
of a hydrogen to photooxidized A2E (GSSG is generated) and
for the formation of GSH adducts (GSSG is not generated).

We previously showed that one of the molecular
fragments (72 Da) released upon photocleavage of A2E is the
toxic dicarbonyl MG [12]. To determine whether GSH forms
a conjugate with MG generated by A2E photocleavage, we
first reacted GSH with commercially available MG in the
presence and absence of GSH transferase (GST), analyzed by
ESI-MS, and observed the expected GSH/MG adduct at m/z
380 (m.w. 307 + 72) (Figure 6C,D); the latter adduct was not
present in samples of GSH (Figure 6A) or MG (Figure 6B)
alone. The GSH-MG adduct later presented as a molecular ion
[M+H]" at m/z 380 when protonated in positive ion MS
([GSH/MG+H]"; 307+72+1) and at m/z 402 when sodiated
([GSH/MG+NaJ*; [379+23]" (Figure 6C,D). Sodiation of
GSH adducts under MS analysis has been described [22]. The
presumed GSH-MG adduct formed nonenzymatically in the
absence of GST but with the addition of GST, the yield was
greater. To test for the facile reaction of GSH with MG
released upon A2E photocleavage, samples of irradiated A2E
were extracted with chloroform, dried, reconstituted in PBS,
and then incubated with GSH in the presence of GST. Again,
the m/z 380 and m/z 402 signal was observed (Figure 6E,F).
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Figure 3. Electrospray ionization (EST) mass spectra of samples of A2E irradiated in the absence and presence of glutathione (GSH). Mixtures
of A2E and GSH at indicated concentrations were irradiated at 430 nm for 20 min following which the sample was analyzed by
ultraperformance liquid chromatography—mass spectrometry (UPLC/MS). The mass to charge ratio (m/z) of glutathione disulfide (GSSG) is

613.
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Figure 4. Electrospray ionization (ESI)
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DISCUSSION
The bisretinoids of RPE lipofuscin are considered to lead to
retinal degeneration in early onset blinding disorders
associated with mutations in the genes encoding ATP-binding
cassette sub-family A member 4 (ABCA4) [23,24], and have
been implicated in retinal disease caused by mutations in
elongation of very long chain fatty acids-4 (ELOVL4) [25].
The deposition of these pigments may also contribute to the
etiology of age-related macular degeneration [3]. The
photoreactivity of these pigments in response to excitation by

wavelengths in the visible spectrum likely contributes to the
adverse effects of their accumulation. Specifically,
photoexcitation of bisretinoids such as A2E and all-trans-
retinal dimer leads to the production of reactive forms of
oxygen, particularly singlet oxygen which then oxidizes the
parent bisretinoid at carbon-carbon double bonds [10,11,26].
The oxygen-containing moieties that form within the
photooxidized bisretinoid includes 3 membered rings that
incorporated one oxygen atom (epoxide; C-O-C; epoxide-
A2E), heterocyclic rings of 4 carbons and one oxygen (furan;
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Figure 6. Electrospray ionization (ESI) mass spectrometric detection of methylglyoxal (MG)-glutathione (GSH) adducts. A: GSH incubated
alone. B: MG incubated alone. C: Incubation of MG (50 uM)+GSH (100 uM) in the absence of glutathione-S-transferase (GST). D: Incubation
of MG (50 uM)+GSH (100 pM) in the presence of glutathione-S-transferase (MG+GSH*GST). E: Incubation of photooxidized A2E (0x0A2E)
only. F: Incubation of GSH with photooxidized A2E and GST (0x0A2E+GSH*GST). The m/z 380.1 signal is attributable to the protonated
ion [MG/GSH*H]+. The molecular ion species m/z 402.1 is attributable to [MG/GSH*Na]+ under positive ion mode.

furano-A2E), and heterocycles that include 4 carbons and an undergo double bond lysis leading to the formation of
endoperoxide (O-O; peroxy-A2E). The endoperoxides readily aldehyde-bearing photofragments, including MG. Unlike free
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Figure 7. Proposed mechanisms for glutathione (GSH) interaction with photooxoA2E and methylglyoxal, an A2E photodegradation product.
A: GSH would transfer two hydrogens from two GSH molecules to an endoperoxide on A2E, resulting in the m/z+2 pattern associated with
photooxidized forms of A2E in the m/z 640-736 region of Figure 3B-D [33]. B: GSH adduct formation with an endoperoxide on A2E would
occur via nucleophilic attack and ring opening [34,35]. Simple addition of GSH at the site of an endoperoxide would involve the formation
of an unstable hydroperoxide (OOH) moiety (B, i) and for example would account for m/z 947 in Figure 4B, insert. Alternatively, GSH
conjugation could involve attack of the endoperoxide bridge (O-O) by the GSH thiolate followed by carbonyl formation and GS insertion
(B, ii); this mechanism would account for m/z 931 in Figure 4B, insert [33,36,37]. C: Adduct formation with an epoxide would be expected
to occur [35]; however, the appropriate product (m/z 915) was not detected. D: GSH can react with methylglyoxal (MG) released upon A2E
photodegradation to form an MG-GSH hemi-thioacetal [38]; this adduct accounts for m/z 380 and 402 in Figure 6F.

radicals, ketones and aldehydes are relatively long lived and
therefore can diffuse from their site of origin to reach and
attack other targets intra- or extracellularly. Thus, it is perhaps
not surprising that we previously found that when A2E-
containing RPE growing on fibronectin were irradiated to
initiate A2E photodegradation, the fibronectin substrate
became AGE modified [27].

In the studies we are reporting here, we have
demonstrated through a combination of colorimetric assays,
chromatography, and MS that GSH can chemically reduce
photooxidized A2E. GSH can also form adducts with both
photooxidized A2E and photodegradation products of A2E.
In Figure 7, we suggest possible routes by which GSH may
react with photooxidized and photodegraded A2E. These
findings complement our prior observation that sulforaphane,
a phytochemical that increases the cellular content of GSH,
can protect against the cellular damage associated with

photooxidation of A2E [28]. In addressing specific A2E
photocleavage products, we observed that GSH can form an
adduct with MG, both noncatalytically and by GST mediation.
Since MG damages proteins by reacting with amino and
guanidine groups of lysine and arginine residues [29], the
binding of GSH to these photocleavage products of A2E likely
serves to limit their reactivity. GSH consumption was less
pronounced when GSH was added to the mixture after
irradiation, possibly because in the absence of GSH, A2E
photofragments reacted among themselves.

While GSH is synthesized in the cell cytosol, degradation
of GSH and GSH conjugates occurs only in the extracellular
milieu. Thus, GSH-conjugate formation may be a mechanism
for the elimination of electrophiles such as those generated by
bisretinoid photooxidation/photodegradation. GSH
conjugates can be exported from the cells by ATP-binding
cassette transporters of the multi-drug resistance protein
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family or ral-binding guanosine triphosphate (GTP)ase
activating protein 1 (RalBP1) [2,30], and once the GSH
conjugate is released from the cells it is rapidly degraded by
the plasma membrane-bound enzymes y-glutamyl
transpeptidase (yGT) and dipeptidases to release glutamate
and glycine. The fate of the remaining cysteine S-conjugate
is less clear. Once GSH has reacted with MG, the adduct can
also be acted upon by the glyoxalase system, although the
efficiency of this system decreases rapidly with a fall in GSH
levels [31].

Besides reacting with GSH, thiol-reactive oxidation
products of A2E could potentially react with essential thiols
of critical proteins, resulting in the loss of protein function.
This is an issue that we are currently investigating. Cellular
levels of GSH can be diminished by inherited or acquired
deficiencies in the enzyme transporters or transcription factors
that are involved in GSH regulation. One form of macular
degeneration, a rod/cone maculopathy [32], is attributable to
GSH synthase deficiency and is inherited as an autosomal
recessive disorder. The presence of macular edema and
subnormal electrooculogram is suggestive of RPE cell
involvement and may be consistent with the need for RPE to
maintain generous levels of GSH, at least in part, to protect
against the effects of bisretinoid photooxidation and cleavage.
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