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Abstract: Insulin resistance refers to the diminished response of peripheral tissues to insulin and
is considered the major risk factor for type 2 diabetes. Although many possible mechanisms have
been reported to develop insulin resistance, the exact underlying processes remain unclear. In recent
years, the role of adipose tissue as a highly active metabolic and endocrine organ, producing proteins
called adipokines and their multidirectional activities has gained interest. The physiological effects
of adipokines include energy homeostasis and insulin sensitivity regulation. In addition, an excess
of adipose tissue is followed by proinflammatory state which results in dysregulation of secreted
cytokines contributing to insulin resistance. Wingless-type (Wnt) inducible signalling pathway
protein-1 (WISP-1), also known as CCN4, has recently been described as a novel adipokine, whose
circulating levels are elevated in obese and insulin resistant individuals. Growing evidence suggests
that WISP-1 may participate in the impaired glucose homeostasis. In this review, we characterize
WISP-1 and summarize the latest reports on the role of WISP-1 in obesity, insulin resistance and type
2 diabetes.
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1. Introduction

Insulin resistance refers to the diminished response of peripheral tissues to insulin and
is considered the major risk factor for type 2 diabetes [1]. Although many possible mech-
anisms have been reported to develop insulin resistance, the exact underlying processes
remain unclear [2]. In recent years, the peptides secreted by the adipose tissue and their
contribution to glucose homeostasis have gained interest [3]. Since the leptin discovery,
the list of adipocytokines has continued to expand. It is currently believed that adipocytes
can be the source of more than 600 secretory proteins, most of whose regulatory effects
are poorly understood [4]. Wingless-type (Wnt) inducible signalling pathway protein-1
(WISP-1), also known as CCN4, is a matricellular protein that in humans is encoded by the
WISP-1 gene located on chromosome 8 [5]. WISP-1 has recently been described as a novel
adipokine, which may participate in the impaired glucose homeostasis [6]. In this review,
we characterize WISP-1 and summarize the latest reports on the role of WISP-1 in obesity,
insulin resistance, and type 2 diabetes.

2. The CCN Family

Wnt-induced secreted protein 1 belongs to the secreted extracellular matrix-associated
proteins described as the CCN family [6]. Six proteins belong to the CCN family, and
each of them has been assigned the acronym CCN with the appropriate number from 1 to
6 [7]. The name of the CCN family comes from the first letters of names of the first three
member proteins discovered: Cysteine-rich angiogenic inducer 61 (CYR61), connective
tissue growth factor (CTGF) and nephroblastoma overexpressed (NOV). According to this
nomenclature, the first three member proteins are also called CCN1, CCN2, and CCN3,
respectively [7,8]. The rest of the family, CCN4, CCN5 and CCN6, are represented by
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the other three proteins: WISP-1, WISP-2 and WISP-3 [7]. The six CCN family members
are cysteine-rich proteins and share a structural model characterized by a N-terminal
secretory signal, four conserved structural domains with a similar sequence to insulin-like
growth factor binding protein (IGFBP), von Willebrand factor type C repeat domain, and
thrombospondin type 1 repeat domain, and finally a C-terminal sequence with partial
identity to von Willebrand factor [8]. All of them are secreted into the extracellular space,
constituting an extracellular ligand participating in various signalling pathways [9,10].
CCN proteins have multidirectional biological functions, including cell growth, differentia-
tion, proliferation, apoptosis, adhesion and migration of multiple cell types [11,12]. CCN
proteins participate in the regulation of various physiological processes such as skeletal de-
velopment, stem cell differentiation, angiogenesis, chondrogenesis or wound repair [12,13].
Abnormal secretion of CCN proteins has been reported in fibrogenesis, carcinogenesis,
and atherosclerosis [10,12,14]. CCN proteins interact with various molecules, including
proteoglycans, integrins and lipoprotein receptor-related proteins (LRPs), which exerts
diverse effects acting both as stimulants or inhibitors in cellular processes [13].

3. WISP-1 Multiple Functions

WISP-1 has been associated with oncogenesis, and for this reason, it may have some
influence on cancer development and progression. In particular, WISP-1 initially gained
interest as a product of the oncogene Wnt1 when it was observed that its expression is
increased in colon cancer cell lines and human colon tumours [15]. The role of WISP-1 in
tumorigenesis has been studied in many types of neoplasms, where it acts as an autocrine
and paracrine modulator, increasing cell migration [10]. Furthermore, the WISP-1 gene’s
polymorphisms were shown to impact the breast cancer susceptibility and the expression
of oestrogen and progesterone receptors in the tumour [16].

In contrast to its influence on cancer development, WISP-1 may play some protec-
tive role in bones. It has been demonstrated that WISP-1 may participate in promoting
differentiation of perivascular stem cells into bone cells [9]. Wnt-1 signalling is also consid-
ered one of the critical mediators of subchondral bone remodelling, interacting with the
OPG-RANK-RANKL pathway [17]. The expression of WISP-1 was noted at sites of new
bone formation and fractures healing [18]. For this reason, WISP-1 has been proposed as
the possible target for osteoarthritis therapy as it may be involved in stimulating synovial
inflammation, cartilage damage, and osteophytes forming [18].

Apart from cancer and bone, WISP-1 may influence the processes of fibrosis and
apoptosis, which has been demonstrated in particular in the kidney, lungs, heart and liver.
In the kidney, WISP-1 is also associated with renal fibrosis as the elevated serum level of
WISP-1 has been noted in biopsy-proven renal fibrosis as compared to normal patients [19].
The mechanism of this finding was investigated by Yang et al. and it was suggested
that WISP-1 stimulated the production of transforming growth factor beta 1 (TGF-beta-1)
induced profibrotic markers [20]. Furthermore, WISP-1 was upregulated in idiopathic
pulmonary fibrosis and in bleomycin-induced lung fibrosis in mice [21]. Interestingly, the
orotracheal application of WISP-1 neutralizing antibodies to the lung has been shown to
decrease bleomycin-induced lung fibrosis [21], suggesting that WISP-1 might be a new
target for anti-fibrotic therapy [22]. Similarly, the possible contribution of WISP-1 in cardiac
fibroblast proliferation in postinfarct myocardium was proposed [23]. In addition, WISP-1
was identified as an autocrine angiogenic mediator for human coronary artery endothelial
cells [24]. Venkatachalam et al. suggested that WISP-1 stimulates fibroblast proliferation in
the myocardium but also inhibits tumor necrosis factor alpha-induced cardiomyocyte death,
thereby suggesting some protective role of WISP-1 in the heart [25]. The amount of WISP-1
was significantly higher in human coronary arteries with early intimal thickening compared
with normal control arteries. WISP-1 was shown to promote vascular smooth muscle cells
migration and thereby intimal thickening [26]. The profibrotic activity of WISP-1 raised
interest in the possible role of this mediator in the liver fibrosis [27]. The upregulation of
WISP-1 in both in vivo and in vitro liver fibrosis models has been demonstrated [27].
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4. WISP-1 and Obesity

In recent years, the role of WISP-1 as an adipokine has gained interest [6] and Wnt
signaling has been shown to participate in human adipogenesis [28]. Based on mouse
studies, Wnt signalling may regulate adipose tissue distribution [28]. In line with these
results, Murahovschi et al. conducted a study to validate WISP-1 as an adipokine and
demonstrated WISP-1 was secreted by fully differentiated human adipocytes [6]. In addi-
tion, a reduction of WISP-1 mRNA expression in subcutaneous adipose tissue in female
mice after a weight loss was observed [6]. WISP-1 expression was increased after weight
gain in male high fat diet-fed mice compared with controls [6].

Studies show that circulating WISP-1 levels were significantly higher in obese men
than in normal-weight men independently of diabetes status [29]. Another study showed
that serum WISP-1 level positively correlated with body mass index, body fat percentage,
leptin and triglyceride levels, hip circumference and fatty liver index [11]. However, in
the same study, the differences in the WISP-1 levels between normal weight, overweight
and obese subjects did not reach statistical significance [11]. In the study conducted by
Barchetta et al., WISP-1 serum levels increased throughout the obesity class and correlated
with visceral adipose tissue area assessed with magnetic resonance imaging [30]. The
relationship between WISP-1 and obesity was also investigated in a group of children.
Serum levels of WISP-1 were found higher in the group of obese children and adolescents
compared with the normal weight healthy controls [31]. WISP-1 level correlated positively
with body mass index (BMI) and BMI z-score in the group of obese children [31].

5. WISP-1 in Adipose Tissue and Systemic Inflammation

Since the excess of adipose tissue is followed by a proinflammatory state, which pro-
motes insulin resistance and obesity-derived disorders, the relationship between WISP-1
and inflammation was studied [6,32]. It has been shown that WISP1 mRNA expression in
subcutaneous and visceral adipose tissue correlates with macrophage infiltration [6]. A
dose-dependent WISP-1 induced increase of mRNA of proinflammatory cytokines was
observed. Furthermore, WISP-1 altered macrophages’ polarization toward the M1 proin-
flammatory phenotype [6]. Barchetta et al. demonstrated that WISP-1 plasma concentration
correlates with interleukin 8 (IL-8) levels. The patients with increased plasma IL-6 and
tumor necrosis factor alpha (TNF-alpha) levels presented significantly higher WISP-1
levels [30].

Furthermore, Jung et al. investigated the mechanisms by which WISP-1 may con-
tribute to inflammation in the pathogenesis of non-alcoholic fatty liver disease and insulin
resistance [33]. The study showed that WISP-1 knockdown in high-fat diet-fed mice re-
duced proinflammatory markers. Moreover, the treatment of mouse hepatocytes with
recombinant WISP-1 caused the concentration-independent increase in inflammatory mark-
ers’ levels [33]. Finally, the study by Wang et al. showed that WISP-1 concentration
correlated with IL-18, which is a strong proinflammatory cytokine [31].

6. WISP-1 and Insulin Resistance

Impaired adipose tissue function is considered a fundamental pathogenetic mecha-
nism of insulin resistance [34]. It has been demonstrated that altered adipokines release,
oxidative stress, chronic inflammation state in non-adipose tissues are major factors con-
tributing to impaired insulin sensitivity [34]. Since WISP-1 circulating concentrations and
expression in adipocytes are associated with obesity and inflammatory markers, a contri-
bution of WISP-1 in insulin resistance development has become the subject of research.

WISP-1 expression in subcutaneous and visceral adipose tissue correlates positively
with fasting insulin and negatively with insulin sensitivity, assessed as glucose infusion
rate in the euglycemic-hyperinsulinemic metabolic clamp [6]. A negative correlation
between WISP-1 mRNA expression and circulating adiponectin was observed [6]. It was
demonstrated that the gene expression of WISP-1 was increased after insulin stimulation
in vitro. In the same study, WISP-1 expression in adipose tissue was not altered after insulin
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stimulation in vivo [6]. However, this observation was performed in a group of overweight
glucose-tolerant individuals [6]. A study by Hörbelt et al. showed that circulating WISP-
1 levels were positively associated with blood glucose levels in oral glucose tolerance
test and confirmed a negative correlation between serum concentrations WISP-1 and
adiponectin [29]. In primary human skeletal muscle cells and murine AML12 (alpha
mouse liver 12) hepatocytes, recombinant WISP-1 impaired insulin action by inhibiting
phosphorylation of insulin receptor, Akt and glycogen synthase kinase 3β, and inhibiting
insulin-stimulated glycogen synthesis and suppression of gluconeogenic genes [29].

The influence of exercise on WISP-1 serum concentrations was studied in the group of
breast cancer survivors [35]. The reduced WISP-1 levels, together with the improvement
of the gluco-lipid profile after a 12-week exercise were noted compared to the control
group [35]. A significant correlation between changes in Homeostatic Model Assessment of
Insulin Resistance (HOMA-IR) and WISP-1 concentrations was observed [35]. Multivariate
analysis demonstrated that body mass index, HOMA-IR, and anti-Müllerian hormone
independently and positively predicted WISP-1 levels in the group of women diagnosed
with polycystic ovary syndrome [36]. Circulating WISP-1 levels were found higher in the
group of women with gestational diabetes mellitus compared to healthy controls. WISP-1
correlated positively with BMI, HOMA-IR values, fasting glucose, fasting insulin, and
triglyceride concentrations [37].

Moreover, in the study conducted by Jung et al. treatment with WISP-1 increased
lipogenesis-associated gene expression and accumulation of triglycerides in murine hep-
atocytes and inhibited insulin signaling in murine skeletal muscle cells [33]. The results
indicate that WISP-1 promotes insulin resistance through the Toll-like receptor 4 (TLR-4)-
mediated and c-Jun N-terminal kinase (JNK)-dependent pathway [33].

7. WISP-1 and Diabetes

As WISP-1 seems to play a role in obesity and insulin resistance, it may hypothetically
also affect glucose homeostasis, thereby having some plausible impact on the development
of diabetes mellitus. However, to date, conflicting reports exist, and no clear evidence to
support this hypothesis has been demonstrated. Several studies investigated the association
of WISP-1 and type 2 diabetes mellitus. Klimontov et al. demonstrated significantly higher
serum levels of WISP-1 in the group of subjects diagnosed with type 2 diabetes mellitus
than in healthy controls [38]. In contrast, a study comparing circulating levels of WISP-1
in the group of men with obesity with and without type 2 diabetes mellitus revealed no
significant difference [29]. Similarly, a study by Tacke et al. presented no difference in
WISP-1 concentrations between individuals with normal glucose tolerance and the group
with type 2 diabetes mellitus [11]. However, the authors suggested the results may be
explained by the good therapeutic glycaemic control of the group with diabetes [11]. In
agreement with these findings, WISP-1 concentration did not differ significantly between
participants with and without type 2 diabetes in the research by Barchetta et al. [30]. It
appears that while the higher plasma concentration of WISP-1 is associated with insulin
resistance, it is not further increased with type 2 diabetes [29]. Thus far, there have been no
reports directly linking WISP-1 with type 1 diabetes mellitus.

8. WISP-1 and Beta Cell Biology

Since the loss of beta cells is the major pathogenetic factor of diabetes, Fernandez-
Ruiz et al. tested the potential of WISP-1 as a beta cell trophic factor [39]. The authors
presented that human adult beta cells show increased proliferation when transplanted into
pre-weaning mice and identified WISP-1 as enriched in pre-weaning mice relative to adult
serum [39]. Wisp1 gene expression in islet cells was negligible, while the bone seems to
be the likely source of serum WISP-1 in young mice [39]. The study showed that WISP-1
contributes to beta cell proliferation in young and adult mice [39]. The administration of
adenoviral particles encoding the human isoform of WISP1 to diabetic adult mice did not



Medicina 2021, 57, 100 5 of 7

normalize hyperglycaemia, but a significant increase in insulin plasma levels as compared
to controls was observed [39].

9. Conclusions

WISP-1 can be considered one of the essential adipokines involved in glucose home-
ostasis. Growing evidence supports the assumption that WISP-1 plays a role in the complex
continuum, which consists of excessive body weight, impaired insulin sensitivity and
finally, type 2 diabetes. WISP-1 is secreted by differentiated human adipocytes and its
circulatory levels are higher in obese patients compared to those with normal weight. The
ability of WISP-1 to induce a pro-inflammatory state has been shown, which may be one
of the mechanisms enhancing the endocrine dysfunction of adipose tissue. Furthermore,
WISP-1 expression in adipocytes negatively correlates with insulin sensitivity.

It appears that the mechanisms of WISP-1 action impairing insulin sensitivity comprise
inhibition of glycogen synthesis, interfering with insulin signalling, and promotion of
the inflammatory state. Conflicting reports concern the relationship between WISP-1
circulatory levels and type 2 diabetes, which needs clarification. WISP-1 promotes human
beta cell proliferation, making it a candidate for future therapeutic use. However, the
mitogenic, profibrotic and angiogenic potential of WISP-1 in various tissues poses a risk of
undesirable effects. Further rodent or in vitro studies would be valuable to establish the
possible effect of WISP-1 on glycaemic control.

Concluding, further studies are needed to precisely determine the role of this promis-
ing adipokine in the pathogenesis of insulin resistance and perhaps to discover its possible
future use in a therapeutic approach to insulin resistance and obesity.
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