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Abstract

Ovarian cancer (OC) is the least survivable gynecological malignancy and presents

late. Five-year survival for OC is around 45% increasing the need for innovative

treatments. Checkpoint inhibitors have shown significant clinical efficacy in mismatch

repair deficient (MMRd) cancers and could be a powerful treatment in OC. However,

their application in OC is limited due to the lack of data on the prevalence of MMRd.

The aim of our study was to conduct a systematic review of the literature and meta-

analysis to provide an accurate estimate of the prevalence of MMRd in OC. We fol-

lowed PRISMA guidelines throughout. Studies were identified by electronic searches

of Medline, Embase, Cochrane CENTRAL and Web of Science followed by citation

searching. Studies not written in English were excluded. All studies were reviewed by

at least two independent reviewers. Proportions of test positivity were calculated by

random and fixed-effects meta-analysis models. I2 score was used to assess hetero-

geneity across studies. In total 54 studies were included with 17 532 analyzed for

MMRd. The overall proportions of MMRd by immunohistochemistry and microsatel-

lite instability analysis were 6.7% and 10.4%, respectively. MMRd was reported in all

histotypes of epithelial OC but was most common in endometrioid OC. We estimate

that on average 46.7% (95% CI: 28.8-65.4) of ovarian carcinomas showing MMRd by

IHC had a germline path_MMR variant identified. OC in those with Lynch syndrome

seems to present at an earlier age and stage. Studies however were generally of low

quality and there was a high degree of heterogeneity. A significant minority (up to

16%) of OC displays MMRd and, therefore, could be amenable to checkpoint inhibi-

tion therapy. However, the current literature base is of limited quality and therefore

high-quality prospective studies exploring MMRd in OC with the use of multimodal

testing are required. In addition, trials researching efficacy of checkpoint inhibition in

MMRd OC are needed.

Abbreviations: FDA, US-Federal Drug Administration; ICPI, immune checkpoint inhibitors; IHC, immunohistochemistry; MMR, mismatch repair; MMRd, mismatch repair deficient; MSI,
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What's new?

Despite gains in ovarian cancer survival, overall prognosis remains poor. Thus, to further

improve patient outcomes', efforts are being made to identify cancers amenable to targeted

therapeutics. Ovarian cancers with a mismatch repair deficiency (MMRd) phenotype could

respond to immotherapy and therefore defining the prevelance of MMRd in ovarian cancer is

important. In the present meta-analysis examining the prevalence of MMRd in ovarian cancer

we found a significant minority of ovarian cancers are MMRd. MMRd was observed in all histo-

types but was more common in endometrioid tumors. Knowledge of MMRd prevalence in ovar-

ian cancer could help guide therapeutic decisions, particularly surrounding the use of checkpoint

inhibitors which are most effective in MMRd cancers.

1 | INTRODUCTION

Ovarian cancer (OC) is the least survivable gynecological malignancy in

developed nations.1 It is associated with significant morbidity and mortal-

ity, with 230 000 women being diagnosed, and 150 000 women dying

from OC annually.1 Survival at 5 years is less than 50% with survival

rates having only increased by 30% since the mid-1970s.2 The current

treatment for OC consists of surgery to optimally debulk the disease

alongside (neo)adjuvant platinum-based chemotherapy with the selective

addition of antiangiogenesis inhibitor bevacizumab and/or poly(ADP-

ribose) polymerase inhibitors.1 Numerous factors contribute to the high

mortality rate associated with OC. In the first instance, the symptoms of

OC are vague, and women often present with advanced disease.2 To

date, there is no effective screening program.3 Finally, until recently,

effective treatment innovation has been lacking.4

One such treatment innovation is the use of immune checkpoint

inhibitors (ICPIs) in cancers with a mismatch repair deficient (MMRd)

phenotype. MMRd cancers are highly immunogenic because of the

production of numerous neopeptides due to their hypermutated

genome.5 Therefore, MMRd cancers must undergo immunoediting in

order to escape the immune surveillance and destruction.6 Immunoe-

diting involves three steps: elimination, equilibrium and escape, with

the later step in MMRd cancers often involving co-signaling pathways;

namely signaling via the PD-1/PD-L1 pathway.7 This is a druggable

pathway with the use of ICPIs.

ICPIs are monoclonal antibodies that reinvigorate the antitumor

immune response by targeting co-inhibitory receptors.8 They bind

directly to T cells inhibiting their ability to communicate with their

immune checkpoint ligands. This instigates two outcomes, first, with-

out the influence of inhibitory signals, the T cell can resume its effec-

tor functions and second, natural opsonization of antibody bound T-

cells allows for the expansion of new tumor-specific T cells.9 Trial

data, most notably Dung et al, demonstrated the therapeutic affinity

ICPIs possesses towards MMRd cancers.10 Both objective response

rates and progression free survival were significantly greater in MMRd

cancers compared to MMR proficient cancers treated with ICPIs.

These data led to the US-Federal Drug Administration (FDA) approv-

ing Nivolumab and Pembrolizumab for use in MMRd tumors, regard-

less of histology and cancer site.11 This was the first time a cancer

treatment had been approved based on a molecular characteristic.

Data regarding use of ICPIs in OC is limited. Studies have been small

and given mixed results as to ICPIs efficacy in OC.12-16 However, these

studies did not select for MMRd OC and therefore their inability to find

treatment efficacy is understandable. Researchers were deterred for

looking for MMRd OC as it was thought the prevalence of MMRd in OC

would be too low as to be clinically meaningful.17 Such an assumption

could be made due to a lack of high quality MMRd prevalence data in

OC. Therefore, a meta-analysis of MMRd prevelance in OC is needed as

to assess the utility of using MMRd as a biomarker for ICPIs in OC and

to help inform any future ICPI treatment trials in OC.

2 | OBJECTIVE

The aim of our study was to conduct a systematic review of the litera-

ture as to identify and appraise the current evidence base regarding

the prevalence of MMRd in OC. In addition, we performed a meta-

analysis as to provide composite results. These data could inform the

use of ICPIs in OC.

3 | METHODS

3.1 | Eligibility criteria, information sources and
search strategy

A systematic review of literature, following PRIMSA guidelines, was

performed.18 Medline, Embase, Cochrane CENTRAL, NHS Health and

Technology and Web of Science were searched from their inception

to September 2021. Nonelectronic and gray literature were excluded.

Search terms included “DNA mismatch repair,” “ovarian neoplasms”
and “colorectal neoplasms, hereditary nonpolyposis” with associated
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Medical Subject Headings (MeSH); this search strategy was devised

by a specialist medical librarian. A secondary search was carried out

using “mismatch repair,” “ovarian cancer” and Lynch syndrome” as

multipurpose search terms. Initial search results were supplemented

by citation searching. The search strategy is detailed in Table S1.

3.2 | Study selection

The protocol for this systematic review was preregistered with the

PROSPERO database registration (ref: CRD42020220975). Studies

investigating MMRd in both unselected and selected OC populations

were included; that is studies that applied universal testing for MMRd

in OC and studies in which the population of OC was selected based

on a predefined criterion/criteria, for example histotype specific, were

included. Interventional studies in which MMRd testing was carried

out were also included. Searches were limited to English language,

human adults (>18 years old) and female subjects. No restriction was

placed on the date of publication. Studies that used immunohisto-

chemistry (IHC), microsatellite instability analysis (MSI), MLH1 promo-

tor hypermethylation testing, MMR germline mutation analysis and

MMR somatic mutation analysis as diagnostic tools were included.

Studies were excluded if they sampled less than 50 OCs or concen-

trated on synchronous ovarian tumors with other primary malig-

nancies. These exclusions were to ensure high quality data19 and

prevent selection bias for Lynch syndrome respectively. In addition,

articles found to have internal inconsistencies, such as different

results reported within the study for the same outcome, were also

removed.

3.3 | Data extraction

Titles and abstracts were collated and screened using Rayyan software

(https://rayyan.qcri.org/). Screening was done independently by three

authors (A.S.A., M.C.D. and T.A.K.), with any discrepancies reviewed by a

third party (N.A.J.R.). Studies that were identified as meeting the inclu-

sion criteria underwent full article review and data extraction by two

authors (A.S.A. and T.A.K.), with issues resolved through discussion with

a senior author (N.A.J.R.). Articles excluded at full article review are

detailed in Table S3. A bespoke data collection tool was designed to

ensure complete capture of all primary and secondary outcome data

points (available on request). This recorded demographic, pathological

and clinical data, and the diagnostic method used to estimate the preva-

lence of MMRd in women with OC.

3.4 | Assessment of risk of bias

Risk of bias was assessed using R, version 3.3.1 (https://cran.r-

project.org) using the package “robvis”.20 This package uses the Qual-

ity and Applicability of Diagnostic Accuracy Studies (QUADAS 2) tool

for bias analysis.21 All primary data is available by request.

3.5 | Statistical analysis

We defined the primary outcome as the proportion of OC with

MMRd defined by the author using either MSI, IHC or somatic

sequencing. When estimating the proportion of OC with MMRd by

MSI we did not include studies where MSI was only conducted on an

unrepresentative sample of patients (eg, if MSI analysis was only per-

formed in patients with MMRd by IHC). An equivalent approach was

used when estimating the proportion of OC with MMRd by IHC. All

analysis was performed using R version 4.1.0 (https://www.R-project.

org/) and the package meta version 5.0.22

Base case analyses used a generalized linear mixed model with

logit transform and random intercepts at the study level (see Equa-

tions (1) and (2)). In addition, sensitivity analyses were conducted

using a fixed effects approach with logit transform (Equations (1) and

(3)) and using an inverse variance approach with Freeman-Tukey dou-

ble arcsine transforms (see Table S5). Confidence intervals for individ-

ual studies were produced by the Clopper-Pearson method.

Heterogeneity across studies was described with the use of an I2

score (low: 25%, 50%: moderate, 75% high heterogeneity). Subgroup

effects were tested using the Q-statistic (ANOVA Q with τ2 estimated

separately in each subgroup).

For the patient j in the study i, the outcome yij is equal to 1 in the

event of a positive test (eg, when MMR IHC shows MMRd) and is

equal to 0 in the event of a negative test.

logit  yij
� �� �¼ ηij, yij �Bernoulli, ð1Þ

ηREij ¼ βRE0 þuREi , uREi �N 0,σ2
� �

, ð2Þ

ηFEij ¼ βFE0 : ð3Þ

4 | RESULTS

4.1 | Study selection

In total 826 articles were identified by the search with an additional

seven titles found through citation searching. After abstract screening,

146 articles underwent full article review. During this process a fur-

ther 78 titles were excluded. Data extraction was performed on

68 articles, however a further 14 articles were excluded due to either

not meeting the inclusion criteria, an inability to extract results, inter-

nal inconsistencies or duplicate data (see Tables S1 and S2). Therefore

54 articles were included in the meta-analysis. These data are summa-

rized in Figure 1 and Tables 1 and S6.

4.2 | Study characteristics

In total 17 532 OCs were reported in the 54 studies (see

Table S4).23-76 Geographically there was good representation with

Europe (n = 16), Australasia (n = 1), North America (n = 26), Asia
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(n = 9) and multicontinental (n = 2) studies reported. No studies from

South America were found. Twenty studies preselected their popula-

tion on either age (n = 4), stage of disease (n = 1), histology (n = 14)

or being path_BRCA negative and being <40 years old (n = 1). The

mean age of participants was 52 years, however, not all articles

(n = 36) reported this parameter. Narrative synthesis was performed

for the remaining demographics. In total, 46 articles reported histol-

ogy breakdown. articles in which all histoypes were reported (n = 33)

of, on average, 53% were high grade serous, 18% were endometrioid,

14% were clear cell, 1% were low grade serous and 13% were of

Identification

Screening

Full paper review

Data extraction

Included

146 papers underwent full paper review.

Wrong population (n = 9)
Wrong outcome (n = 9)
Wrong publication type (n = 6)
Wrong study design (n = 9)
Wrong language (n = 1)
Reviews (n = 44)68 papers underwent data extraction.

54 papers included in study.

Poorly displayed results (n = 2)
Inappropriate results (n = 2)
Wrong population (n = 3)
Duplicate data (n = 1)
Other (n = 6)

Sample Size

>500 (n = 10)

250-499 (n = 11)

100-249 (n = 16)

<100 (n = 17)

Selection

Unselected (n = 34)
Age (n = 4)

Stage (n = 1)
Histology (n = 14)

Other (n = 1)

Primary Test

IHC (n = 25)
MSI (n = 9)

IHC + MSI (n = 7)
MSI + GL (n = 1)
IHC + MSI + GL 

(n = 1)
GL (n = 10)

Somatic and GL 
(n = 1)

826 papers identified following initial search.

831 papers underwent title and abstract screening.

Removal of duplicates (n = 2)

Inclusion of papers from external 
sources (n = 7)

Wrong outcome (n = 132)
Wrong population (n = 250)
Wrong study design (n = 176)
Wrong publication type (n = 77)
Background article (n = 42)
Wrong language (n = 8)

Medline
(n = 529)

Embase 
(n = 126)

Cochrane 
Central (n = 3)

Web of Science 
(n = 162)

NHS Health & 
Tech’ (n = 6)

F IGURE 1 Prisma flow diagram. GL, germline analysis; IHC, immunohistochemistry; MSI, microsatellite instability; Tech, technology
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other histoypes. Regarding FIGO stage, 49% and 51% were stage I-II

and III-IV, respectively. Too few articles (n = 3) reported ethnicity to

draw a meaningful average. The risk of bias results are displayed in

Figure S1, of note no study was free from a degree of bias.

4.3 | Immunohistochemistry

In total 7086 OCs underwent IHC

analysis.23-25,31,32,37-39,42,45-47,49,50,53-56,58,60,61,66,72,75,76 The average

age of MMRd OC by IHC was 48 years old; these data come from

13 studies.24,32,33,36,37,39,43,45,49,61,66,75,76 This compares to an aver-

age age of 61 years in those whose OCs' were MMR proficient.

Most studies (n = 23) used tissue microarrays (TMA) for

analysis23-25,31,32,37-39,42,45-47,49,50,53-56,58,60,61,66,72,75,76 or a combina-

tion of TMA and whole slides.41,43 Only seven reported solely using

whole slides in their analysis.26,29,33,34,36,64,71 In two studies it was not

clear if they used TMAs or whole slides.50,75

Thirty studies were included in the IHC meta-analysis as those

studies that only performed IHC as a secondary test were

excluded.38,49,50 There was a wide variation in the rate of MMRd by

IHC, ranging from 0.3% to 29% (see Figure S2). Overall, the estimated

rate of OC that demonstrate MMRd by IHC was 6.7% (95% CI: 4.7%-

9.4%). Interestingly, the rates of MMRd by IHC was higher in unse-

lected populations than selected at 7.4% vs 6.2%, respectively. These

data are summarized in Figure 2. There was a significant degree of

heterogeneity between studies (I2 = 93%), which was not adequately

explained by subgrouping according to selection into the study

(Q = 0.26, df = 1, P = .61).

There were 29 studies that gave information on the specific pro-

tein loss; however, 10 of these studies did not test for all four

proteins.25,29,37,38,41,47,50,56,71,72 Furthermore, two studies did not

indicate if loss was isolated or in a dimeric pair.39,60 Of note Zhu

et al53 reported isolated loss of MLH1 and MSH2 which is unusual

given the literature on the ability to use a two-antibody screen in

MMRd using PMS2 and MSH6.77,78 In addition, Xue et al

reported isolated MLH1 loss, however it was not described as

absent but as “low expression.”34 Therefore 19 studies had suffi-

cient information to describe MMR protein expression in

OC.23,24,26,31-34,36,42,45,49,53,54,58,61,64,66,75,76 These studies repre-

sent 3987 OCs of which 3986 had IHC testing of which 215 (5.4%)

had MMRd. Of these 9 (4%) were reported as isolated MLH1,

82 (38%) had MLH1/PMS2 loss, 2 (1%) had isolated MSH2,

54 (25%) had isolated MSH6 loss and 68 (32%) had MSH2/MSH6

loss. Reflex MLH1 promotor hypermethylation data was reported in

nine studies.23-26,32,33,71,75,76 Of the 53 OCs with MLH1 or MLH1/

PMS2 loss 40 (75%) were found to be hypermethylated.

Eighteen studies provided information on the FIGO stage in their

MMRd IHC cohort.23,24,31-34,36,37,39,45,47,49,53,55,60,61,71,76 In total,

71 (38%) were stage I-II and 118 (62%) were stage III-IV.

Regarding histotype, 10 unselected studies reported histological

data.25,33,34,42,45,47,49,55,61,71 MMRd was reported in endometrioid,

clear cell, high grade serous, low grade serous and other histologies

at 57%, 15%, 12%, 1% and 15%, respectively. We estimate that on

average 46.7% (95% CI: 28.8-65.4) of OCs showing MMRd by IHC

had a germline path_MMR variant identified. If those not

undergoing germline analysis are removed, this becomes 60.5%

(95% CI: 39.5-78.3). This is based on data from nine stud-

ies.23,24,26,32,33,36,39,49,75 However, many of these studies which

were restricted by histology to either clear cell only OCs (n = 2),

nonhigh grade serous cancers (n = 2) or endometrioid OC

(n = 1).22,24,30,31,34,37,47,73

4.4 | Microsatellite instability analysis

In total 5472 OCs underwent MSI analysis in

25 studies.23,25,26,28,31,33-35,38,41,42,46,48-51,55,59,66,67,70,71,73,74,76 The

average age of women with Microsatellite instability high (MSI-H)

OC was 40 years old; these data come from seven stud-

ies.28,33,35,51,59,66,73 In total 16 studies were included in the MSI

TABLE 1 Summary of studies

Study feature

Number of

studies

Proportion of

studies (%)

Country

North America 26 48.15

Europe 16 29.63

Asia 9 16.67

Mixed continents 2 3.70

Australasia 1 1.85

Selection of patients

Unselected 34 62.96

Selected 20 37.04

Histology 14 25.93

EC 4 7.40

CCC 4 7.40

EC + CCC 3 5.56

Non-HGS 1 1.85

Non-CCC 1 1.85

Non-serous + non-mucinous 1 1.85

Age 4 7.40

Stage 1 1.85

Gene 1 1.85

Primary tests for MMRd conducted

on unselected patients

IHC 12 35.29

MSI 10 29.41

GL 7 20.59

IHC + MSI 2 5.88

GL + MSI 1 2.94

GL + somatic 1 2.94

IHC + MSI + somatic 1 2.94
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meta-analysis as MSI was used as the primary tumor based

test.23,26,28,35,38,41,42,48,50,51,59,67,70,71,73,74 These studies reported

a significant range of test positivity rates for MSI, from 0% to 68%. Over-

all, an estimated 10.4% (95% CI: 6.3-16.8) of OCs demonstrate MMRd by

MSI analysis. There was a significant degree of heterogeneity between

studies (I2 = 90%), which is not adequately explained by subgrouping

(Q = 0.18, df = 2, P = .91). When the study by Shilpa et al38 was

excluded, the I2 dropped to 54% and the estimated test positivity rate

was 9.4%. Once more, preselection of sample populations had minimal

effect on the proportion of MMRd OC. These data are summarized in

Figures 3 and S3. Regarding stage and histotype, insufficient studies

reported these outcomes limiting any meaningful synthesis.21,24,33

We estimate that on average 34.0% (95% CI: 5.9-81.0) of OCs show-

ing MSI had a germline path_MMR variant identified.

Study

Common effect model
Random effects model

Heterogeneity: I2
 = 93%, τ2

 = 0.9321, P < .01

Test for subgroup differences (fixed effect): χ1
2
 = 10.11, df = 1 (P < .01)

Test for subgroup differences (random effects): χ1
2
 = 0.26, df = 1 (P = .61)

Selected = Unselected

Selected = Selected

Common effect model

Common effect model

Random effects model

Random effects model

Heterogeneity: I2
 = 96%, τ2

 = 1.1090, P < .01

Heterogeneity: I2
 = 83%, τ2

 = 0.7239, P < .01

Fraune (2020)

Carnevali (2019)

Geisler (2000)

Tajima Y (2018)

Xue (2018)

Zhai (2008)

Lee (2014)

Niskakowski (2013)

Lu (2012)

Permuth-Wey (2009)

Yamashita (2019)

Brandt (2017)

Rambau (2016)

Catasus (2004)

Kim (2020)

Leskela (2020)

Schmoeckel (2019)

Bennet (2019)

Bennet (2016)

Vierkoetter (2014)

Coppola (2012)

Zhu (2019)

Parra-Herran (2019)

Parra-Herran (2017)
Keleman (2017)

Stewart (2013)
Domanska (2007)

Liu (2004)

Hodan (2020)

Lin (2020)

Events

  9

 17

  8

  3

 11

 34

228

 10

  9

 17

  6

 28

 29

  5

 28

 36

  1

  3

  6

  3

 55

 24

  2

  5
 12

  4
  6

 12

 16

  2

Total

6543

3919

2624

 478

 101

 102

 305

 419

 310

 834

  85

 290

  59

 136

 133

 612

  55

 215

 502

 288

 104

 109

  86

 301

 120

  90

  69
 117

  67
  98

  74

 308

  76

0 0.1 0.2 0.3 0.4

Proportion

0.096
0.067

0.106

0.082

0.074

0.062

0.019

0.168

0.078

0.010

0.026

0.110

0.273

0.118

0.031

0.288

0.044

0.211

0.047

0.091

0.130

0.072

0.003

0.029

0.055

0.035

0.183

0.200

0.022

0.072
0.103

0.060
0.061

0.162

0.052

0.026

95% CI

[0.089-0.104]
[0.047-0.094]

[0.096-0.116]

[0.072-0.093]

[0.043-0.124]

[0.039-0.095]

[0.009-0.035]

[0.101-0.256]

[0.034-0.149]

[0.002-0.028]

[0.013-0.046]

[0.077-0.150]

[0.243-0.305]

[0.058-0.206]

[0.014-0.058]

[0.178-0.421]

[0.016-0.094]

[0.145-0.290]

[0.032-0.067]

[0.030-0.200]

[0.088-0.183]

[0.051-0.098]

[0.000-0.019]

[0.006-0.082]

[0.020-0.116]

[0.007-0.099]

[0.141-0.231]

[0.133-0.283]

[0.003-0.078]

[0.024-0.161]
[0.054-0.172]

[0.017-0.146]
[0.023-0.129]

[0.087-0.266]

[0.030-0.083]

[0.003-0.092]

F IGURE 2 Forest plot for meta-analysis of test positivity rate for IHC
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4.5 | Combined immunohistochemistry and
microsatellite analysis

A small number of studies conducted IHC and MSI on all OCs (or an

unselected subsample).23,26,41,42,71 Of note, most of these studies

were unselected.26,41,42,71 These studies generally show similar test

positivity rates, although the study by Lee et al41 shows consider-

ably more MMRd by IHC than MSI. Our study specifically found

that of 270 discordant cases, 83 were MSI-H with no loss of

expression, while 187 were microsatellite stable (MSS) with loss

of IHC expression. In studies with concurrent MSI and IHC, the

proportions of MMRd OC were higher than in those studies in

which MMRd was defined by one modality. Specifically, the pro-

portion of MSI MMRd OC was 14% vs 10% and the proportion of

IHC MMRd in OC was 15.7% vs 6.7%. These data are summarized

in Figure 4.

4.6 | Somatic analysis

Due to the limited number data for somatic analysis, a descriptive syn-

thesis was performed. Four studies conducted somatic MMR muta-

tion analysis.24,26,27,33 Carnevali et al26 identified 3 (3.0%) OCs with

somatic path_MMR out of 101 OC evaluated. Sugino et al27 identified

11 (5.3%) OCs with somatic path_MMR out of 207 cancers evaluated.

Tajima et al33 identified 2 OCs with somatic path_MMR out of 3 OCs

evaluated. Leskela et al24 conducted somatic MMR mutation analysis

on 17 ovarian cancers but results were not reported.

4.7 | Germline analysis

In total 10 826 OCs in 21 studies underwent some form of germline

analysis23,24,26,27,30,32,33,35,36,39,40,44,49,52,57,62,63,65,68,69,75; of these,
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nine preselected their population.23,24,30,32,36,39,44,65,75 These studies

originated from Europe (n = 6), North America (n = 11), Asia (n = 3)

and multicontinental (n = 1). In total 9114 underwent germline analy-

sis in which 122 (1.3%) germline path_MMR were identified of which

19 (16%) were path_MLH1, 37 (30%) were path_MSH2, 52 (43%)

were path_MSH6 and 14 (11%) were path_PMS2. Nine studies, repre-

senting 4993 OCs, reported variants of unknown signifi-

cance.23,33,39,44,52,62,65,68,75 In total 44 (0.9%) variants of unknown

significance were found. A meta-analysis of studies with near com-

plete germline analysis in an unselected population is displayed in

Figure 5. Among unselected OC cases the prevalence of germline

path_MMR was 0.83% (95% CI: 0.52%-1.3%). Considering studies in

which MSI and/or IHC were conducted and where germline testing

was not universal (ie, a situation more like current clinical practice

with colorectal and endometrial cancer), we see a yield of germline

path_MMR among those tested as shown in Figure S4. In these stud-

ies, there were generally not many cancers subjected to germline

mutation testing, but around half of those tested were found to have

germline path_MMR.

Ten studies reported that those who had a germline path_MMR

also had a significant family history.23,33,35,36,40,44,49,57,65,68 The per-

centage of germline path_MMR ranged from 0% to 100% with an
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average of 50%. Twelve studies reported the FIGO stage of

OCs with a germline path_MMR.23,24,27,32,33,35,36,39,49,52,57,62

Of note, out of the 77 OCs with stage information and a

germline path_MMR, 62 (81%) were FIGO stage I-II. Eighteen stud-

ies reported the histotype of OCs with a germline

path_MMR.23,24,26,27,30,32,33,35,36,39,40,44,49,52,57,62,69,75 These arti-

cles included 268 high grade serous, 1629 endometrioid, 1097

clear cell and 1300 other histotypes. Out of 137 OCs with a germ-

line path_MMR, 79 (58%) were endometroid 21 (15%) were high

grade serous, 23 (17%) were clear cell and 14 (10%) were found in

another histotype. In unselected studies with complete germline

testing,27,35,40,52,57,62,69 2% of endometrioid, 0.4% high grade

serous and 1% of clear cell OCs had a germline path_MMR.

4.8 | Sensitivity analysis

Results of meta-analyses using the fixed effects model are shown in

Figures 2 to 4 as “Common effects.” For IHC and MSI these tend to

show higher average prevalence of MMRd but given the high degree

of heterogeneity it is unlikely that the fixed effects model is

appropriate.

The results of meta-analyses using the inverse variance approach

and Freeman-Tukey double arcsine transforms are shown in Table S2.

These show minimal differences with the generalized linear modeling

approach.

5 | COMMENT

5.1 | Main findings

To the authors' knowledge, we present the most comprehensive

review of MMRd in OC. In total, 54 studies were included which

detailed MMRd analysis in 17 532 OCs. These data indicate 7% or

10% of OCs are MMRd by IHC or MSI, respectively, although studies

where both techniques are used do not suggest that one technique is

superior. These data support the existing literature that both IHC and

MSI can be used to define MMRd in OC.79 This is clinically significant

as these cancers would potentially be amenable to ICPIs; a treatment

that has been shown be highly effective in solid cancers with

MMRd.10 Given the poor survival seen in OC, being able to target

effective treatments is a clinical priority. In addition, these data would

suggest around 1% to 5% of women have Lynch syndrome; although
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of note, those studies with universal germline testing estimate the

prevalence of Lynch syndrome to be closer to 1%. Finding these

women is important as they are at risk of synchronous and metachro-

nous cancers; a risk the vast majority are unaware of.80 Once diag-

nosed, those with Lynch syndrome can be enrolled in risk reducing

strategies such as routine colonoscopy and aspirin prophylaxis.81 Fur-

thermore, cascade testing of the index case's relatives identifies, on

average, a further three Lynch syndrome carriers.82 These individuals

can also benefit from risk reducing strategies that could prevent them

from ever developing cancer.83 Our data would suggest that 47% of

those women found to have MMRd OC by either MSI or IHC went on

to be diagnosed with Lynch syndrome. This high proportion could

have implication for consenting; currently tumor testing does not

require pretesting consent,84 however given this high conversion rate

clinicians may wish to mention Lynch syndrome testing before tumor

analysis.

Of note, our data would, at first look, suggest that germline

path_MSH6 carriers are at the most risk of OC, given it is the most

common gene affected in our OC cohort. However, MSH6 is the gene

most commonly affected in those with Lynch syndrome and therefore,

the higher proportion of germline path_MSH6 in OC simply reflects its

prevalence in those with Lynch syndrome.85 This is demonstrated in

population data in which, out of 50 703 healthy individuals tested for

germline path_MMR, 9, 13, 23 and 36 had path_MLH1, path_MSH2,

path_MSH6 and path_PMS2, respectively.86 The low number of

path_PMS2 in our data can be explained by the weaker association

between this gene and OC when compared to other Lynch syndrome

causative gene loci.87

Our data would suggest the use of MSI or IHC leads to a similar

rate of MMRd detection. The use of IHC does give additional informa-

tion, namely the specific protein that is deficient, which can be useful

in the interpretation of variant analysis. Furthermore, if maximizing

MMRd yield is the priority, our data would not support the preselec-

tion of testing populations. It would seem MMRd is seen in all histo-

types of OC, however, is common in endometrioid and rare in low

grade serous cancers. Interestingly, the preselection of populations on

clinical criteria, such as age or family history, did not significantly

improve the yield of MMRd OCs and may miss a significant number

of OCs that could be amenable to ICPIs. Therefore, population prese-

lection does not seem beneficial.

5.2 | Strengths and limitations

Our study has several key strengths. First, our search strategy was

designed to capture all the relevant literature. This means our conclu-

sions are based on the results of 54 studies and 17 532 OCs. The sys-

tematic review and meta-analysis followed PRISMA guidelines.18

Both article screening, risk of bias assessment and data extraction was

performed by at least two independent reviewers. Meta-analyses

were conducted using appropriate methods for the type of data col-

lected, and multiple sensitivity analyses were conducted to ensure the

robustness of results.

However, there are certain limitations in our review approach and

in the body of evidence identified. We took results as reported and

did not seek to review original study data. We note a high degree of

risk of bias within studies. Studies also used mixed methods such as

TMAs vs whole slide analysis and different MSI assays. We have not

attempted to identify publication bias (eg, smaller studies finding very

low rates of MMRd in OC may not be published, or the rates of

MMRd may not be reported when other characteristics are reported).

In addition, incomplete testing led to incomplete data sets which were

difficult to incorporate into our analysis. Furthermore, many studies

were retrospective and used historical cohorts. The lack of a “gold
standard” test for MMRd in OC makes accuracy estimates difficult.

Our studies span a wide time frame (1998-2020), during which diag-

nostic technologies have changed; this could impact on prevalence

estimates. However, this would minimally affect IHC which has

remained consistent. In addition, because most studies that use MSI,

and sequencing technology are from 2015 or later, the impact should

be limited. Finally, the data has a bias towards Western Caucasian

populations which makes the generalizability to other populations less

robust. This could have been further compounded by our pragmatic

decision to only include studies written in English. Germline testing

has implications for both the index case and their family. Due to the

implications of a Lynch syndrome diagnosis in insurance-based health

care systems, women may have declined to take part in prospective

studies in insurance-based health care populations; this could poten-

tially limit the validity of our germline results.88 These issues are

reflected in our wide confidence intervals around our estimated prev-

alence for MMRd in OC and in the high I2 scores. Where possible we

tried to mitigate this by performing subgroup analysis. This heteroge-

neity and the need to include low quality studies limits the strength of

our conclusions.

5.3 | Comparison with existing literature

Regarding those with a germline MMRd, our data found OCs in this

population seem to be diagnosed at stage I or II disease. This has been

reported before in Lynch syndrome populations.89 This is an interest-

ing finding as most OCs are diagnosed at a more advanced stage due

to a diagnostic difficultly because of no screening test90 and no patho-

gnomonic symptom.91 This finding could speak to Lynch syndrome

associated OCs having a different biology. Indeed, it is known these

cancers have an immunogenic profile, which limits their ability to

metastasize.92 These findings warrant more exploration in future

studies.

Our data cannot speak to the effectiveness of ICPIs in MMRd

OCs as this was not our aim. However, it is known these agents are

highly effective in solid cancers with MMRd.93 Their clinical utility in

MMRd cancers is such that they were the first chemotherapeutic to

receive FDA approval based on a molecular feature within a cancer as

opposed to the anatomical origin of the cancer.94 Yet these agents

have been used in OC with limited success.95 What is known is that

ICPIs have a low toxicity profile in women with OC.96 The JAVELIN
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ovarian 100 study explored the use of avelumab both in combination

with standard chemotherapy and as a maintenance agent.16 The study

was stopped early as it failed to show any benefit for the use of avelu-

mab in either arm; indeed, there was a suggestion of a detrimental

effect. The NINJA study also compared an ICPI with standard che-

motherapy; again, the authors failed to demonstrate an improve-

ment in overall or progression free survival.97 However, neither of

these studies selected OC with MMRd and therefore it is not

known if ICPIs would be of benefit in a MMRd OC population. The

JAVELIN Ovarian 200 study also explored the potential benefit of

ICPI use in OC and once more failed to demonstrate a survival ben-

efit.98 However, the authors did suggest that the use of biomarkers

(CD8 and PD-L1 expression) to select OC as candidates for ICPIs

may aid in finding women who would gain a survival benefit from

ICPI use; however, the study was underpowered to fully explore

this. MMRd cancers are known to express higher levels of PD-L1

and CD8.92 Our data shows that MMRd testing in OC is possible.

What is more, it is more prevalent than previously thought. There-

fore, trials exploring checkpoint inhibition in MMRd OC should be

considered.

5.4 | Conclusions and implications

In summary, we present the most comprehensive systematic review

and meta-analysis exploring MMRd in OC. We found that a significant

minority (up to 16%) of OC displays MMRd and therefore could be

amenable to ICPIs. However, the current literature base is of limited

quality and therefore high-quality prospective studies exploring

MMRd in OC with the use of multimodal testing are required. In addi-

tion, trials looking at the efficacy of check point inhibition in MMRd

OC are needed.
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