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Abstract: Recently, the studies on developing sensors and biosensors—with an obvious interdisci-
plinary character—have drawn the attention of many researchers specializing in various fundamental,
but also complex domains such as chemistry, biochemistry, physics, biophysics, biology, bio-pharma-
medicine, and bioengineering. Along these lines, the present paper is structured into three parts, and
is aimed at synthesizing the most relevant studies on the construction and functioning of versatile
devices, of electrochemical sensors and biosensors, respectively. The first part presents examples
of the most representative scientific research focusing on the role and the importance of the pheny-
lalanine, tyrosine, and tryptophan amino acids, selected depending on their chemical structure
and their impact on the central nervous system. The second part is dedicated to presenting and
exemplifying conductor polymers and molecularly imprinted polymers used as sensitive materials in
achieving electrochemical sensors and biosensors. The last part of the review analyzes the sensors
and biosensors developed so far to detect amino acids with the aid of conductor polymers and
molecularly imprinted polymers from the point of view of the performances obtained, with emphasis
on the detection methods, on the electrochemical reactions that take place upon detection, and on
the electroanalytical performances. The present study was carried out with a view to highlighting,
for the benefit of specialists in medicine and pharmacy, the possibility of achieving and purchasing
efficient devices that might be used in the quality control of medicines, as well as in studying and
monitoring diseases associated with these amino acids.

Keywords: sensor; biosensor; polymer conductor; molecularly imprinted polymer; amino acid;
tyrosine; tryptophan; phenylalanine

1. Introduction

Prevention of various hereditary metabolic diseases, such as phenylketonuria (PKU),
alkaptonuria, Parkinson’s disease, and orientation toward a ‘bio’ diet and a healthy
lifestyle—removing the factors that lead to numerous disorders and forms of depression—
represent the reasons why the present study was conducted. Amino acids (AAs), responsi-
ble for the equilibrium of the nervous system—especially phenylalanine (Phe), tyrosine
(Tyr), and tryptophan (Trypt)—were analyzed with a view to detecting their lack or excess
and to treating them accordingly, in due time.

Over the years, many scientific researchers have developed numerous methods
through which these AAs can be detected rapidly and precisely, both in biological and
in pharmaceutical products. From among these methods, mention must be made of
the classical high-performance liquid chromatography (HPLC) [1–5], mass spectrome-
try [6–9], fluorimetry [10], colorimetry [7,11,12], chemiluminescence [13–15], Raman spec-
troscopy [16,17], UV-Vis spectroscopy [18], capillary electrophoresis [19–21], and atomic
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force spectroscopy [22]. Moreover, versatile methods for detecting AAs have been devel-
oped and used: electrochemical ones based on sensors and biosensors, which use cyclic
voltammetry (CV) [23–28] as a detection method, chronoamperometry (CA) [29], differen-
tial pulse voltammetry (DPV) [30–32], square wave voltammetry (SWV) [33–35], and linear
sweep voltammetry (LSV) [36,37].

Modern challenges for scientific researchers, both in chemistry and in pharma-medicine,
consist of designing sensors and biosensors with the aid of new polymers, since the latter
can contribute to determining the quality of pharmaceutical products, especially during
a pandemic, when new products (with various combinations of active substances) were
introduced to the pharmaceutical market to address the new, severely acute coronavirus
(SARS-CoV-2) [38]. Sensors and biosensors can contribute to detecting interest analytes like
AAs very rapidly and exactly [24,39]. On the other hand, the selection of materials for the
construction of sensors and biosensors is of crucial importance because it can lead to solving
problems such as the rapid fouling of electrodes, the overlapping of the analytes redox
potentials, etc. [40]. In the last five years, numerous research groups have made major con-
tributions to the field of electroanalysis, as well as to the field of materials science, obtaining
new classes of materials, such as novel polymers, which have allowed the possibility of
a wide range of analytes detection [41]. The unique physical and chemical properties of
CPs and MIPs, such as versatility, adaptability, sensitivity, and adjustable architecture,
have led many researchers, including our group, to apply and use these new materials to
develop novel chemically modified sensors and biosensors [42]. The polymers that were
used in sensors were conductor polymers (CPs)—polypyrrole (PPy) [27,28,43,44], poly(3,4-
ethylenedioxythiophene) (PEDOT) [45,46], polyalanine (PANI) [47], and polythiophene
(PT)—and molecularly imprinted polymers (MIPs) [48,49].

Furthermore, ample studies, as well as reviews, were carried out on detection meth-
ods used to determine AAs [15,50–52]. The novelty of this review resides in synthesiz-
ing the studies carried out so far regarding the detection of the three AAs in human
fluids, foods, and medicines, depending on the polymer used to produce sensors and
biosensors, especially focusing on CPs and MIPs since they have demonstrated notable
results, and since the synthesizing method is easy, having exceptional electric, thermic, and
morphologic properties.

2. Phe-Tyr-Trypt. Properties and Importance for the Human Body

Out of the 11 amino acids essential for the human body and the nine amino acids
non-essential for the human body, only three have been subjected to the present study—
Phe, Trypt (essential amino acids), and Tyr (non-essential amino acid)—because of their
structural similarities and the role these AAs play for the human body. Compared with
other amino acids, Phe, Tyr, and Trypt are of particular importance to the central nervous
system [53]. Their use as food supplements contributes to the treatment of neurovegetative
disorders, disorders that can affect a number of cognitive functions, such as memory,
learning, thinking, etc. [52]. These AAs are also essential components in the production of
several bioactive compounds called neurotransmitters that act on the brain [6].Thus, Phe is
converted into Tyr in the human body, being substances with a hydrophobic group used
in treating genetic disorders, PKU and in the biosynthesis of the main neurotransmitters
(dopamine, epinephrine, and norepinephrine), while Trypt is the precursor of another
important neurotransmitter (serotonin) responsible for treating insomnia and anxiety (as
shown in Table 1).
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Table 1. Chemical structure and physical-chemical properties of AAs: Phe, Tyr, and Trypt.

Amino Acid Chemical Structure Chemical Formula Chemical and
Physical Properties References

Phenylalanine
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One of the diseases frequently appearing in the population is depression; in this
regard, a useful method could be the monitoring of the Phe, Tyr, and Trypt AAs, respec-
tively [38]. This psychological affliction can manifest itself through various symptoms,
such as concentration problems, insomnia, and sadness [57,58]. The causes of its emergence
can reside in various sources: biological, genetic, environmental, and social-psychological
factors [59]. Depending on the type of symptom and the nature of the cause, there are many
types of depression, and each needs adequate treatment. To prevent and treat mild forms
of depression (postpartum, seasonal, and premenstrual), the pharmaceutical market has
developed a variety of medicinal supplements that contain the AAs focused on here—in
various concentrations, as shown in Table 2.

Table 2. Pharmaceutical products that contain amino acids Phe, Tyr, and Trypt.

Amino Acid Pharmaceutical Products Concentration/Capsule Producer/Country

Phenylalanine Amino 75 75 mg SOLGAR/USA 2

L-Phenylalanine 500 500 mg SOLARAY/USA
DLPA 1 500 500 mg SOLGAR/USA

Best D-Phenylalanine 500 mg DOCTOR’S BEST/USA
Tyrosine L-Tyrosine 500 500 mg SOLARAY/USA

Tiroidin 90 mg PARAPHARM/ROMANIA
Cebrium 4.12 mg NEUROPHARMA/GERMANY

Thyroid Caps 100 mg SOLARAY/USA
Tryptophan Sleep Optimizer 150 mg SOLARAY/USA

Cebrium 0.2 mg NEUROPHARMA/GERMANY
L-Tryptophan 500 mg SOLARAY/USA

Tonico Vita 18 mg TERAPIA/ROMANIA
MaxiMag Women 150 mg ZDROVIT/ROMANIA

1 DLPA, DL Phenylalanine; 2 USA, United Stated of America.

Phe, or (S)-2-Amino-3-phenylpropanoic acid, an essential AA and precursor of Tyr
(Figure 1A), is assimilated by the human body through consuming foods like eggs, meat,
fish, and milk, or through the administration of medicinal supplements in view of prevent-
ing Parkinson’s disease, depression, vitiligo, and attention deficit hyperactivity disorder
(ADHD) [60–62]. Special attention should be paid to people who suffer from PKU, which
is an inherited disorder caused by excessive accumulation of Phe in the human body [63].
Consequently, these people should avoid consumption of foods or supplements that contain
the Phe AA, or they risk developing other disorders or diseases such as mental retardation,
high blood pressure, or cerebrovascular accidents [64]. Today, there is a test for the detection
of Phe, starting from birth, with sanguine serum: the Guthrie Test for the neonatal detection
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of PKU. It was created in 1963 by Robert Guthrie [65]. L-Phe, D-Phe, and DL-Phe are the
three forms of this AA, namely the natural form, the synthetic form, and the form found in
pharmaceutical products, respectively [66].
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Figure 1. Biosynthesis of amino acids in the human body: (A) Phe adapted from [62]; (B) Tyr adapted
from [67]; and (C) Trypt adapted from [68].

Tyr, or L-2-Amino-3-(4-hydroxyphenyl) propanoic acid, a non-essential AA by com-
parison with Phe and Trypt, is produced naturally in the human body, even from Phe, and
through hydroxylation becomes the precursor of two important neurotransmitters of the
central nervous system (SNC): adrenaline and noradrenaline—as shown in Figure 1B [67].
As in the case of the other AAs, the absence of Tyr in the human body can be compensated
for by consuming various foods (nuts, oat, beans, meat, fish, and wheat) or pharmaceutical
products—supplements that have the role of treating PKU and neurological disorders like
depression, ADHD, Alzheimer’s disease, and mental retardation [61,69,70]. Tyrosinemia
and phenylketonuria are diseases that can occur as a result of excess accumulation or
an insufficient amount of Tyr in the body [63]. Thus, tyrosinemia is characterized by an
abnormally high level in the blood or urine of Tyr. Phenylketonuria is a condition that
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prevents tyrosine biosynthesis, in the sense that individuals who suffer from this condition
cannot properly process Phe AA, as a result of which they cannot obtain the proper amount
of Tyr [7].

Trypt, or 2-amino-3-(1H-indol-3-yl) propionic acid, is also an essential AA that the
human body uses to synthesize proteins; its intake is from external sources such as foods
and pharmaceutical products. It has two important functions in the human body: on the
one hand, it contributes to the biosynthesis of serotonin (Figure 1C), and on the other
hand, it is involved in the biosynthesis of melatonin [68,71]. The values of Trypt sanguine
concentration in the human body are situated within the following normal limits: between
10 and 40 millimoles/L—that is, between 2.05 and 5.15 mg/L [72]. In the case of values
under the normal limit of Trypt, various forms of depression and insomnia are triggered,
and in the case of values above the normal limit of Trypt, SNC disorders appear: manic-
depressive psychosis with delirium, and schizophrenia [73,74].

Another aspect shared by the three AAs is the domain they are used in. Table 3
presents, for each domain, the uses of each AA studied here. The specialized literature
mentions numerous studies focusing on the three AAs. For example, in 2020, Mahmoud
Alagawany et al. published a review of the nutritional significance of AAs for raising birds
and keeping them healthy, representing an alternative to therapy using antibiotics [75].

Table 3. The uses of AAs: Phe, Tyr, Trypt.

Domain of Use
Uses

References
Phe Tyr Trypt

Chemistry Medicinal

Depression, ADHD 1,
Parkinson’s disease, chronic

pain, osteoarthritis,
rheumatoid arthritis, alcohol
withdrawal symptoms, and

vitiligo skin disease

Phenylketonuria
mental performance,
alertness or memory,

depression, or ADHD

Premenstrual
dysphoric disorder

syndrome, sleep
problems (insomnia),
anxiety, depression,

and ADHD

[76–81]

Pharmacology
Pharmacy

Is part of medicinal supplements under various forms: capsules, creams, vials,
and syrups. [26,28,82–86]

1 ADHD, attention deficit hyperactivity disorder.

Another study on AAs (with special focus on Tyr) was carried out in 2021 by Félix
Javier Jiménez-Jiménez et al. They outlined a meta-analysis of methods for determining the
AAs involved in Parkinson’s disease, both in the sanguine serum and in the cerebrospinal
fluid. In their conclusions, they mention that high concentrations of Tyr were found in the
cerebrospinal liquid, and low concentrations of Tyr were found in the sanguine plasma [87].
Moreover, in 2020, Xiaoyang Jing et al. presented methods of AA codification. The
authors mentioned five categories of methods: binary codification, codification of physical-
chemical properties, codification based on evolution, codification based on structures,
and codification of automatic learning. They concluded that, out of the five, codification
based on evolution could obtain the best results [53]. The paper, signed by Paolo Tessari
et al., presented the recommended daily doses of AAs, considering that they are the main
regulators in the nutrition of an adult, being present in a wide variety of foods. The
conclusion of this study highlighted the benefits of vegetable food product consumption,
since necessary and important quantities of AAs are found in such products (as shown in
Tables 4 and 5) [88].

In 2020, Fieke Terstappen et al. published a paper of interest in regards to studies
evaluating whether prenatal supplementation with AAs can represent a promising method
of growing a healthy fetus; it included studies on 22 people and 89 animals. In the authors’
reevaluation, analyses were centralized to identify oral supplementation with AAs, the most
efficient from the standpoint of the dose administered being highlighted. It was therefore
concluded that the AAs in the arginine family, or BCAA (branched chain AAs), normalize
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the underdeveloped fetus, while the methyl-donating AAs normalize the excessive growth
of the fetus [89].

In conclusion, AAs gained the title of the most important nutrients for the human body,
representing “the elements which form our life” and offering the human body, alongside
vitamins and minerals, the material needed to repair muscles, organs, or any other of
its tissues.

Table 4. Recommended daily doses for a 70 kg male, and AAs in various foods: animal source foods.
Reprinted with permission from [88].

RDA 1 Egg 100 g Milk 100 mL Beef 100 g Pig 100 g Chicken 100 g Sea Bass 100 g

Protein content (g) 12.1 3.3 22 20.7 23.3 21.3

Essential amino acids

2100 Lysine 1001 272 2002 1737 2246 2021

700 Histidine 322 93 849 647 937 552

1050 Threonine 674 164 898 919 1160 967

1050 Cysteine + Methionine 740 118 871 780 974 897

1820 Valine 896 233 1063 1243 1384 1044

1400 Isoleucine 741 192 950 1080 1153 914

2730 Leucine 748 355 1892 1624 1955 1655

1750 Phenylalanine + Tyrosine 1247 318 1677 1166 1776 1531

280 Tryptophan 228 50 246 183 273 249

12,880 Total EAAs (mg) 6597 1795 10,448 9379 11,858 9830
1 RDA, Recommended daily doses.

Table 5. Recommended daily doses for a 70 kg male, and AAs in various foods: vegetable source
foods. Reprinted with permission from [88].

RDA
1

Soybeans
100 g

Beans
100 g

Peas
100 g

Wheat
100 g

Maize
100 g

Rice
100 g

Potato
100 g

Cauliflower
100 g

Quinoa
100 g

Prot. content (g) 38.9 10.2 5.5 11 8.7 6.7 2.1 3.2 19.6

Essential amino acids

2100 Lysine 3047 714 348 239 258 257 92 120 1025

700 Histidine 1170 303 85 228 251 165 28 37 478

1050 Threonine 1843 428 310 310 334 246 59 74 849

1050 Cyst + Meth 1183 238 95 454 307 257 51 63 565

1820 Valine 2176 616 226 452 472 438 99 104 961

1400 Isoleucine 2222 556 201 403 350 306 68 73 808

2730 Leucine 3689 885 342 741 1028 590 96 126 1399

1750 Phe + Tyr 3970 963 345 855 761 588 132 129 1542

280 Tryptophan 618 113 54 116 61 84 / / 726

12,880 Total EAAs
(mg) 19,918 4816 2006 3798 3822 2931 624 726 8353

1 RDA, Recommended daily doses.

3. CPs and MIPs Used to Determine Phe, Tyr, and Trypt

Known as macromolecular compounds, polymers may be found in almost all the
materials that people use in everyday life. In essence, polymers are made up of several
small molecules—called monomers—linked to form long strands [41]. Since they are
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applied in numerous fields (science, industry, and technology), the importance of polymers
has been emphasized in many published articles, the advantages of their use residing
in thermal stability, processability, various optic and mechanic properties, and relatively
inexpensive and easy manufacturing [40]. Naturally, therefore, these versatile compounds
have been used to increase the rate, stability, and sensitivity of various devices with
applicability in biomedicine and bioengineering [90]. Furthermore, more types of polymers
have been identified in keeping with their chemical structure, molecular mass, origin, and
strand topology (as shown in Figure 2) [91].
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The new areas in which polymers play a significant role are represented by biochem-
istry, pharmacy, biomedicine, molecular biology, and biophysics [40]. For example, in the
pharmaceutical field, a polymer could be used to precisely release the active substance
in a medicine [92]. In recent years, polymers have been studied in fields of research that
involve the manufacturing of sensors and biosensors, endowing them with properties such
as increased conductivity, and improved kinetics of electron transfer and of electrocat-
alytic activity [93,94]. This is the reason why the present study highlights the importance
of CPs and MIPs in achieving various versatile devices for the quantification of AAs in
pharmaceutical products, foods, and biological fluids.

Thus, CPs, also known as “synthetic metals”, represent a new generation of polymers,
electrochemical synthesis being the preferred method of obtaining them since it has the ad-
vantage of simplicity and the possibility of achieving polymeric films of various thicknesses
and doping levels [95]. Following the discovery of CPs, Alan J. Heeger, Alan G. MacDi-
armid, and Hideki Shirakawa received the Nobel Prize for Chemistry in 2000 [96]. The
CPs most frequently encountered in scientific research are PPy [97–101], PANI [102–105],
PEDOT [46,106–109], PT [110–113], and polyacetylene [114–116], the chemical structures of
which are shown in Figure 3. This type of polymer is usually obtained by electrochemical
polymerization, a process that takes place in a solution that includes the solvent, the poly-
merizable monomer, and the electrolyte. Electropolymerization can be performed through
either potentiostatic, galvanostatic, or multi-sweep techniques [117].
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Figure 3. The most frequently used conductor polymers: (a) PPy, (b) PANI, (c) PEDOT, and (d) PTs.
Adapted from [95].

This category of polymers has drawn the attention of many researchers, particularly
because of their main property: electrical conductivity. This property of polymers is based
on the presence of conjugated double bonds between carbon atoms along the polymer
chain, and this bond can alternatively be single and double. Thus, a process of doping the
polymer creates the conducting properties of the electrical charge [96]. Along these lines,
the authors of the present paper carried out a study, published this year, that presents the
manufacturing of a sensor to detect the L-Tyr AA in pharmaceutical products with the aid
of the PPy conductor polymer and three doping agents: potassium hexacyanoferrate (II)
(FeCN), sodium nitroprusside (NP), and sodium dodecyl sulphate (SDS). Two methods
were used: chronoamperometry for the deposit on electrodes of the polymer doped with
various anionic agents, and cyclical voltammetry for the electrochemical characterization of
the sensors achieved. The devices obtained demonstrated good sensitivity and selectivity in
detecting L-Tyr, having the following detection limits: 8.2 × 10−8 M for PPy/FeCN-SPCE,
4.3 × 10−7 M for PPy/NP-SPCE, and 3.51 × 10−7 M for PPy/SDS-SPCE (as shown in
Figure 4) [27].
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Figure 4. Responses of sensors modified with PPy immersed in a 0.1 M KCl and 10−3 M L-Tyr la
0.1 V × s−1 solution: (A) PPy/FeCN-SPCE, (B) PPy/NP-SPCE, and (C) PPy/SDS-SPCE [27].

On the other hand, other polymers involved in numerous studies are MIPs in monomer
solutions with template molecules, reticulation agents, or solvents, this being a versatile
preparation method that can frequently be used to configure various biomimetic receivers
(as shown in Figures 5 and 6) [43,118]. Initially, these MIPs were synthesized by ther-
mal heating, but because of the disadvantages of the long synthesis time and excess
internal energy of the system, other methods for the synthesis of MIPs were developed,
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such as photopolymerization, electropolymerization, ultrasound-assisted synthesis, and
microwave-assisted synthesis [119].
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Figure 6. The general scheme for obtaining an MIP. Reprinted with permission from [120].

Generally, MIPs are stable, and resistant to various pH values and temperatures, but
are also in various solvents [96]. Another advantage of MIPs is their relatively simple
and inexpensive synthesis, which represents an alternative in using natural biological
receivers [121]. Due to their affinity and selectivity, MIPs have proved to be adequate
receivers for various organic and biological species such as enzymes and antibodies, and, in
recent years, they have been used to manufacture electrochemical sensors and biosensors,
a model for preparation being given in Figure 7 [42].

Regarding the AAs tackled in this present study, A. Nan et al. reported (in a paper
published in 2000) the synthesis and characterization of hybrid magnetic nanostructures for
the analysis of AAs: Phe, Tyr, Trypt, leucine, and serine—used to functionalize the pyrrole
monomer, being linked through various types of hydrophobic linkers in the azoth atom of
the pyrrole monomer [50]. The methods for the characterization of these nanostructures
were FTIR spectroscopy, transmission electronic microscopy (TEM), and magnetic measure-
ments. N-hydroxyl succinate was the precursor used to obtain the monomers of pyrrole
functionalized with AA, as shown in Figure 8.
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Three stages were necessary to prepare these hybrid nanoparticles based on function-
alized PPy: magnetic nanoparticle synthesis (MNS), synthesis of pyrroles functionalized
with Trypt, leucine, phenylalanine, serine, and Tyr, and copolymerization of functional-
ized pyrroles in the presence of magnetite MNP [50]. Figure 9 shows the results obtained
through FTIR in the process of preparing hybrid magnetic nanoparticles (MNP) based
on functionalized polypyrrole. The results obtained demonstrate a high level of mag-
netic nanoparticle dispersibility, a uniform dimension, and a spherical shape, as shown
in Figure 10. In conclusion, the authors proved the superparamagnetic behavior for the
functionalized magnetic nanostructures based on functionalized PPy.
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Figure 10. TEM image for (a) MNP-1 (bar-size 100 nm) and (b) magnetic core-shell nanoparticles
based on PPy functionalized with MNP-2. Reprinted with permission from [50].

Since the three AAs are found in biological fluids, implicitly in human blood serum
and urine, it is extremely important to monitor their levels in the body, to measure their
concentration by means of more sensitive and more selective devices such as sensors
and biosensors.

4. Sensors and Biosensors Based on CPs and MIPs to Quantitatively Determine AAs
(Phe, Tyr, and Trypt)
4.1. General Methods Used to Determine AAs

Many scientific articles, reviews, book chapters, and volumes about how to detect
Phe, Tyr, and Trypt have been published so far. Each scientific paper describes unique
methods of AA detection, which, as technology has advanced, highlighted advantages and



Int. J. Mol. Sci. 2022, 23, 1218 12 of 28

disadvantages. In compiling the data in Table 6, a series of method performance criteria
were in view: precision, selectivity, accuracy, sensitivity, detection limit, cost, and duration,
classified according to the intensity of each method.

Table 6. Performance criteria of the methods developed for the detection of AAs.

Precision Selectivity Accuracy Detection
limit

Cost and
Duration

High Electrochemical methods based on achieving sensors and biosensors [15,37,49,92]

Medium
Instrumental

(electrical methods [122], optical methods [123], thermal methods [124], magnetic
methods, and radiochemical methods [125]

Low Chemical methods (volumetry, gravimetry, precipitation methods) [126]

The disadvantages connected with electrochemical methods have stimulated re-
searchers to improve the properties and performances of sensors and biosensors using, for
the quantitative determination of AAs, Phe, Tyr, and Trypt, resorting to their modification,
either with CPs doped with electroactive ions or with MIPs. Thus, researchers highlighted
the unique properties of these devices: their optical, electrical, and mechanical properties,
increased stability, high response rate, and increased sensitivity in the process of rapidly and
precisely detecting AAs [127]. These analytical instruments were therefore found applicable
in a large range of fields, including biotechnology and bio-pharma-medicine [93,94,121].

In short, the specific goal of this review resided in synthesizing the articles published
so far in which CPs and MIPs were involved to develop electrochemical sensors and
biosensors used to detect the three amino acids mentioned: Phe, Tyr, and Trypt.

4.2. CPs and MIPs Involved in Developing Electrochemical Sensors to Detect AAs: Phe, Tyr,
and Trypt

Sensors and biosensors, high-interest instruments, are used in many research fields:
medicine, pharmacy, industry, transport, environmental protection, and automation. Thus,
in the future humanity will depend on many of these devices (with people who suffer
from diabetes depending on glucometers—devices that detect the glycaemia levels in the
body—constructed with the aid of a biosensor) [103,128]. Thus, the stage of selecting
sensor construction/manufacturing materials is extremely important, as the materials can
contribute to solving various problems related to analyte detection, such as the redox po-
tential of molecules, the deterioration of electrode surfaces—leading to low reproducibility.
To improve various properties—such as electrical conductivity, mechanical stability, and
chemical surface—electrochemical sensors were achieved with the aid of a wide range of
materials like CPs, applying the following electrochemical methods: potentiometry [66],
conductometry [94], amperometry [103], and voltammetry [36,129]. This category of sen-
sors is used especially in systems for monitoring the environment and health, in food
quality control, and in the general scheme of the equipment used to electrochemically
analyze an electrode, as illustrated in Figure 11 [130].

In 1959, chemist Jaroslav Heyrovsky received the Nobel prize for discovering the po-
larographic voltammetric method, which allowed the further development of other electro-
analytical techniques such as CV, DPV, LSV, and SWV [129]. These methods showed a series
of advantages through the years: simultaneous determination of more analytes, increased
sensitivity with regard to detecting organic and inorganic species in various concentration
ranges, the ability to work with a large range of temperatures, the capacity to determine
kinetic parameters and to estimate unknown parameters, and rapid analysis [131,132]. Due
to these advantages, this review has summarised, in Table 7, the notable studies developing
sensors characterized through voltammetric methods and constructed based on CPs and
MIPs to detect the three AAs.
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Sensor with Gum
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DPV 5
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200–1000 × 10−6

Sensor with
p-Toluene Sulfonic
Acid Modified Pt

Electrode [134]

DPV
0.59 × 10−6/

0.003 × 10−6/
2–2000 × 10−6

PPy-β-CD/GCE
(polypyrrole-β-

cyclodextrin
conjugate)/glassy

carbon
electrode [135]

CV 6, LSV 7

D-Phe (138 ± 15) ×
10−3 and for L-Phe

(6 ± 1) × 10−3/
0.1–0.75 ×10−3

MIP/TP3C-Trp
(molecularly

imprinted
polymer/Thiophen-

3-
carbonyl

tryptophan) [43]

SWV 8, CV

1.0 × 10−9/
2.7532 × 10−9/
1.0 × 10−8–1.0

× 10−7

β-CD–
MWNTs/PAN/CE

(polyaniline
modified

carbon electrode
based on

cyclodextrin
incorporated

carbon nanotube
composite material

and imprinted
sol–gel film) [102]

CV, DPV

1.0 × 10−9/
56.283 × 10−9/

5.0 × 10−7–1.0 ×
10−4

MIP-grafted
ITO/EDMA/MBAA
(electrode grafted
with a molecularly
imprinted polymer

crosslinked via a
combination of
hydrophobic

ethyleneglycol
dimethacrylate and

hydrophilic
methylene

bisacrylamide)
[136]

CV 0.5 × 10−6/
3–5 × 10−3
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Table 7. Cont.

AA 1

CPs 2 MIPs 3

Electrode
Architecture

Detection
Technique

LOD 4

(M)/Sensitivity/
Linear Range

Electrode
Architecture

Detection
Technique

LOD
(M)/Sensitivity/
Linear Range

Ty
ro

si
ne

GC/CNT/PEDOT/
NF/Crown

(glassy
carbon/multi-
walled carbon

nanotubes/poly
(3-4-ethylene

dioxythiophene/
Nafion/Crown)

[45]

CV
0.429 × 10−9/
963.1 × 10−9/

0.06–20 × 10−9

MIP/pTH/Au@ZIF-
67

(molecularly
imprinted

polyaniline/
polythionine/gold
nanoparticles@zeolitic

imidazolate
framework-67

composite) [47]

DPV

7.9 × 10−10/
0.0005 × 10−10/
1 × 10−8–4 ×

10−6

EB-Ppy-BSA/GCE
(Electron

beam irradiated
polypyrrole
nanospheres

embedded over
bovine serum

albumin)
[137]

SWV

8.8 × 10−9/
1.04 × 10−9/

100 × 10−9–800 ×
10−6

In situ copper
oxide modified

MIPPy
(molecularly

imprinted
polypyrrole) coated
GCE (glassy carbon

electrode) [138]

LSV

4.0 × 10−9/
0.47 × 10−9/
1 × 10−8–1 ×
10−6 and 2 ×

10−6–8 × 10−6

EB-PPy/MGA
(Electron Beam-

polypyrrole/Modified
Gum Acacia) [139]

CV, SWV
85 × 10−9/

18.944 × 10−9/
0.4–600 × 10−6

MIP-PPy/AuE
(molecularly

imprinted polymer-
polypyrrole/gold

electrode) [140]

CV, SWV

2.5 × 10−9/
0.6567 × 10−9/
5.0 × 10−9–2.5

× 10−8

Tr
yp

to
ph

an

CuNPs/p-
TAOX/GCE

(copper
nanoparticles/poly(3-
amino-5-mercapto-

1,2,4-
triazole)/glassy

carbon
electrode) [141]

DPV, CV
0.16 × 10−6/

8.2058 × 10−6/
4.0–144.0 × 10−6

MIOPPy/pABSA/GCE
(molecularly

imprinted
overoxidized
Polypyrrole

(OPPy)/Poly
(p-aminobenzene

sulfonic acid)
modified glassy

carbon
electrode [142]

CV 1.2–4 × 10−6

3DCu(x)O-ZnO
NPs/PPy/RGO

A
three-dimensional

porous
nanocomposite of
reduced graphene
oxide decorated
with polypyrrole

nanofibers and zinc
oxide-copper oxide

p-n junction
heterostructures

[143]

DPV, CV
0.016 × 10−6/
0.1345 × 10−6/

0.053–480 × 10−6

Nafion-MIP-
MWCNTs@IL/
GCE (Nafion-
molecularly
imprinted

copolymer-ionic
liquid (i.e.,
1-butyl-3-

methylimidazolium
hexafluorophos-

phate)
functionalized
multi-walled

carbon
nanotubes/glassy
carbon electrode)

[49]

DPV, LSV

6 × 10−9/
5.09 × 10−9/

8 × 10−9–26 ×
10−6
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Table 7. Cont.

AA 1

CPs 2 MIPs 3

Electrode
Architecture

Detection
Technique

LOD 4

(M)/Sensitivity/
Linear Range

Electrode
Architecture

Detection
Technique

LOD
(M)/Sensitivity/
Linear Range

Tr
yp

to
ph

an

PPy/FeCN/SPCE
(polypyrrole/potassium

hexacyanoferrate
(II))/carbon

screen-printed
electrode)

[28]

CV

1.05 × 10−7/
0.87268 × 10−7/

3.3 × 10−7

–1.06 × 10−5

MIP -MWCNT
s/GCE

(molecularly
imprinted

polymer-modified
modified with
multi -walled

carbon
nanotubes/glassy

carbon
electrode) [144]

CV

1.0 × 10−9/
35.8632 × 10−6,
1.1142 × 10−6,

0.16352 × 10−6/
2.0 × 10−9

−0.2 × 10−6,
0.2 × 10−6

−10 × 10−6

and
10 × 10−6

−100 × 10−6

1 AA, amino acid; 2 CPs, conductive polymers; 3 MIPs, molecularly imprinted polymers; 4 LOD, limit of detection;
5 DPV, differential puls voltammetry; 6 CV, cyclic voltammetry; 7 LSV, linear sweet voltammetry; 8 SWV, square
wave voltammetry.

According to Table 6, Funda Alışık et al. contributed to detecting AA L-Phe by
preparing polyurethane sensors based on Arabic gum, modifying platinum electrodes using
the electropolymerization technique. It was analyzed through DPV, showing increased
sensitivity and reproducibility in detecting a wide range of L-Phe concentrations. The
development of such a sensor was considered useful for selectively detecting PKU, the
sensor being analyzed and validated by numerous techniques, such as FTIR, DTA, TGA,
and SEM. The novelty of the research is represented by the polyurethane polymer, which
gives the sensor good adhesion and a selective permeability. [134].

Tatiana V. Shishkanova et al. used the β-cyclodextrin pyrrole polymer in preparing
the sensor used to molecularly recognize Phe enantiomers. In this case, the electrochemical
method used was LSV, in the 0.1–0.75 × 10−6 M (n = 3) concentration range, manifesting
higher sensitivity for the D-Phe enantiomer as compared to the L-Phe one. This study was
based on the characterization, deposition, and recognition of the properties of the modified
CP (pyrrole-β-cyclodextrin conjugate)-modified sensor [135].

Yu-fang Hu et al. developed an electrochemical sensor in whose fabrication CP
PANI was involved, the electrochemical behavior of the sensor being studied through
CV and DPV methods in view of using it to determine L-Phe in human serum samples.
The sensor demonstrated excellent stability, sensitivity, selectivity, recuperation, and re-
producibility. The research developed a new electrochemical printing technique using a
PANI-coated electrode, a stable conductive polymer with high electrocatalytic ability [102].
Other researchers developed sensors to detect L-Phe through the molecular imprinting
technique. Along these lines, Funda Alışık et al. obtained, for the 20 sensors prepared,
a stable reproducibility percentage of 97.67%, with an RSD value of 2.33%, thus demon-
strating that the sensor prepared from p-toluene sulphonic acid (PTSA) polymeric films
had high stability, repeatability, and selectivity for L-Phe [134]. Nihal Ermiş et al. used
the Thiophen-3-carbonyl tryptophan (TP3C-Trp) monomer, developing electrochemical
sensors characterized through CV, drawing a parallel between non-imprinted sensors (NIP)
and imprinted ones (MIP) to selectively and sensitively determine L-Phe. The linearity
range obtained was wide, 1.0 × 10−8–1.0 × 10−7 M, and proved to be useful in detecting
L-Phe in egg whites and chicken samples. By electropolymerizing the polymer, the au-
thors with the help of TP3C-Trp developed a new sensor for Phe detection [43]. Another
sensor prepared through the molecular imprinting technique belongs to Yasuo Yoshimi
and Noriyuki Ishii, who discovered enantioselective sensitivity to Phe in water solution
through the cyclic voltametric method, at the same time using a mixture of reticular
hydrophobic (hydrophobic ethyleneglycol dimethacrylate) and hydrophilic (hydrophilic
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methylene bisacrylamide) agents, which demonstrated improvement of sensor sensitivity.
The concentration range used was 3–5 × 10−6 M, demonstrating the utility of MIP for
molecular recognition in biomimetic sensors. The development of such an anilide-printed
poly (ethylene glycol dimethacrylate (EDMA) co-methacrylic acid (MAA))-based electrode
was intended to demonstrate the possibility of chiral-selective detection of Phe using MIPs,
using a crosslinked monomer combination [136].

To determine Tyr, the CPs most frequently involved in developing electrochemical
sensors were PEDOT and PPy. Thus, F. Nada et al. carried out a study in which sensors
were tested on real samples of biological fluids to determine four analytes: norepinephrine,
paracetamol, Tyr, and ascorbic acid. Each component that contributed to sensor preparation
had unique characteristics that conferred the devices a remarkable electro-catalytic activity.
CP PEDOT was used to endow the sensor with increased electrical conductivity and
stability [45]. The linear range obtained for detecting Tyr was 0.06–20 × 10−6, and the
detection limit was low; it was therefore considered that this device would be attractive
and useful in the medical field. The novelty of the study is underlined by the advantages
of the PEDOT, multi-walled carbon nanotubes, Nafion, and crown that it gives to the new
sensor prepared by electrochemical polymerization. In the papers published by Nathiya
Dhananjayan et al. (2019) [139] and Ramya, R. et al. (2018) [137], PPy was used as CP in
fabricating sensors for the ultrasensitive detection of Tyr. Both articles demonstrated that
the PPy polymer contributed considerably to improving the properties of sensors through
increased stability, conductivity, sensitivity, and better biocompatibility. In the first case, the
sensor was applied to determine the concentration of Tyr in human urine samples, chicken
meat, and cow’s milk; in the second case, it was applied to tea and chicken meat samples.
In a study by Nathiya Dhananjayan et al., a sensor was developed based on a biopolymer,
namely modified gum acacia, encapsulated with electron-beam-irradiated polypyrrole
nanospheres, and in the Ramya study, R. et al. applied a new synthesis of electron-beam-
irradiated polypyrrole modified with sheets over bovine serum albumin. [137,139].

Furthermore, sensors prepared through the molecular imprinting technique are present
in this case also. For example, Bangjie Chen et al., obtained a linearity range of 1 × 10−8 M
to 4 × 10−6 M for determining Tyr. A carbon electrode was molecularly imprinted with
a polyaniline/polythionine/gold nanoparticle@zeolitic imidazolate framework-67 com-
posite, and analyzed with a cyclical voltametric method on human serum samples, with
satisfactory results: 98.8%. The materials used in the molecular imprinting were selected
because of their large surfaces, high porosity, and biocompatibility [47]. In the case of the
study carried out by Nihal Ermiş et al., the molecular imprinting was achieved with PPy
films on a gold electrode, with excellent results obtained on the human plasma samples
used to detect Tyr, demonstrating good reproducibility and repeatability [140]. On hu-
man urine samples, Varghese Saumya et al. applied the MIPPy/GCE sensor, prepared
and analyzed on site through an electrochemical method, which had the advantage of
increased simplicity and sensitivity. The concentration range used for Tyr was 1 × 10−8 to
8 × 10−6 M, and the sensor was applied to detect tyrosine in human urine samples [138].

To identify and quantify tryptophan with sensors based on conductor polymers and
molecularly imprinted polymers, a series of studies were carried out, with applicability
on the following types of real samples: human urine [141], biological fluids [143,144], and
pharmaceutical products [28,49]. In Figure 12 is presented the detection principle of a
voltametric sensor based on polypyrrole doped with ferrocyanide ion.

The studies demonstrated the increased performance of the devices achieved, mainly
due to using CP or to the diversity of the molecular imprinting materials.

All the benefits of the conducting polymers demonstrate their ability to integrate
into micro/nano devices in order to detect or monitor different bioanalytes. The various
types of conducting polymers make it possible to couple them with various biological
and/or chemical species to obtain high performance characteristics, such as improved
sensitivity and selectivity. The progress observed is closely related to the selection of the
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type of polymers, the processing technologies that aim to integrate CPs on the surface of
(bio)sensors with wide applications in various applicative fields [93].
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Thus, we found in the literature that one of the major challenges in the development
of an electrochemical (bio)sensor based on CP is represented by the immobilization of
the transducer on the electrode surface in order to achieve a good transduction of the
signal [145]. As a result, the mechanical properties of CP films and the effects of thickness
and microstructures on them, and breaking behaviour in the presence of thermal and
mechanical factors, should be taken into account when a CP is selected [146].

4.3. CPs and MIPs Involved in Developing Electrochemical Biosensors to Detect AAs: Phe,
Tyr, Trypt

As mentioned by the authors of the research described in this section, the application of
CPs for the design of MIPs and the various possibilities for the immobilization of biological
recognition elements, such as enzymes, antibodies, or proteins, are important advantages of
biosensors based on CPs, finding applicability in many directions of research [147]. So, the
challenge in the principle of the selection of conducting polymers used in the manufacture
of biosensors is closely related to the method of production, the enzyme used, and the
analytes to be detected [148]. The polymer matrix provides a suitable environment for
the immobilization of the enzyme, while maintaining its long-term activity, especially in
electrochemical measurements [149].

If the sensor is an analytical instrument that translates physical and chemical data
into measurable signals, biosensors play the same role, but are based on a combination
of a biological recognition compound and a physical translator—the recognition element
being either an enzyme, an antibody, or a microorganism—which renders it more sensitive
for detecting the substance analyzed. Immobilization methods of biomolecules include
covalent binding, crosslinking, entrapment, adsorption, and affinity. All the methods have
advantages and disadvantages, but one of the most important aspects to be taken into
account is the maintaining of the bioactivity of the biomolecules [150].

The typical scheme of a biosensor is presented in Figure 13 [151].
Therefore, a biosensor is a device designed to obtain a digital electronic signal pro-

portional to the concentration of a chemical compound in the presence of an interfering
species. Their difference from the sensors is even written with the prefix “bio”, precisely
because of their biofunctionality, respectively biocatalysis and molecular recognition, and
this aspect led to a typical biosensor architecture represented by two types of components:
the biological component, and the transducer component [152].

Biosensors are applied to a variety of samples: biological fluids, food samples, medicine
samples, cellular cultures, or environment samples [153]. Their sensitivity is higher in
comparison with sensors because of the biological recognition compound [127]. In this
section also, the criteria for scientific paper selection were represented by the use of CPs
and MIPs, AA (Phe, Tyr, Trypt) detection, and the use of voltametric methods.

Thus, in 2018, C.S. Pundir et al. compiled a review on the determination of the D and
L enantiomers of amino acids with the aid of biosensors. They mentioned the optimum
functioning parameters used to detect AAs: the 5.3–9.5 pH interval, the 25–45 ◦C tempera-
ture interval, the 0.0008–8000 × 10−6 M AA concentration interval, the 0.02–1250 × 10−6 M
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detection limit, and the −0.05–0.45 V work potential between 2 s and 900 s. AAs were de-
tected in fruit juices, beverages, urine, and blood serum, the biosensors showing a 200 times
repeatability during an interval of between 7 and 120 days [127]. Moreover, Table 8 presents
other studies in which biosensors with CPs and MIPs were achieved to detect AAs through
voltametric methods.
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Table 8. Performances of biosensors with CPs and MIPs to detect Phe, Tyr, and Trypt.

AA

CPs MIPs

Electrode
Architecture

Detection
Technique

LOD
(M)/Sensitivity/
Linear Range

Electrode
Architecture

Detection
Technique

LOD
(M)/Sensitivity/
Linear Range

Ph
en

yl
al

an
in

e

L-AAOD-
polytyramine

electrode
(L-amino acid
oxidase) [154]

CV 0.07 × 10−6/
0.07–3 × 10−3

MIP/acid (poly(AN-
co-AA)/QCN

electrode (quartz
crystal nanobalance
electrode imprinted

polyacrylonitrile and
acrylic) [155]

45 mgL−1/
0.5839

Hz/mgL−1/
50~500 mgL−1

L-Phe-IPDA-CdS-
CdSe-Zn/Ti PEC
(L-Phe-imprinted

polydopamine-
coated

Zn/CdS/CdSe/
heterojunction) [147]

CV, CA 1
0.9 × 10−9/

0.005–2.5 and
2.5–130 × 10−6

Ty
ro

si
ne

Polythreonine-
modified

graphite-carbon
nanotube paste
electrode [148]

CV, DPV

2.9 × 10−7/
9.92 × 10−7

2 × 10–6 to 2.5
× 10–5 and 3 ×

10–5 to 1.2 ×
10–4

MIP-OECTs
(molecularly

imprinted
polymer-organic
electrochemical

transistors) [149]

CV

30 × 10−9/
14.5 and 12.5/
300 × 10−9 to

10 × 10−6
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Table 8. Cont.

AA

CPs MIPs

Electrode
Architecture

Detection
Technique

LOD
(M)/Sensitivity/
Linear Range

Electrode
Architecture

Detection
Technique

LOD
(M)/Sensitivity/
Linear Range

Ty
ro

si
ne

L/D-
DHCNT@PPy@AuNPs

@L/D-Cys
(left-/right-handed
double helix carbon

nan-
otubes/Polypyrrole@Au

nanoparticles
nanocomposites/L/D-

cysteine) [156]

DPV

1.88 × 10−1

L-Tyr and 5.72
× 10−1

D-Tyr/−0.004

D-CNT@PPy@Pt
NPs@beta-CD

(polypyrrole-coated
chiral carbon

nanotubes with Pt
nanoparticles and
beta-cyclodextrin)

[157]

CV 0.107 × 10−9/
3–30 × 10−6

Tr
yp

to
ph

an

PT-Ag/L-Try/GCE
(polythiophene with

silver dendrites
composite/L-

Tryptophan/glassy
carbon

electrode) [110]

CV, SWV
20 × 10−9/

200 × 10−9–400
× 10−3

MIP-QCM biosensor
(molecularly

imprinted polymer
poly(methacrylic

acid)-based quartz
crystal

microbalance) [158]

DPV
0.73 ng/mL/

15.2–750
ng/mL

D-CNT@PPy@Pt
NPs@beta-CD

(polypyrrole-coated
chiral carbon

nanotubes with Pt
nanoparticles and
beta-cyclodextrin)

[157]

CV 0.133 × 10−9/
19.6–196 × 10−6

MIP-OECTs
(molecularly

imprinted
polymer-organic
electrochemical

transistors) [149]

CV

2 × 10−9/
11.6 and 3.5/
300 × 10−9 to

10 × 10−6

L/D-
DHCNT@PPy@AuNPs

@L/D-Cys
(left/right-handed

double helix carbon
nan-

otubes/Polypyrrole@Au
nanoparticles [156]

DPV

0.012 L-Trp%
and 0.14
D-Trp%/

0.659 and 0.02

1 CA, chronoamperometry.

The detection principle of the MIP-based sensors could be mainly impedimetric,
voltametric, or amperometric. In Figure 14 is presented the detection process of the Trypt
with a MIP-based sensor.
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principle of Trypt detection [159].

Biosensor studies in which CPs and MIPs were involved, developed to determine the
three AAs, are less numerous than the studies on electrochemical sensors. Thus, for the
Phe AA, quartz crystal electrodes molecularly imprinted with copolymer, polyacrylonitrile,
and acrylic acid were used. Their analysis was carried out in parallel with a series of
non-molecularly imprinted copolymer electrodes, emphasizing higher sensitivity in the
case of the poly(AN-co-AA)-modified biosensor, (0.5839 Hz/mgL−1), as compared to the
non-imprinted one, −0.2724 Hz/mgL−1, and reproducibility (RSD) was 1.84%. Biosensor
selectivity was demonstrated by simultaneous testing of analytes: Phe, dopamine (DA),
ascorbic acid (AscA), vanillylmandelic acid (VMA), uric acid (UA), Trypt, and Tyr. This
study was conducted by Ablolreza Mirmohseni et al. in 2008, stating that the developed
biosensor could be successfully applied to human serum samples [155]. The novelty of the
research is in the use of poly (AN-co-AA) polymer to detect the level of Phe in different
solutions, compared to a study done prior to this research, in which the polymer was
applied for the racemic separation of Phe [160].

A representative study for the chiral recognition of L/D-Tyr and L/D-Trypt with
biosensors was signed by Lijun Zhang et al. They proposed a model of electrodes modified
with MIP films and organic electrochemical transistors (OECTs). Selectivity toward the L-
Trp, D-Trp, L-Tyr, and D-Tyr enantiomers was 11.6, 3.5, and 14.5, respectively, 2.6 × 10−6 M,



Int. J. Mol. Sci. 2022, 23, 1218 21 of 28

the MIP films bringing a remarkable contribution to obtaining these values [156]. The
study’s authors present a new approach to the quantitative recognition of Tyr and Trypt
enantiomers, constructing a biosensitive chiral electrochemical system in which the syn-
ergistic and complementary effect of L-DHCNT/L-Cys and D-DHCNT/D was analyzed
(left-/right-handed double helix carbon nanotubes@Polypyrrole@Au na-noparticles@L/D-
Cysteine) on this system, influencing the potential and intensity of the signal. The study
presents a new approach to the quantitative recognition of Tyr and Trypt enantiomers, con-
structing a biosensitive chiral electrochemical system in which the synergy and complemen-
tary effects of L-DHCNT/L-Cys and D-DHCNT/D-Cys were analyzed (left-/right-handed
double helix carbon nanotubes @ Polypyrrole @ Au nanoparticles @ L/D-Cysteine) on this
system, influencing the potential and intensity of the signal. The research carried out in
view of obtaining portable, sensitive, and precise devices is in constant development and
regards multiple areas of interest (medicine, pharmacy, chemistry, biochemistry, and the
food industry). In connection with determining the Phe, Tyr, and Trypt AAs in various real
samples (medicines, foods, and biological samples), the emphasis lies on the use of a new
generation of materials such as CPs and MIPs because of their excellent properties.

As mentioned in the literature, the application of CPs for the design of MIPs and the
various possibilities of immobilization of biological recognition elements, such as enzymes,
antibodies or proteins, are important advantages of biosensors based on CPs, giving them
applicability in many fields of research [161].

The principle for the selection of conducting polymers used in the development of
biosensors is closely related to the method of fabrication, the enzyme, or other biological
recognition elements used and the analytes to be detected [162]. For instance, the polymer
matrix provides a suitable environment for immobilizing the enzyme, which maintains its
long-term activity, especially in the electrochemical measurements [163].

5. Conclusions and Future Developments

This critical analysis synthesizes and describes the main sensors and biosensors
achieved with the aid of various relatively new polymer classes, namely CP and MIP—
which have remarkable sensitive properties: electrical conductivity, increased stability, and
biocompatibility. The molecular imprinting technique is based on manufacturing synthetic
receivers with the capability of recognizing a certain analyte, and with electrochemical or
optical detection. CPs are mainly used to develop voltametric and potentiometric sensors.
Due to the high level of interest in the field, the study concentrates especially on the de-
tection of three AAs (Phe, Tyr, and Trypt), as humanity is inflicted with various forms of
depression caused by the lack or the excess of these AAs—afflictions that are increasingly
more difficult to manage. In conclusion, the sensitive and precise quantification of AAs to
evaluate the quality and authenticity of pharmaceutical products, beverages, and foods,
alongside their physiological and nutritional importance, has stirred interest in many re-
searchers. Furthermore, attention was paid to developing versatile systems for analyzing
and rapidly detecting AAs, and the electroanalytical methods employed demonstrated
efficiency, precision, and low costs.

Future research developments are oriented toward achieving, improving, and mar-
keting these kinds of sensitive devices—useful not only for each individual, but for the
European Medicines Agency also—in controlling the quality of various products with
amino acid content. In regards to the technical challenges, they are mainly related to
developing functionalized polymers that have the possibility to selectively interact with
the target amino acid. This new type of polymer can be useful both for molecularly
imprinted polymers—polymers that represent the sensitive material—and for polymers
that represent the support for biological element immobilisation, such as enzymes, nu-
cleic acids, or antibodies. Achieving functionalized nanocomposite polymers—carbon
nanomaterials—is another method that can be applied and lead to increasing the selectivity
of sensitive devices.
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The detection performance can also be improved by using new techniques that are
more rapid and more sensitive, such as ultra-fast cyclical voltammetry, or through com-
bining the detection techniques—as is the case with the spectroelectrochemical technique,
which combines voltammetric techniques with UV-Vis or Raman spectroscopy. Accessing
and applying information from various fields can prove useful in the process of detection
and quantification.
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