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Epigenomic diversity of cortical projection 
neurons in the mouse brain
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Megan A. Kirchgessner4,5, Elora Williams6, Cheng-Ta Lee7, Hanqing Liu1,8, Alexis D. Franklin4, 
Paula Assakura Miyazaki4, Anna Bartlett1, Andrew I. Aldridge1, Minh Vu4, Lara Boggeman9, 
Conor Fitzpatrick9, Joseph R. Nery1, Rosa G. Castanon1, Mohammad Rashid4, 
Matthew W. Jacobs4, Tony Ito-Cole4, Carolyn O’Connor9, António Pinto-Duartec10, 
Bertha Dominguez7, Jared B. Smith6, Sheng-Yong Niu1, Kuo-Fen Lee7, Xin Jin6, 
Eran A. Mukamel11, M. Margarita Behrens10, Joseph R. Ecker1,12 ✉ & Edward M. Callaway4 ✉

Neuronal cell types are classically defined by their molecular properties, anatomy and 
functions. Although recent advances in single-cell genomics have led to 
high-resolution molecular characterization of cell type diversity in the brain1, 
neuronal cell types are often studied out of the context of their anatomical properties. 
To improve our understanding of the relationship between molecular and anatomical 
features that define cortical neurons, here we combined retrograde labelling with 
single-nucleus DNA methylation sequencing to link neural epigenomic properties to 
projections. We examined 11,827 single neocortical neurons from 63 cortico-cortical 
and cortico-subcortical long-distance projections. Our results showed unique 
epigenetic signatures of projection neurons that correspond to their laminar and 
regional location and projection patterns. On the basis of their epigenomes, 
intra-telencephalic cells that project to different cortical targets could be further 
distinguished, and some layer 5 neurons that project to extra-telencephalic targets 
(L5 ET) formed separate clusters that aligned with their axonal projections. Such 
separation varied between cortical areas, which suggests that there are area-specific 
differences in L5 ET subtypes, which were further validated by anatomical studies. 
Notably, a population of cortico-cortical projection neurons clustered with L5 ET 
rather than intra-telencephalic neurons, which suggests that a population of L5 ET 
cortical neurons projects to both targets. We verified the existence of these neurons 
by dual retrograde labelling and anterograde tracing of cortico-cortical projection 
neurons, which revealed axon terminals in extra-telencephalic targets including the 
thalamus, superior colliculus and pons. These findings highlight the power of 
single-cell epigenomic approaches to connect the molecular properties of neurons 
with their anatomical and projection properties.

The mammalian brain is a complex system that consists of several 
types of neuron with diverse morphology, physiology, connections, 
gene expression and epigenetic modifications. Identifying brain cell 
types and how they interact is crucial to understanding the neural 
mechanisms that underlie brain function. Single-cell technologies 
deconvolve mammalian brains into molecularly defined cell clusters 
that correspond to putative neuron types1. However, the correspond-
ence between molecular cell types and neuronal populations defined 
by connectivity are largely unknown.

Previous single-cell analyses have revealed transcriptomic clusters 
and linked them to neuron types with different projection patterns in a 
few particular brain regions2–5. For the cerebral cortex, the most promi-
nent molecular distinction related to projection targets is the separa-
tion of cortical neurons into distinct and apparently non-overlapping 
intra-telencephalic (IT) and L5 ET (also known as pyramidal tract) 
groups. In some cases, L5 ET cells have been further divided on the 
basis of both gene expression and corresponding axon projections2. 
Although the separation of L5 IT and ET neurons seems to be conserved 
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across cortical areas6 and species7, a systematic analysis of the relation-
ships between a larger set of projection targets and molecular identities 
across several cortical areas has not been conducted. To what extent 
cortical projection neuron types can be further distinguished or divided 
by incorporating anatomical information with molecular analyses, and 
whether these cell types and correspondences are conserved across 
cortical areas, is unclear.

Epi-retro-seq of 63 cortical projections
To address these questions, we developed epi-retro-seq, which 
applies single-nucleus methylome sequencing (snmC-seq)8 to neu-
rons dissected from cortical source regions that were labelled on the 
basis of their long-distance projections to specific cortical and sub-
cortical targets (Fig. 1a). In epi-retro-seq, the retrograde viral tracer 
rAAV2-retro-Cre9 is injected in the target region in an INTACT mouse10, 
turning on Cre-dependent nuclear expression of green fluorescent 
protein (GFP) in neurons that project to the injected target, throughout 
the mouse brain. Source regions of interest were manually dissected 
(Methods), and GFP+NeuN+ nuclei (the GFP-labelled projection neu-
rons) were isolated as single nuclei using fluorescence-activated nuclei 
sorting (FANS) and assayed using snmC-seq28. snmC-seq enables the 
identification of potential regulatory elements and a prediction of 
gene expression in the same neurons10–12. In addition, methylation 
at non-CG (CH; in which ‘H’ denotes A, T or C) dinucleotides (mCH) 
accumulates, and methylation at CG dinucleotides (mCG) reconfigures 
during the development of cortical synapses, which suggests possible 
links between epigenetics and connectivity13,14.

We performed epi-retro-seq to characterize projection neurons 
from 8 mouse cortical areas (‘source’) that project to 10 cortical or 

subcortical regions (‘target’), covering 26 cortico-cortical (CC) projec-
tions and 37 cortico-subcortical projections (Supplementary Table 1). 
The ten injected target regions include four cortical areas (the primary 
motor cortex (MOp), primary somatosensory cortex (SSp), anterior 
cingulate area (ACA), and primary visual cortex (VISp)), and six major 
subcortical structures (the striatum, thalamus, superior colliculus, 
ventral tegmental area (VTA) and substantia nigra, pons and medulla). 
The eight dissected source cortical regions are MOp, SSp, ACA, agranu-
lar insular cortex (AI), retrosplenial area (RSP), auditory cortex (AUD), 
posterior parietal cortex (PTLp) and visual cortex (VIS) (Extended  
Data Fig. 1).

Methylome of cortical projection neurons
After quality control procedures (Methods), we obtained high-quality 
methylomes for 11,827 single cortical projection neurons (Extended 
Data Fig. 2). The mCH level in each single nucleus was computed across 
the genome using 100-kb genomic bins and used to perform unsu-
pervised clustering of the projection neurons. Overall, the cortical 
projection neuron clusters were annotated into ten subclasses (Fig. 1b) 
on the basis of reduced levels of gene body mCH—a proxy for gene 
expression—of known marker genes (Methods). Results from cluster 
analyses and annotation were used to conduct a further quality check to 
identify neurons with projection targets that could not be confidently 
assigned owing to potential artefacts (Methods). We identified 1,431 
neurons from experiments in which the projection target could not be 
confidently assigned (Extended Data Fig. 2i), leaving 10,396 neurons 
with confident projection target assignments. All subsequent analyses 
that incorporate projection target information are restricted to these 
neurons.
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Fig. 1 | The epigenomic landscape of cortical projection neurons.  
a, Schematics of the epi-retro-seq workflow. SC, superior colliculus; MY, 
medulla; STR, striatum; TH, thalamus. All brain atlas images were created  
based on Wang et al.25 and ©2017 Allen Institute for Brain Science. Allen  
Brain Reference Atlas. Available from: http://atlas.brain-map.org.  
b–d, Two-dimensional t-SNE of 11,827 cortical neuron nuclei on the basis of 
mCH levels in 100-kb genomic bins, coloured by subclass (b), the source of 
neurons (c), or their projection target (d). Inh, inhibitory; NP, near-projecting; 

CLA, claustrum. e, Neighbour enrichment scores of cells categorized by 
subclass (n = 11,827), source (n = 11,827), target (n = 10,396) and replicate 
(n = 11,638). f, The distribution across cell subclasses of neurons that projected 
to each IT (left) or ET (right) target. g, AUROC of distinguishing between source 
pairs or target pairs computed for IT and ET neurons on the basis of gene body 
mCH (n = 73, 88, 32 and 41; from left to right). For all box plots, centre line 
denotes the median; box limits denote first and third quartiles; and whiskers 
denote 1.5 × the interquartile range.
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Within each cell subclass, excitatory but not inhibitory neurons 
from different cortical regions were further separated from each 
other (Fig. 1c), which demonstrates the distinct spatial DNA meth-
ylation patterns in cortical projection neurons. The cell subclasses 
and spatial patterns in epi-retro-seq were in agreement with those in 
snmC-seq data from the same cortical regions without enrichment of 
specific projections (Extended Data Fig. 3a). Neurons projecting to 
different target regions were more similar within each subclass than 
neurons from different source regions (Fig. 1d), indicating that they 
shared a more similar DNA methylation landscape. Neighbour enrich-
ment scores were used to quantify the variations of DNA methylation 
that originated from different cell types, cortical spatial regions 
and projection targets (Methods). Neurons from the same subclass 
occupied highly similar regions in the dimension reduction space 
(neighbour enrichment score was close to 1) (Fig. 1e). Scores were 
also high for comparisons across neurons from the same source, 
followed by projections to the same target. Scores were near chance 
for biological replicates (neighbour enrichment score of 0.5), which 
indicates that the mCH profiles of different replicates are highly 
consistent (Fig. 1e).

Although neurons projecting to different target regions were not 
completely separated on the t-distributed stochastic neighbour 
embedding (t-SNE), we observed an explicit enrichment of CC and 
cortico-striatal projection neurons in IT subclasses (L2/3, L4, L5 IT, L6 
IT and claustrum), separated from neurons that project to the remain-
ing structures outside the telencephalon, which were categorized as 
L5 ET neurons (Fig. 1f, Extended Data Fig. 3). The enrichment is highly 
consistent across source regions (Extended Data Fig. 3b). As expected, 
many corticothalamic projection neurons were also found in the L6 cor-
ticothalamic subclass (Fig. 1f, Extended Data Fig. 3). These enrichment 

patterns are consistent with our knowledge about laminar enrichment 
of the projection neurons, which reflects the high quality of our retro-
gradely labelled single-nuclei methylation dataset.

To quantify methylation differences between neurons from different 
source regions or projecting to different target regions further, we used 
the area under the receiver operating characteristic curve (AUROC) of 
linear models trained to distinguish source pairs or target pairs on the 
basis of mCH (Methods). We found that most neurons dissected from 
different source regions could be well separated (Fig. 1g). Most of the 
neurons projecting to different target regions were also separable by 
mCH in this supervised setting (Fig. 1g), although they were closely 
mixed in the unsupervised embeddings (Fig. 1d). These findings indi-
cate that nearly all of the different types of projection neuron that were 
profiled have differences in their epigenomes. Further analyses of these 
quantitative differences, described below, allowed the assessment of 
possible organizational principles that might exist in the relationships 
between DNA methylation, projections targets and sources, including 
both areal and laminar sources.

Predicting IT neuron targets with mCH
In total, 42.6% of the cortical projection neurons profiled in our 
epi-retro-seq data were identified as IT neurons, and annotated accord-
ing to their presumptive cortical layers (Fig. 1b). We investigated the 
contribution of the cortical area in which cell bodies were located 
versus their cortical projection targets, to the variation of their DNA 
methylation profiles. We focused on 26 CC projections from 8 corti-
cal areas to 4 different cortical targets. All possible pairs of 4 cortical 
targets were assessed for each of the 8 sources to generate 32 AUROC 
scores, organized according to projection target pairs (Fig. 2a, Extended 

→SSp vs →ACA→ACA vs →VISp

Source Source

S
ou

rc
e

f g

j k

a
cb

Layer

Targets of AUD

→SSp vs →ACA

h i

SubclassSubclass

Same target pair different sources

Same target pair different sources by layers

A
U

R
O

C

→MOp vs →ACA

d
e

Target pairs

0.70

0.80

0.90

1.00

A
U

R
O

C

MOp
SSp
ACA
AI
AUD
RSP
PTLp
VIS

t-SNE-1

t-
S

N
E

-2

L2/3 L4
L5-IT

L6-IT

t-SNE-1

t-
S

N
E

-2

→SSp
→VISp
Others

t-SNE-1

t-
S

N
E

-2

→SSp
→ACA
Others

0.6

0.8

1.0

A
U

R
O

C

PT
Lp

AU
D

VI
S

M
O

p AI
R

SP

0.6

0.8

1.0

A
U

D
VI

S
S

S
p

P
TL

p A
I

R
S

P

0.6

0.8

1.0

AU
D

VI
S

SS
p

PT
Lp AI

R
SP

AUD
VIS
SSp

PTLp
AI

RSP

PT
Lp

AU
D

VI
S

M
O

p AI
R

SP

PTLp
AUD
VIS

MOp
AI

RSP

0.5

1.0

A
U

R
O

C

L2
/3 L4

L5
-IT

L6
-IT

AI

AUD

RSP

PTLp

L2
/3 L4

L5
-IT

L6
-IT

MOp

AI

AUD

RSP

PTLp

VIS

S
ou

rc
e 

tr
ai

n

Source test Source test

→
M

Op vs
 →

ACA

→
SSp vs

 →
VIS

p

→
ACA vs

 →
VIS

p

→
M

Op vs
 →

SSp

→
SSp vs

 →
ACA

→
M

Op vs
 →

VIS
p

→
SS

p 
vs

 →
VI

Sp
→

AC
A 

vs
 →

VI
Sp

→
M

O
p 

vs
 →

AC
A

→
M

O
p 

vs
 →

VI
Sp

→
M

O
p 

vs
 →

SS
p

→
SS

p 
vs

 →
AC

A

Fig. 2 | Epigenetic differences between IT neurons projecting to different 
targets. a, AUROC to distinguish cortical neurons projecting to one cortical 
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Data Fig. 4a–d). Among the six projection target pairs examined, neu-
rons projecting to the MOp versus ACA were the most distinguish-
able (average AUROC value of 0.922), similar to neurons projecting to 
the SSp versus VISp and the ACA versus VISp (average AUROC values 
of 0.915 and 0.914, respectively), whereas neurons that project to the 
SSp versus ACA and to the MOp versus VISp were the least separable 
(average AUROC values of 0.837 and 0.831, respectively) (Fig. 2a). In 
addition, for each target pair, the performance of the predictive model 
varied among neurons from different source cortical regions (Fig. 2a, 
Extended Data Fig. 4a–d).

These analyses suggest that epigenetic differences between CC 
projection neurons depend on a combination of both the specific 
targets to which neurons project and the sources where the neurons 
reside. For example, among AUD IT neurons, AUD–SSp (projecting 
from AUD to SSp) neurons were better separated from AUD–VISp neu-
rons (AUROC value of 0.974) (Fig. 2b, e) than from AUD–ACA neurons 
(AUROC value of 0.766) (Fig. 2c, e). The distinctions between these 
projections did not arise from different distributions across layers 
(Fig. 2d). This demonstrates that the level of epigenetic differences 
between AUD IT neurons varies depending on their projection targets. 
Similarly, when comparing neurons from different sources projecting 
to the same target pair, we observed different levels of distinguishability 
in our models. For example, although neurons projecting to the MOp 
versus neurons projecting to the ACA were more distinguishable (that 
is, had higher AUROC scores) than neurons projecting to the SSp ver-
sus those projecting to the ACA, we observed variation of the AUROC 
scores across different source regions for both target pairs (Fig. 2f, g).  
To further examine whether the same epigenetic differences that 
distinguished target pairs for one source might be conserved across 
sources, we trained models to predict targets using neurons from one 
source and then tested it on another source (Methods). Notably, these 
cross-source models can distinguish target pairs in many cases, whereas 
the performance of models trained on any particular region varied 
in their ability to predict projections from other regions (Fig. 2h, i,  
Extended Data Fig. 4e–h). For example, the model trained on AUD per-
formed better in distinguishing VIS–MOp versus VIS–ACA neurons 
than the models trained on RSP or PTLp (Fig. 2h). This suggests that 
AUD and VIS neurons are more similar to each other in the molecular 
markers that distinguish neurons projecting to MOp versus ACA than 
other cortical areas. These results indicate that cortical regions might 

form different groups with shared correlations between molecular 
markers and projection targets.

In addition, we assessed the level of distinguishability between 
two cortical targets, both for neurons within the same layer and for 
neurons in different layers (Fig. 2j, k, Extended Data Fig. 5a–c). By 
training and testing the predictive models in each layer separately, we 
typically observed higher distinguishability between ACA-projecting 
and VISp-projecting neurons than between SSp-projecting  
and ACA-projecting neurons (Fig. 2j, k). However, predictions for 
SSp-projecting and ACA-projecting neurons were more variable, with 
some sources being better than others for all layers (for example, 
MOp versus PTLp) (Fig. 2k) and some layers being better than others, 
even for the same source (for example, AUD and VIS) (Fig. 2k). We 
further tested whether cross-layer-trained models could distinguish 
the projection targets (Methods), and observed that the performance 
was generally comparable to within-layer models (Extended Data 
Fig. 5d–f). These results suggest that there may be shared epigenetic 
signatures across layers that contribute to correlations with the pro-
jection targets.

Furthermore, we identified differentially methylated genes (DMGs) 
at CH sites (CH-DMGs) between different pairs of CC projection neu-
rons in each source region using hierarchical linear models. In total, 
1,644 CH-DMGs were identified (Extended Data Fig. 5g, Supplemen-
tary Table 3), among which 1,497 (91.1% of CH-DMGs) were statistically  
significant in only one source region. The fact that most CH-DMGs were 
unique to one source region suggests that different genes may partici-
pate in defining projections from different source regions. Gene ontol-
ogy (GO) enrichment analysis revealed that CH-DMGs were enriched for 
genes that participate in intracellular transport and the regulation of 
synapse structure (Supplementary Table 3), and might differ between 
neurons with different projections. For example, Bsn is differentially 
methylated between MOp-projecting and SSp-projecting neurons 
in the AUD and VIS (Extended Data Fig. 5g). It encodes a presynaptic 
cytomatrix scaffolding protein (bassoon) that is primarily expressed 
in neurons, and is essential for the regulation of neurotransmitter 
release15. Scn2a1encodes a voltage-dependent sodium channel protein 
(SCN2A1) and is differentially methylated between ACA-projecting and 
VISp-projecting neurons in the AI and PTLp (Extended Data Fig. 5g). 
This channel regulates neuronal excitability, and variants are associ-
ated with autism and seizure disorders16.
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Epigenetically distinct L5 ET subtypes
L5 ET neurons are the most abundant cell population in our datasets 
(4,176 (35.3%) single neurons), and are 6.3-fold enriched in epi-retro-seq 
compared to the total number of neurons observed in unbiased 
snmC-seq2 profiling. This provides us with a unique opportunity to 
investigate subpopulations of L5 ET neurons more closely. L5 ET neu-
rons further segregated into 15 clusters (Fig. 3a). Much of the separation 
between clusters was driven by the source location of the neurons, as 
neurons from different sources were clearly separated on the UMAP 
(Fig. 3b), and each of the clusters consists of neurons mostly from one 
or two sources (Extended Data Fig. 6a). The similarities between L5 ET 
neurons from different sources (Fig. 3c) were not well explained by their 
spatial proximity anterior-posteriorly or medial-laterally, but better 
correlated with the anatomical and functional connectivity between 
these regions. For example, MOp and SSp are components of the 
somatic sensorimotor subnetwork, whereas AUD, VIS, ACA and PTLp 
are components of the medial subnetwork that channels information 
between sensory areas (that include VISp and AUD) and higher-order 
association areas (that include PTLp and ACA)17.

To further explore the molecular identity of these L5 ET clusters, we 
identified 2,675 CH-DMGs (Fig. 3d, Extended Data Fig. 6c, Supplemen-
tary Table 4) and 341,748 CG-DMRs (Fig. 3e, Supplementary Table 5) 
that were hypomethylated in the corresponding L5 ET clusters. GO 
enrichment analysis revealed that these CH-DMGs were enriched in 
genes involved in cell communication, neurogenesis, cell morphogen-
esis and axon guidance (Supplementary Table 4). The average length of 
CG-DMRs was 227 base pairs (bp), and 84.9% of the CG-DMRs were distal 
elements that located more than 5 kb from the annotated transcrip-
tion start sites. The level of mCH at gene bodies is inversely correlated 
with gene expression, whereas the level of mCG at gene regulatory 
elements, such as promoters and enhancers, is inversely correlated 
with their regulatory activities. These relationships allowed us to use 
a gene regulatory network-based method to integrate this informa-
tion and identify transcription factors that might function as key 
regulators in each cluster (Methods, Fig. 3f, Extended Data Fig. 6d, e).  
For example, the transcriptional activator Rora was scored as one of 
the top transcription factors and is hypo-CH-methylated in clusters 1, 
8 and 13, and especially in cluster 8, indicating its potential expression. 
The binding motif of RORA was also enriched in the CG-DMRs of these 
same clusters, which suggests that RORA may bind to cis-regulatory 

elements that in turn regulate a set of predicted downstream target 
genes. Many of these target genes are related to brain functions and 
are also hypomethylated in cluster 8 (Extended Data Fig. 6f).

L5 ET subtypes project differently
Neurons from the same sources (except AI and RSP) distributed 
into more than one cluster (Fig. 3a, b, Extended Data Fig. 6b), which 
prompted us to ask whether some of the differences between L5 ET 
clusters also correspond to the different projection targets. To inves-
tigate this, we performed another iteration of cluster analysis using L5 
ET cell data from each of the source regions separately, and identified 
finer L5 ET clusters within each source region (Extended Data Fig. 7a).

Among all comparisons between projection targets and clusters, 
neurons projecting to the medulla were most distinct. SSp L5 ET neu-
rons further segregated into seven clusters (Fig. 4a), among which 
SSp–medulla neurons showed a clear enrichment in cluster 0 (false dis-
covery rate (FDR) = 3.69 × 10−2, Wald test) (Fig. 4b, c). Similarly, we identi-
fied seven clusters of MOp L5 ET neurons, and MOp–medulla neurons 
were also significantly enriched in one of the clusters (FDR = 1.44 × 10−2, 
Wald test) (Extended Data Fig. 7c, d). Moreover, neurons projecting to 
the medulla were robustly distinguished from other L5 ET neurons in 
our prediction models for both MOp and SSp (average AUROC scores 
of 0.929 and 0.864, respectively) (Extended Data Fig. 8a). To investi-
gate which genes drive the observed epigenomic differences between 
medulla-projecting L5 ET neurons and other L5 ET neurons, we identi-
fied 1,380 (293) CH-DMGs between MOp (SSp)–medulla L5 ET neurons 
and at least one of the other ET projections (Fig. 4d, e, Supplementary 
Table 6). Among these, 180 CH-DMGs were identified in both MOp–
medulla and SSp–medulla neurons (examples highlighted in Fig. 4d, e), 
which suggests a general regulatory mechanism that may be shared by 
different cortical regions. Accordingly, models trained in either MOp or 
SSp to distinguish neurons projecting to the medulla usually performed 
well when tested in the other region (Extended Data Fig. 8b). Similar 
enrichment of medulla-projecting neurons in subpopulations of L5 ET 
neurons has been reported in ALM using single-cell RNA sequencing 
(scRNA-seq) on cells labelled by retrograde injections (retro-seq)6. To 
compare these observations, we used gene body mCH as a proxy for 
gene expression to integrate our L5 ET epi-retro-seq data with the ALM 
retro-seq data. Joint t-SNE analysis showed that the medulla-projecting 
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L5 ET neurons were enriched in the same cluster (Extended Data Fig. 9). 
The Slco2a1 marker gene of the ALM medulla-projecting cluster is 
hypomethylated in MOp–medulla but not in SSp–medulla neurons 
(Extended Data Fig. 9h). We identified Astn2 as a marker gene for the 
medulla-projecting L5 ET cluster in both the MOp and SSp (Extended 
Data Fig. 9i). ASTN2 mediates the recycling of neuronal cell adhesion 
molecule ASTN1 in migrating neurons18, and its deletion has been 
associated with neurodevelopmental disorders19. This suggests that, 
compared with other L5 ET neurons, neurons projecting to the medulla 
have distinct molecular properties, and these distinctions are probably 
shared across several cortical regions.

In addition to the medulla-projecting L5 ET neurons, we also observed 
differences in genome-wide mCH profiles between other ET projec-
tions. For example, L5 ET neurons in AI were segregated into five clus-
ters (Fig. 4f), and AI–pons and AI–superior colliculus neurons were 
enriched in different clusters (Fig. 4g, h, Extended Data Figs. 7c, 8c). 
By contrast, AI–pons and AI–thalamus neurons were enriched in simi-
lar clusters (Extended Data Figs. 7c, 8c). Analysis of gene body mCH 
identified 145 CH-DMGs that were differentially methylated between 
AI–superior colliculus neurons versus AI–pons, whereas most of them 
had similar methylation patterns between AI–pons and AI–thalamus 
neurons (Fig. 4i, Supplementary Table 6). Together, the results suggest 
that AI–pons neurons are more distinct from AI–superior colliculus 
neurons and are similar to AI–thalamus neurons.

In contrast to the conservation across cortical areas ALM, MOp 
and SSp for differences related to projections to medulla, differ-
ences between pons-projecting and superior colliculus-projecting 
neurons were not conserved across all cortical areas. The prediction 
model trained to distinguish between pons-projecting versus superior 
colliculus-projecting neurons performed well in distinguishing them 
from cortical regions AI (AUROC = 0.939) and VIS (AUROC = 0.868), 
but performed poorly in PTLp neurons (AUROC = 0.726) (Extended 
Data Fig. 8a). The AUROC scores were correlated with the counts of 
CH-DMGs identified between superior colliculus-projecting versus 
pons-projecting neurons in the corresponding source regions (Spear-
man r = 0.683). We further hypothesized that in a cortical area where 
more neurons project to both the pons and superior colliculus, the  
epigenetic profiles of pons-projecting and superior colliculus-projecting 

neurons are less distinguishable, and vice versa. To test this hypothesis, 
we performed double retrograde labelling of the pons and superior 
colliculus, and in each cortical source region we counted the number 
of neurons labelled by only the tracer injected into the pons, only the 
superior colliculus, or both (Supplementary Table 7). The highest per-
centage of double-labelled neurons was in the PTLp, and in general the 
AUROC score from our model was negatively correlated with the pro-
portion of double-labelled cells across the cortical regions (Spearman 
r = −0.829, P = 0.04) (Extended Data Fig. 8d). These correspondences 
are weak, however, for most source regions, so the correlation is driven 
primarily by the data from the PTLp.

L5 ET + CC neurons
We noticed more than 30 neurons projecting to the VISp in L5 ET clus-
ters from the ACA and RSP datasets (Fig. 5a, b). Because neurons in 
the L5 ET cluster are expected to project to ET targets, this finding 
suggested that some L5 neurons might project to both cortical and 
ET targets. These neurons were enriched specifically in one cluster in 
ACA and RSP, respectively (FDR = 4.88 × 10−5 and 3.34 × 10−3, Wald test) 
(Fig. 5a–d). This type of cluster in both the RSP and ACA was marked by 
the hypo-methylation of Ubn2 (Extended Data Fig. 10a, top), a highly 
expressed gene in visual systems, and many other genes also distin-
guished this cluster in either source (Extended Data Fig. 10a, bottom).

Although ET cells are generally thought to lack projections to other 
cortical areas, there is some evidence for such cells from previous  
studies20–24. To validate our findings anatomically for RSP–VISp ET neu-
rons in mice, we injected AAV-retro-Cre in the VISp and AAV-FLEX-GFP 
(Cre-dependent GFP) in the RSP (Fig. 5e) or ACA (Extended Data 
Fig. 10b) of three mice. This resulted in labelling of the complete 
axonal and dendritic arbors of RSP–VISp or ACA–VISp neurons such 
that their long-distance projections to locations other than VISp could 
be assessed. For the RSP cases, we observed strong GFP labelling of axon 
terminals in subcortical ET regions, including the thalamus, superior 
colliculus and pons, in all three mice (Fig. 5f). For the ACA cases, axon 
labelling in subcortical ET regions was weaker but still readily apparent 
in the thalamus (Extended Data Fig. 10b). These results indicate that 
single neurons in L5 of RSP and ACA can project simultaneously to 
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both cortical and subcortical ET targets in mice. Because these cells 
genetically cluster with L5 ET cells, we consider them a subtype of L5 ET 
cells that we refer to as ‘L5 ET + CC’. We do not use the term ‘L5 ET + IT’ 
because many L5 ET neurons are known to project to another part of 
the telencephalon, the striatum.

To further assess and quantify the prevalence of L5 ET + CC cells in 
the ACA, RSP and other cortical areas, we performed dual injections of 
retrograde tracers into the pons (cholera toxin subunit B (CTB) Alexa 
Fluor 647) and the VISp (CTB Alexa Fluor 488) of two mice (Fig. 5g). 
Injections were made into topographic locations in pons known to 
receive input from ACA and RSP. Accordingly, overlapping retrogradely 
labelled neurons were observed in both ACA and RSP, allowing assess-
ment of the proportion of double-labelled neurons within the overlap 
regions. Overlapping labels were also observed and quantified in higher 
visual cortical areas lateral and medial to VISp. A markedly high propor-
tion (26.6%) of RSP neurons projecting to pons were double labelled 
(Fig. 5h, Supplementary Table 8). Substantial but smaller proportions 
were observed in the ACA (7.0%) (Fig. 5h, Supplementary Table 8) and 
lateral and medial higher visual areas (13.1% and 14.6%, respectively) 
(Extended Data Fig. 10c, Supplementary Table 8).

Discussion
In this Article, we have quantitatively analysed and compared the 
methylation of mouse cortical neurons projecting to different corti-
cal and subcortical targets. We identified differences between both 
IT neurons projecting to different cortical areas and between L5 ET 
neurons projecting to different ET targets. Cortical IT neurons that 
projected to different cortical targets varied in the extent of their epi-
genetic differences. Differences between projection target pairs were 
typically larger than differences between cortical source areas for any 
given pair of projection targets. Most distinct among the L5 ET neurons 
were those projecting to the medulla. This difference has been previ-
ously described for neurons in cortical area ALM2, and we find that this 
difference is conserved across the additional cortical areas that we 
analysed, including the MOp and SSp. By contrast, differences between 
L5 ET neurons projecting to superior colliculus versus pons were more 
distinct in some cortical areas (such as AI) than in others (such as PTLp).

We found that a subpopulation of cortico-cortical RSP–VISp and 
ACA–VISp neurons clustered with L5 ET cells, in contrast to the expecta-
tion that L5 ET and IT cortico-cortical cells are distinct populations. This 
suggested that some L5 ET cells might project to cortical targets and this 
hypothesis was validated anatomically. Our anatomical experiments 
showed that RSP–VISp cells do project to many ET targets, including 
the thalamus, superior colliculus and pons, and we refer to this cell type 
as L5 ET + CC. Although we found CC projection neurons that clustered 
with L5 ET cells for only two of the twenty-six CC projections that we 
sampled, there remain many other combinations that we did not test. 
For example, our double retrograde labelling studies identified L5 
ET + CC neurons in visual cortical areas that are lateral and medial to 
VISp. Furthermore, previous studies have described L5 ET + CC cells 
in primary and secondary motor cortex21,22. It is therefore likely that 
future studies will reveal L5 ET + CC neurons in additional cortical areas 
projecting to various combinations of ET and cortical targets.

Finally, this large-scale effort linking methylation status directly to 
the projection targets of mouse cortical neurons allowed us to iden-
tify differences between projection cell types in transcription factors 
linked to differentially methylated regions. These observations provide 
insight into genetic mechanisms that might contribute to the differ-
ences in morphology and function of these cell types. As we have shown, 
this large dataset also provides the opportunity to predict regulatory 
elements that might be harnessed in future studies to target transgene 
expression to these cell types.
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Methods

No statistical methods were used to predetermine sample size. The 
experiments were not randomized. The investigators were not blinded 
to allocation during experiments and outcome assessment.

Experimental animals
All experimental procedures using live animals were approved by the 
Salk Institute Animal Care and Use Committee. The knock-in mouse line, 
R26R-CAG-loxp-stop-loxp-Sun1-sfGFP-Myc (INTACT) was used for most 
experiments10 and they were maintained on a C57BL/6J background. 
Adult (42–49 day old) male and female INTACT mice were used for the 
retrograde labelling experiment. Adult C57BL/6J ‘wild-type’ mice were 
used for double-retrograde labelling experiments.

Surgical procedures for viral vector and tracer injections
To label neurons projecting to regions of interest, injections of 
rAAV2-retro-Cre (produced by Salk Vector Core or Vigene, 2 × 1012 to 
1 × 1013 viral genomes per ml, produced with capsid from Addgene 
plasmid 81070 packaging pAAV-EF1a-Cre from Addgene plasmid 
55636) were made into both hemispheres of the INTACT mice. Mice 
were anaesthetized with either ketamine–xylazine or isoflurane, placed 
in a stereotaxic frame, and 0.1–0.5 μl of AAV was injected by pressure 
into stereotaxic coordinates corresponding to the desired projection 
target. A list of injection coordinates and volumes is provided in Sup-
plementary Table 1. At least two male and two female mice were injected 
for each projection target. To label RSP or ACA neurons that project to 
VISp, VISp was injected with rAAV2-retro-Cre, and either RSP or ACA was 
injected with AAV-FLEX-GFP (Salk Vector Core) into 6 adult (3 RSP and  
3 ACA) Ai14 mice. Therefore, RSP–VISp or ACA–VISp neurons, including 
their axonal projections, were selectively labelled with GFP. If RSP–VISp 
or ACA–VISp neurons also project to ET targets (L5 ET + CC neurons 
exist), GFP-labelled axons would be expected in subcortical ET targets 
such as the superior colliculus, pons and the thalamus.

Assessment of double-retrograde labelling
To assess the double labelling of cortical cells projecting to the pons 
and/or superior colliculus, or projecting to pons and/or VISp, stere-
otaxic pressure injections of 0.1–0.2 μl of 0.25–0.5% of CTB Alexa Fluor 
488 or 647 conjugated (Molecular Probes) were successfully made into 
the pons and the superior colliculus of 4 mice, or into the pons and VISp 
of 2 mice. Then, 6–7 days later, mice were perfused with PBS followed 
by 4% paraformaldehyde in PBS. Brains were removed and sectioned 
coronally at 40-μm thickness with a freezing microtome. Sections 
were mounted and imaged with a 20× epifluorescence objective and 
images assessed to identify single- and double-labelled neurons that 
were assigned to cortical areas. Sections with less than five labelled 
cells from either one of the injections were excluded, as were sections 
in which there were not at least ten labelled cells from one of the injec-
tions. Therefore, some cortical areas in which there was minimal or 
no overlap were not included. For each mouse, double-labelled cells 
were quantified for each region and expressed either as the proportion 
of double-labelled cell divided by the sum of all labelled cells (pons 
and superior colliculus), or as the proportion of double-labelled cells 
divided by the number of cells labelled from the pons (pons and VISp). 
Mean values from the four mice with CTB injections into the superior 
colliculus and pons are plotted in Extended Data Fig. 8d. Values from 
the two mice with CTB injections into the pons and VISp are shown in 
Fig. 5h and Extended Data Fig. 10c.

Brain dissection
Approximately two weeks after the AAV-retro injection, brains were 
extracted from the 56–63-day-old INTACT mice, immediately sub-
merged in ice-cold slicing buffer (2.5 mM KCl, 0.5 mM CaCl2, 7 mM 
MgCl2, 1.25 mM NaH2PO4, 110 mM sucrose, 10 mM glucose and 25 mM 

NaHCO3) that was bubbled with carbogen, and sliced into 0.6-mm coro-
nal sections starting from the frontal pole. From each mouse brain 
injected with AAV-retro, the slices were kept in the ice-cold dissection 
buffer, and selected brain regions (Supplementary Table 1) were manu-
ally dissected under a fluorescent dissecting microscope (Olympus 
SZX16), following the Allen Mouse Common Coordinate Framework 
(CCF), Reference Atlas, Version 3 (2015) (Extended Data Fig. 1). Olympus 
cellSens dimension 1.8 was used for image acquisition. The dissected 
brain tissues were transferred to pre-labelled microcentrifuge tubes, 
immediately frozen in dry ice, and subsequently stored at −80 °C.

Nuclei preparation and single-nucleus isolation
For each dissected brain region, samples from two males and two 
females (except AI–pons, which were two male mice only) were pooled 
separately as biological replicates for nuclei preparation. The 2-ml glass 
tissue dounce homogenizer and pestles (Sigma-Aldrich D8938-1SET) 
were pre-chilled on ice. Nuclei were prepared using a modified protocol 
as previously reported26. In summary, the frozen brain tissues were 
transferred to the dounce homogenizer with 1 ml ice-cold NIM buffer 
(0.25 M sucrose, 25 mM KCl, 5 mM MgCl2, 10 mM Tris-HCl (pH 7.4), 1 mM 
DTT (Sigma 646563), 10 μl of protease inhibitor (Sigma P8340)), with 
0.1% Triton X-100 and 5 μM Hoechst 33342 (Invitrogen H3570), and gen-
tly homogenized on ice with the pestle 10–15 times. The homogenate 
was transferred to pre-chilled microcentrifuge tubes and centrifuged at 
1,000g for 8 min at 4 °C to pellet the nuclei. The pellet was resuspended 
in 1 ml ice-cold NIM buffer, and again centrifuged at 1,000g for 8 min at 
4 °C. The pellet was then resuspended in 450 μl of ice-cold NSB buffer 
(0.25 M sucrose, 5 mM MgCl2, 10 mM Tris-HCl (pH 7.4), 1 mM DTT, 9 μl 
of protease inhibitor), and filtered through 40-μm cell strainer. The 
filtered nuclei suspension was incubated on ice for at least 30 min with 
50 μl of nuclease-free bovine serum albumin (BSA) for at least 10 min, 
then incubated with GFP antibody, Alexa Fluor 488 (Invitrogen, A-21311, 
1:500 dilution) and an anti-NeuN antibody (EMD Millipore MAB377, 
1:300 dilution) conjugated with Alexa Fluor 647 (Invitrogen A20173). 
GFP+NeuN+ single nuclei were isolated using FANS on a BD Influx sorter 
with a 100-μm nozzle, and sorted into 384-well plates preloaded with  
2 μl of digestion buffer for snmC-seq28 (20 ml digestion buffer con-
sists of 10 ml M-digestion buffer (2× , Zymo D5021-9), 1 ml proteinase K 
(20 mg, Zymo D3001-2-20), 9 ml water, and 10 μl unmethylated lambda 
DNA (100 pg μl−1, Promega, D1521)). The collected plates were incubated 
at 50 °C for 20 min then stored at −20 °C. BD Influx Software v.1.2.0.142 
was used to select cell populations.

snmC-seq2 library preparation
Nuclei from the same projection were combined in one 384-well plate 
for the library preparation. We assayed approximately 384 nuclei from 
each projection (except the MOp–SSp projection from which 768 
nuclei were assayed). The bisulfite conversion and library prepara-
tion were performed following the detailed snmC-seq2 protocol as 
previously described8. The snmC-seq2 libraries were sequenced on 
Illumina Novaseq 6000 using the S4 flow cell 2 × 150 bp mode. Freedom 
EVOware v2.7 was used for library preparation, and Illumina MiSeq 
control software v.3.1.0.13 and NovaSeq 6000 control software v.1.6.0/
Real-Time Analysis (RTA) v.3.4.4 were used for sequencing.

Reads processing and quality controls
We used the cemba-data pipeline to generate allc files from fastq 
files (cemba-data.rtfd.io), as previously described12. Specifically, the 
fastq files were first demultiplexed into single cells and trimmed of 
Illumina adaptors and 10 bp on both sides with Cutadapt27. The reads 
were mapped to mm10 INTACT mouse genome using Bismark28 with 
Bowtie2 aligner for each single end separately. The reads with MAPQ 
smaller than ten were excluded. Potential PCR duplicates were removed 
with Picard MarkDuplicates. The reads from two ends were then merged 
to generate allc files using call_methylated_sites function in methylpy29. 



The global mCCC level was used to estimate the non-conversion rate of 
bisulfite treatment. The cells with less than 500,000 non-clonal reads 
or non-conversion rate greater than 1% were removed from further 
analysis.

Methylation data processing
For each single cell, we computed the methylated CH (mc) and total CH 
(tc) base calls of all 100-kb bins across the genome and all gene bodies 
annotated in GENCODE v.M1030. The autosomal bins that were covered 
by more than 100 base calls in greater than 95% of cells were used for 
further analysis. The autosomal genes that were covered by more than 
100 base calls in greater than 80% of cells were used for further analysis.

Computing posterior methylation levels
For each cell, we calculated the mean (m) and variance (v) of the mCH 
level across the 100-kb bins or genes. Then a beta distribution was fit 
for each cell i, in which the parameters were then estimated by:









α m

m m
v

=
(1 − )

− 1i i
i i

i

β m
m m

v
= (1 − )

(1 − )
− 1i i

i i

i











We then calculated the posterior mCH of each bin by:
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We normalized this rate by the global mean methylation of the cell by:
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The values greater than 10 in M were set to 10. After normalization, 
Mij is close to 1 when tcij is close to 0.

Identification of highly variable bins
Highly variable methylation features were selected on the basis of 
a modified version of the highly_variable_genes function from the 
SCANPY package31. In brief, because both the mean methylation level 
and the mean coverage of a feature (100-kb bin or gene) can affect 
dispersion of the methylation level12, we grouped features that fall 
into a combined bin of mean and coverage, and then normalized the 
dispersion within each group. After dispersion normalization, we 
selected the top 2,000 features based on normalized dispersion for 
dimension reduction.

Removing potential doublets
By plotting all cells on t-SNE, we noticed a cell population that was 
located in the centre of the plot and has a greater number of non-clonal 
reads than the others. To remove these potential doublets, we modified 
scrublet32 to adopt it to methylation data. Specifically, we first simu-
lated the doublet cells by randomly selecting two cells in our dataset 
and summed the methylation and total base calls of the two cells. Then 
the methylation levels of the simulated cells were computed using 
the posterior computing method. We simulated twice the number of 
doublets as the number of real cells. The top 2,000 highly variable fea-
tures were selected for dimension reduction with principal component 
analysis (PCA) and the top 50 principal components were used to train a 
k-nearest neighbour (KNN) classifier (k = 50) to predict a doublet score 

for each cell. On the basis of the histogram of doublet scores of real 
and simulated doublet cells, the cells with doublet score higher than 
0.1 were removed from further analysis. After removing the potential 
doublets, 13,414 cells were kept for further analysis.

Cell clustering and annotation
After removing potential doublets, the top 2,000 highly variable fea-
tures were selected for dimension reduction with PCA. The top 50 prin-
cipal components were used for t-SNE visualization and construction 
of KNN graph (G) with Euclidean distance (k = 25). We use A to represent 
the connectivity of G, in which Aij is 1 if node j is among the 25 nearest 
neighbours of node i, otherwise 0. The edge weights of G were assigned 
as the jaccard distance of the connectivity matrix A. We ran Louvain 
clustering (https://github.com/taynaud/python-louvain) with resolu-
tion 1.2 to partition the cells into 31 clusters and merged these clusters 
into major cell subclasses based on known marker genes. Specifically, 
Cux2+ Rorb− (hypomethylation in Cux2 gene body and hypermethyla-
tion in Rorb gene body) was annotated as L2/3; Cux2+ Rorb+ was anno-
tated as L4; Cux2− Rorb+ and Deptor+ were annotated as L5 IT; Sulf1+ 
and Sulf2+ Deptor− were annotated as L6 IT; Vat1l+ was annotated as 
L5 ET; Foxp2+ was annotated as L6 corticothalamic; Tle4+ Foxp2− was 
annotated as L6b; Tshz2+ was annotated as near-projecting; B3gat2+ 
was annotated as claustrum; Slc6a1+ was annotated as inhibitory. The 
clusters with low global mCH level were annotated as non-neural cells, 
which were further confirmed by hypermethylation of Mef2c. The 
11,827 cells within neuronal cell clusters were selected for further 
analysis.

Inclusion criteria for confident target assignment
We implemented criteria to identify experiments in which artefacts 
could lead to inclusion of neurons that did not actually project to the 
intended AAV-retro injection site. Neurons failing these criteria were 
excluded from analyses requiring identification of projection targets 
but were included for analyses related to neuron sources. Close inspec-
tion of the distribution of cells sampled from each projection across 
subclasses revealed two types of artefact: (1) for some weak projections 
very few neurons were retrogradely labelled, resulting in small propor-
tions passing FANS gating criteria and subsequent inclusion of high 
proportions of cells accepted from the edges of FANS gates (‘gating 
artefact’); (2) AAV-retro injection pipettes targeting deep structures 
(for example, thalamus) passed through overlying cortical areas and 
directly labelled neurons rather than being taken up retrogradely from 
the intended target. This second artefact is apparent in previously 
published retro-seq data in which VISp IT neurons are prominent in 
putative cortico-tectal and cortico-pontine projection neuron popula-
tions (figure 3 and extended data figure 10 in Tasic et al.6). This suggests 
that injections passed through VISp, which directly overlies pons and 
tectum. In our experiments, injections to the superior colliculus and 
pons took oblique trajectories to minimize involvement of overlying 
cortical areas, but this was not possible for injections to the ventral 
tegmental area or thalamus.

Because FANS errors would be manifested in separate sorting runs, 
we assessed each FANS sorting case separately. To identify cases with 
high proportions of contaminating neurons (probably projecting to 
a different target than intended), for each FANS run, we counted the 
numbers of neurons that were observed in known on-target subclasses 
(Oon) and off-target subclasses (Ooff). Assuming that the proportions 
of contaminated cells in each subclass would be similar to a sample 
without projection-type enrichment, we compared the observed counts 
to the counts from unbiased cortical samples33 (Eon and Eoff) collected 
from the slices in Extended Data Fig. 1. The fold-enrichment was com-
puted as O E

O E
on off

off on
. A one-sided exact binomial test of goodness-of-fit was 

used to determine whether the enrichment of on-target cells was sig-
nificant. Specifically, the P value was computed as: X O n pPr( ≥ ; , )on ,  
in which

https://github.com/taynaud/python-louvain


Article
∼X n pBinomial( , )

n O O= +on off

p
E

E E
=

+
on

on off

Neurons from cases in which the fold-enrichments were smaller than 
a threshold (see below) or the tests were not significant were catego-
rized as having unknown projection targets. The expected values are 
different for ET targets than for IT (including striatum) targets, so the 
thresholds depend on the targets.

For each ET target, we considered L5 ET as on-target subclass and IT 
and inhibitory neurons as off-target. The thresholds for fold enrichment 
and FDR (Benjamini–Hochberg procedure) were 5 and 0.01, respec-
tively. This eliminated 7 out of 101 ET target sorts (285 out of 5,364 
cells). For IT targets, we considered IT as on-target subclasses and L6 
corticothalamic plus inhibitory neurons as off-target. The thresholds 
for fold-enrichment and FDR (Benjamini–Hochberg procedure) were 
3 and 0.05, respectively. This eliminated 30 out of 115 sorting cases 
(1,146 out of 6,463 neurons).

Note that these exclusion criterions are based on a simplified 
expectation of on target cell types, and the accuracy might be vari-
able depending on the targets. For instance, when considering the 
neurons projecting to the striatum, considering L6 corticothalamic as 
off-target might overestimate the off-target cells and make the exclu-
sion more stringent. In addition, because the filter was applied at FANS 
run-level, there could also be a small percentage of off-target cells from 
the included runs. This should be noticed when using these datasets. 
We included the cell type proportion of all projections in Extended 
Data Fig. 3c to help evaluate this potential noise.

Neighbour enrichment score
The score was used to quantify the enrichment of cells that belong to 
the same category among the neighbours of each cell. A higher score 
means that the cells are more likely to form clusters with the cells 
belonging to the same category rather than in the other categories. 
The advantage of this score is that it only considers the local effect so 
that would remain high if the cells in a category form several different 
clusters that dissimilar with each other. The score was computed as 
follows. Euclidean distances between each pair of cells were computed 
using the first 50 principal components. For each cell, we found its  
25 nearest neighbours in the same category, and 25r nearest neighbours 
from other categories, in which r is the ratio between total number 
of cells in other categories and total number of cells in the same cat-
egory. The AUROC scores using distances between the cell and these 
neighbour cells for distinguishing the categories were defined as the 
neighbour enrichment score of this cell. The methylation pattern of 
male and female mice are highly similar on autosomes; therefore, the 
two genders were treated as replicates in the analyses. When computing 
the score for targets, neurons with targets that were not confidently 
assigned were excluded. When computing the score for replicates, the 
AI–pons projection that only has one replicate was excluded.

Pairwise prediction of the source and target regions
On the basis of the sources and targets, the neurons could be separated 
into groups. Each group contains the neurons projecting from a specific 
source to a specific target. To test the similarity of two groups of cells 
based on DNA methylation, we trained logistic regression models to 
predict the group label of each cell. The posterior of 100-kb bin or gene 
body mCH were used as features. We used two methods to split the 
cells into training and testing sets, one uses random selection of half 
of the cells for training and the other half for testing (computational 
replicates), the other is based on the gender of the mice the cells were 

collected from (biological replicates). All results in the main figures 
were computed using the computational replicates, whereas the results 
using biological replicates are also provided in Extended Data Figs. 4 
and 5. The results of corresponding comparisons were very similar 
between these two replicate-splitting methods. The AUROC score from 
cross-validation was used to measure the performance of the model. 
The higher AUROC value represents better ability of the model to pre-
dict the group label, which indicated the two groups had larger mCH 
differences and were more distinguishable. Sci-kit learn was used for 
model implementation.

When the groups being studied contained cells from different sub-
classes (for example, cortical-projecting neurons in one source), we 
upsampled the training set to ensure that it captures the group differ-
ences rather than the differences of cell distributions across subclasses. 
For example, when comparing neurons projecting to two different 
cortical targets, the subclass composition differences could make the 
model over-weight the features marking different subclasses. To get rid 
of this bias, we randomly repeated the neurons from the underrepre-
senting group and ensured the two groups had the sample number of 
training samples in each subclass. The models were then trained and 
tested in the same setting as mentioned above.

Several reasons could contribute to a low prediction performance. 
Biological reasons are as follows. (1) Some neurons make projections 
to several targets simultaneously. These could result in the neurons 
being captured by several retrograde labelling experiments of dif-
ferent targets. It would be impossible to predict a single label with 
our pairwise models for this type of neuron. (2) Some neurons could 
project to different target regions but have tiny epigenetic differences. 
To systematically distinguish between (1) and (2), other anatomic and 
genetic validation are still needed.

Technical reasons are as follows. (3) The epigenetic differences 
between neurons projecting to different targets varies across repli-
cates. (4) The contamination levels of some projections are relatively 
high, which makes larger noise and hinders the ability of the models to 
capture real signals. (5) The sample sizes of some projections are small, 
which make the learning more challenging. (6) The models are not pow-
erful enough to capture the complex differences between projections.

In this study, male and female mice were treated as biological replicates 
after removing sex chromosomes. Although methylation patterns of 
autosomes are similar, differences between genders or individuals might 
still exist. The small differences of performances between data-splitting 
methods (based on computation or biological replicates) might sug-
gest a less notable effect contributed by (3) in those samples. If the 
cross-source or layer predictions (described below) performed better 
than the within source or layer models, we would suspect that shared 
differences between neurons projecting to different targets exist across 
sources or layers, and the major reason for lower accuracies of within 
source or layer models might be (4) or (5). Elimination of contaminated 
FANS runs decreases the potential influence by (4), although there are 
still contaminated cells included in the dataset. To evaluate the potential 
limitation of (6), more carefully curated models, and accordingly more 
samples, would be required. Thus, given all these factors, we are gener-
ally more confident in the distinguishable target pairs when training 
and testing sets were split based on both computational and biological 
replicates. The interpretation of comparisons without biological repli-
cates and the indistinguishable pairs would need to be more careful and 
are not involved in the major conclusions in this manuscript. Our Article 
aims to provide a general view across several sources and targets. More 
detailed understanding of specific projections would require larger 
scale profiles on those specific projection types.

Cross source prediction
The logistic regression models were trained to predict the projec-
tion targets in one source and tested in the other source. The training 
and testing sets came from either the biological or computational 



replicates. When using biological replicates, the final AUROC scores 
were the average of AUROCs by training in male mice in one source 
and testing in female mice in another source, and by training in female 
mice in the first source and testing in male mice in the second source. 
For cortical targets, we upsampled the training set as stated above.

Note that when the models were training only in one source, they 
would not necessarily capture the shared features across sources to 
distinguish neurons projecting differently even if some shared differen-
tial features exist. However, when more differential features are shared 
across sources, the models are more likely to select the shared ones. 
Thus, the low performance in the analysis might indicate that there are 
less differential features shared across sources and the models majorly 
selected the differential features specific to one source but not another 
source, rather than representing none of the differential features are 
the same between the two sources. By contrast, the high performances 
usually indicate that more differential features are shared between 
sources. Similar interpretation applies to the cross layer prediction 
in the next section.

Cross layer prediction
This analysis was specifically for CC projection neurons to study 
whether the mCH differences between projection neurons were shared 
or distinct across layers. The logistic regression models were trained to 
predict the projection targets in all but one layer and tested in the one 
layer left out during training. The training and testing sets were split 
based on either computational or biological replicates as stated above.

Identification of CH-DMGs
Wilcoxon rank-sum tests and t-tests were widely used to identify dif-
ferential genes in single-cell studies31, which consider each cell as an 
independent sample. However, the cells from the same replicate, indi-
vidual or batch would be more similar than the cells from different 
ones. Therefore, considering all cells as independent samples would 
overestimate the statistical power in single-cell data. To address this 
problem and take the replicate-level variation into consideration, we 
used a linear mixed model for the differential analysis and performed 
paired-wise comparisons between groups. The posterior mCH levels 
of 12,261 autosomal genes after coverage filters were used for these 
analyses. The posterior gene body mCH was used as dependent vari-
ables. Each individual mouse was considered as a random effect. The 
global mCH levels and the gender of the mice were considered as fixed 
effects. Other fixed effects were determined on the basis of the com-
parison. Specifically, for DMGs between L5 ET clusters:

Gene_mCH ~ cluster + gender + global_mCH + (1 | mouse)
For DMGs between cortical targets in each source:

Gene_mCH ~ target + cluster + gender + global_mCH + (1 | mouse)
For DMGs between ET targets in each source:

Gene_mCH ~ target + gender + global_mCH + (1 | mouse)
Each gene was tested separately, and a two-sided Wald test was per-

formed to estimate the P value for the effect being tested. FDR was 
computed for each pair of groups with the Benjamini–Hochberg pro-
cess. The fold change of each gene was computed by the average mCH 
across cells in one group divided by the average mCH across cells in the 
other group, with pseudo-counts of 0.1. The criterions for significance 
when testing different variables were distinct and shown as follows. For 
DMGs between L5 ET clusters: absolute log-transformed fold change 
greater than log1.5 and FDR smaller than 0.01. For DMGs between IT 
targets or between ET targets in each source: absolute log-transformed 
fold change greater than log1.25 and FDR smaller than 0.01.

GO enrichment analysis
GO enrichment analysis was performed using the web server at http://
geneontology.org/. The 12,261 genes that passed the coverage thresh-
old mentioned above were used as background, and binomial tests 
were used to select the significant biological processes related to each 

DMG list. Note that GO names are nomenclature that summarize many 
complex relationships between genes and their function, so we do not 
expect that these analyses can be used to directly infer how a particular 
gene contributes to neuronal function in a specific context.

Identification of CG-DMRs
To identify DMRs, we merged the allc files of individual cells assigned 
to the same cluster to create a pseudo-bulk allc table for each cluster. 
Then we selected all the CG sites and combined the methylation on two 
DNA strands for each CpG site. We run methylpy29 DMRfind to identify 
the DMRs and require the DMRs to contain at least two differentially 
methylated CpG sites (DMS).

Inference of crucial transcription factors with PageRank
The method was modified from Taiji34 to integrate the information 
of both gene body and regulatory regions. The 537 motifs in JASPAR 
2018 non-redundant core vertebrate database35 were used for these 
analyses. We scanned each of the motifs against the mm10 INTACT 
mouse genome with fimo36 and P-value cutoff as 1 × 10−5. The DMRs 
between clusters were expanded 100 bp on both sides, and the ones 
overlapping with motifs were assigned to the corresponding tran-
scription factor. The DMRs were also assigned to the potential genes 
they regulated using GREAT37. The transcription factors were then 
linked with the target genes based on these DMRs that links to both 
the upstream transcription factors and the downstream genes. A gene 
regulation network was constructed where the nodes represented the 
genes and edges represented the links between transcription factor 
genes and target genes.

To assign weights to the edges and initiate the node importance, 
the normalized ncluster × ngene methylation matrix (M) were min-max 
normalized across genes within each cluster to 0–1 by
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and 1 − Nij was used as the predicted expression of each gene in cluster 
i. The predicted expressions of all genes were used as starting impor-
tance I0. Then we used a ngene × ngene matrix A to represent the adjacency 
matrix of transcription factor–gene regulation network, in which Aij 
was assigned as the predicted expression level of gene i if gene i is a 
transcription factor. To ensure an undirected propagation, we used 
B = A + AT as the final adjacency matrix. B was normalized by row into 
the transition matrix P by
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Next we performed a diffusion step of the PageRank scores through 
the network. For iteration t, the PageRank scores were computed by

I PI I= (1 − rp) + rpt t −1 0

in which rp represents a restart probability to balance the global and 
local effect of the propagation on the network. The diffusion step was 
stopped when I I− < 10t t

−5.

Clustering of L5 ET cells in each source region
L5 ET neurons from epi-retro-seq and unbiased snmC-seq were com-
bined in this analysis. After the same process as clustering all cells to 
derive posterior mCH level and select highly variable features, the 
first 30 principal components were used for computing KNN (k = 15) 
and Louvain clustering. The resolutions used for source regions were 
1.6 for MOp, AI, AUD and RSP; 2.0 for SSp and PTLp; 1.0 for VISp; and 
2.5 for ACA. The resolutions were determined on the basis of visually 
examining the cluster numbers and projection enrichment.

http://geneontology.org/
http://geneontology.org/
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To confirm that there were epigenetic features distinguishing the 

clusters, we computed the differentially methylated 100-kb bins (DMBs) 
across all pairs of clusters using two-sided Wilcoxon rank-sum tests. 
The bins were defined as differential if the absolute log-transformed 
fold change between clusters was greater than log 1.5 and the FDR of the 
test smaller than 0.01. We also used AUROC > 0.85 and area under preci-
sion/recall curve (AUPR) > 0.6 to define DMBs, which provided similar 
results. Two clusters in RSP that had less than 5 DMBs were merged.

Tests of projection enrichment in clusters
As described above, the cells from the same replicate would be more 
similar, and considering all cells as independent samples will over-
estimate the statistical power in single-cell data. Therefore, we used 
linear mixed models to test for significant enrichment of particular 
projections in each cluster, considering the mouse where the cells came 
from. The cluster was used as dependent variables. Each individual 
mouse was considered as a random effect. The projection target was 
considered as fixed effects.

[Cluster ~ target + (1 | mouse)]
Each projection target and each cluster were tested separately, 

and two-sided Wald tests were performed to estimate the P value for 
the effect being tested. FDR was computed for each source with the  
Benjamini–Hochberg process. ‘(Observed − expected)/expected’ in 
the enrichment matrices were computed using the same method as 
in Pearson’s chi-square test.

Integration of epi-retro-seq and retro-seq
Single-cell transcriptomic data from Tasic et al.6  was downloaded from 
NCBI Gene Expression Omnibus (GEO) accession GSE115746. Then, 
365 cells within clusters of ‘L5 PT ALM Npsr1’, ‘L5 PT ALM Slco2a1’ and 
‘L5 PT ALM Hpgd’ were selected for integration analysis. The raw data 
was preprocessed using SCANPY31. Specifically, the read counts were 
normalized by the total read counts per cell and log transformed. The 
top 10,000 highly variable genes were identified and z-score scaled 
across all the cells. For methylation data, the posterior methylation 
levels of 12,261 genes in the 4,176 L5 ET cells were z-score scaled across 
all the cells and used for integration. We used Scanorama38 to integrate 
the z-scored expression matrix and minus z-scored methylation matrix 
with sigma equal to 100.

Overlap score
Overlap score quantifies the similarity of the distributions of two 
groups of cells across clusters, in which higher scores represent the 
two groups are more likely to be co-clustered. The scores were com-
puted using the same method previously described7. Specifically, a 
ngroup × ncluster matrix C was first computed, in which Cik represents the 
number of group i cells in cluster k. C was normalized by row to D, and 
the overlap score between group i and group j was defined as 

D D∑ min( , )k
n

ik jk=1
cluster .

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
Single-cell raw and processed data included in this study were depos-
ited to the NCBI Gene Expression (GEO) SRA with accession number 
GSE150170 and the NeMO ftp archive: http://data.nemoarchive.org/
biccn/lab/callaway/projection/sncell/. Another dataset used in this 
study includes the JASPAR motif database (http://meme-suite.org/db/
motifs) and retro-seq data from GSE115746.

Code availability
The code for all of the analyses can be found at https://github.com/
zhoujt1994/EpiRetroSeq2020.git.
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Extended Data Fig. 1 | Source region dissection maps. The posterior views of 
dissected slices are shown. The slices correspond to Allen Reference Atlas level 
33–39 (slice 3), 39–45 (slice 4), 45–51 (slice 5), 51–57 (slice 6), 57–63 (slice 7),  
69–75 (slice 9), 75–81 (slice 10), 81–87 (slice 11) and 87–93 (slice 12), respectively. 

All brain atlas images were created based on Wang et al.25 and © 2017 Allen 
Institute for Brain Science. Allen Brain Reference Atlas. Available from:  
http://www.atlas.brain-map.org.

http://www.atlas.brain-map.org
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Extended Data Fig. 2 | Removing potential doublets and non-neuronal 
cells. a, b, t-SNE of cells after quality control (n = 16,971) coloured by number of 
non-clonal reads (a) and predicted doublet scores (b). c, Distribution of 
doublet scores for real cells (blue) and simulated doublets (orange). d–f, t-SNE 
of cells after removing doublets (n = 13,414), coloured by global mCH (d), 
subclass (e), or normalized gene-body mCH level of known cell type gene 

markers (f). Cells with low global mCH level are usually non-neuronal cells.  
g, t-SNE of single neurons (n = 11,827) coloured by subclass. h, Proportion of 
single neurons in each subclass for each projection. i, The scatter plots for 
filtering FANS runs with high contamination. Each dot represents a single run 
(n = 101 left, 115 right), and the size of the dot represents the number of 
on-target cells selected by the run.



Extended Data Fig. 3 | Cell type composition of all projections. a, Joint t-SNE 
of neurons profiled by epi-retro-seq (n = 6,362) and unbiased snmC-seq2 
(n = 15,782, without enrichment of projections) from MOp, SSp, ACA and AI, 
coloured by subclass (top left), source region (top right), and projection targets 
in epi-retro-seq (bottom). b, t-SNE of neurons (n = 11,827) projecting to each IT 

target (top) and ET target (bottom). The cells projecting to the target were 
coloured by subclass and cells that project to all other targets or whose target 
was not confidently assigned were greyed. c, The proportion of cells projecting 
from each source (row) to each target (column) in all subclasses.
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Extended Data Fig. 4 | AUROC of cortical target pairs within and across 
sources. a–h, AUROC scores of models trained and tested in the same  
source (a–d), or of models tested in all sources after being trained in each one 
of them (e–h). Gene body (a, c, e, g) or 100-kb bin (b, d, f, h) mCH was used as a 

feature. The training and testing sets were randomly split (a, b, e, f) or split 
based on biological replicates (c, d, g, h). The values in a–d correspond to the 
diagonals of e–h but ordered decreasingly.



Extended Data Fig. 5 | AUROC of cortical target pairs within and across 
layers. a, d, Demonstration of training and testing data for within layer 
prediction (a) and cross layer prediction (d). In a, the models were trained and 
tested in the same layer with different cells. In d, the testing sets were as in  
a, but the models were trained in all other layers. b, c, e, f, AUROC of within-layer 
prediction (b, c) or cross-layer prediction (e, f). The training and testing sets 

were randomly split (b, e) or split based on biological replicates (c, f). Gene 
level mCH were used for all the predictions. g, Box plots of example CH-DMGs 
between MOp versus SSp-projecting neurons (left), or between ACA versus 
VISp-projecting neurons (right). The sample sizes are shown below the x axis. 
*FDR < 0.1, **FDR < 0.01. Box plots are as in Fig. 1.
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Extended Data Fig. 6 | Signature genes and transcription factors of L5 ET 
clusters. a, Proportion of cells from all sources in each cluster. b, Proportion of 
cells in all clusters from each source. c, t-SNE of L5 ET cells (n = 4,176) coloured 
by the normalized gene-body mCH level of cluster gene markers. d, Workflow 
of the PageRank algorithm to infer crucial transcription factors. e, Gene body 
mCH (colour) against PageRank score (size, left), motif enrichment P value 
(size, middle), and motif enrichment fold-change (size, right) for the example 
transcription factors in all L5 ET clusters. P values were computed by Homer 

using one-sided binomial tests. f, Gene body mCH in all clusters of Rora target 
genes identified in cluster 8 (n = 3,299). Significances were determined by 
comparing cluster 8 with each of the other clusters (two-sided Wilcoxon 
signed-rank test, Benjamini–Hochberg FDR). *FDR < 1 × 10−2. FDR for all boxes 
are: 0.60, 1.95 × 10−25, 3.56 × 10−12, 5.24 × 10−29, 1.57 × 10−10, 8.44 × 10−9, 2.94 × 10−32, 
3.56 × 10−41, 1.0, 1.16 × 10−35, 5.85 × 10−29, 2.28 × 10−42, 1.47 × 10−28, 6.42 × 10−3 and 
1.50 × 10−26 (left to right). Box plots are as in Fig. 1.



Extended Data Fig. 7 | Enrichment of different projections in L5 ET clusters. 
a–c, t-SNE of L5 ET cells from each source coloured by clusters. The coloured 
cells are all cells (a), unbiased snmC-seq cells (b), and cells projecting to each 

target (c). Other cells were greyed. d, The enrichment of each projection in each 
L5 ET cluster in each source. *FDR < 0.05.
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Extended Data Fig. 8 | AUROC of ET target pairs within and across sources. 
a, b, AUROC of models trained and tested in the same source (a) or models 
tested in all source regions after being trained in each one of them (b) using 
100-kb bin mCH as features. Training and testing sets were randomly split.  

c, Overlap score between each pair of targets in each source. d, The proportion 
of double-labelled cells versus the AUROC score to distinguish superior 
colliculus versus pons neurons across sources.



Extended Data Fig. 9 | Integration of L5 ET cells from epi-retro-seq and 
retro-seq. a–c, L5 ET ALM cells in SMART-Seq (n = 365) coloured by clusters (a), 
major target regions (b), and detailed target regions (c). Epi-retro-seq cells 

were greyed. d–i, L5 ET cells in epi-retro-seq from all source regions (n = 4,176) 
coloured by MOp clusters (d), SSp clusters (e), sources (f), targets (g), and gene 
body mCH of Slco2a1 (h) and Astn2 (i).
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Extended Data Fig. 10 | Validation of L5 ET + CC neurons. a, UMAP of ACA 
(n = 1,131) and RSP (n = 516) L5 ET cells, coloured by gene body mCH of example 
genes. Ubn2 shows hypomethylation in the cluster enriching neurons 
projecting to the VISp in both ACA and RSP, whereas Sesn3 and Efna5 are 
hypomethylated in the cluster only in ACA or RSP, respectively. VISp-projecting 
cells are shown in red at the bottom. b, By injecting AAV-retro-Cre in the VISp 

and AAV-FLEX-GFP in the ACA, the axon terminals of ACA–VISp neurons were 
also observed in the internal capsule (IC) and mediodorsal nucleus of thalamus 
(MD). Scale bars, 500 μm (left) and 50 μm (right in IC and MD). c, The 
proportion of double-labelled neurons that project to both VISp and pons, out 
of neurons projecting to pons in medial and lateral visual cortex (VISm and 
VISl, respectively). n = 2 biological replicates are shown as individual points.
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