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Abstract: Phospholipidosis is an adverse effect caused by numerous cationic amphiphilic drugs
and can affect many cell types. It is characterized by the excess accumulation of phospholipids
and is most reliably identified by electron microscopy of cells revealing the presence of lamellar
inclusion bodies. The development of phospholipidosis can cause a delay in the drug
development process, and the importance of computational approaches to the problem has
been well documented. Previous work on predictive methods for phospholipidosis showed that
state of the art machine learning methods produced the best results. Here we extend this work
by looking at a larger data set mined from the literature. We find that circular fingerprints lead
to better models than either E-Dragon descriptors or a combination of the two. We also observe
very similar performance in general between Random Forest and Support Vector Machine
models.
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Introduction
Phospholipidosis was first believed to be observed by

Nelson and Fitzhugh in 1948,1 when they reported the
accumulation of foam macrophages in rats after long-term
treatment with chloroquine. It has been observed since then
that numerous cationic amphiphilic drugs can induce phos-
pholipidosis in several cell types and that it can be character-
ized by the excess accumulation of phospholipids.2-4

Electron microscopy is the most reliable method of identify-
ing whether a compound has induced phospholipidosis, by
the presence of lamellar inclusion bodies.5 However, it may
also be identified by light microscopy in which cells appear
vacuolated and contain foamy macrophages.6 The observa-

tion of compound-induced phospholipidosis in the drug
development process is considered manageable as the effect
often only occurs at very high doses, many times that of the
intended therapeutic dose.7 There is at present no strong
evidence that that the condition is harmful to human health,
and it is reversible once treatment is terminated, the drug is
expelled from the cell and phospholipid levels return to
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normal.8 This process can take weeks, however, and in some
cases has been reported to last several months. It can be
especially important in the context of the nervous system,
where phospholipids may disrupt cell signaling in neurons
and could possibly be linked to several genetic diseases such
as Niemann-Pick disease.8,9 The occurrence of phospho-
lipidosis in the drug development process therefore can cause
delays as more tests need to be carried out to satisfy
regulatory bodies. It is also possible that the occurrence may
sometimes stop the drug development process altogether. A
recent minireview6 shows that the method by which com-
pounds induce phospholipidosis is still not well understood
and indeed suggests that the underlying mechanism is not
exactly the same for each compound. The most common
mechanism is the inhibition of lysosomal phospholipase
activity leading to the accumulation of several classes of
phospholipids;3,10 it has also been shown, however, that an
increase in synthesis of acidic phospholipids may occur
leading to the “redirection of phospholipid synthesis”.11,12

The application of an in silico model for predicting
phospholipidosis to produce an accurate and fast method
could be of great use to the pharmaceutical industry, where
early screening is of great importance. Indeed, this has
already been recognized with many early attempts at doing
just this. First attempts at producing such a model by
Ploemen et al.13 used pKa and ClogP. Here Ploemen et al.
suggested that a compound would be phospholipidosis-
inducing (PPL+) provided that pKa > 8 and ClogP > 1 and
also that the inequality, eq 1, is satisfied.

Another simple model was suggested by Tomizawa et al.,5

in which a modification to the Ploemen model involved

replacing pKa with NC, the sum of the charge of all
dissociable functional groups in a molecule. A tree model
was created to predict phospholipidosis based on these two
features. This Ploemen model was further tested by Pelletier
et al.7 with a larger data set, and it was shown that
improvements in the rules could be made to produce better
predictivity. The inclusion of additional descriptors and the
use of a Bayesian model also produced even better predic-
tivity than that of the modified Ploemen model. Kruhlak et
al.14 used two commercially available software packages,
MC4PC and MDL-QSAR, to produce predictive models for
phospholipidosis and on a 10-fold cross-validation test
produced {76% positive, 78% negative predictivity} and
{65% positive, 87% negative predictivity}, respectively. All
these approaches are based on relatively simple models, and
as phospholipidosis is clearly a complex effect, applying state
of the art machine learning techniques could therefore
produce even better predictive results.

Ivanciuc15 produced a comprehensive list of state of the
art machine learning techniques and their ability to predict
phospholipidosis, using the nonproprietary data from the
Pelletier data set; the models were tested on a 10-fold cross
validation. The best model for prediction was a Support
Vector Machine16 with an RBF kernel and γ ) 0.01,
producing on the validation fold 97% accuracy and 0.94
Matthews Correlation Coefficient. Here we propose testing
the machine learning models on a larger data set than the
Pelletier one.

Phospholipidosis Database
A phospholipidosis database was created from various

literature sources. It was mainly created from a combination
of two data sets producing a total of 185 compounds, of
which 102 were positive for phospholipidosis (PPL+) and
83 were negative (PPL-). The literature mined data from
the Pelletier data set were used as the basis for our data set
of 117 compounds, and this was supplemented by data taken
from Kruhlak et al.,14 consisting of compounds compiled
from 12 other sources. The Kruhlak et al. data include
compounds marked as negative solely due to the absence of
a reported positive result, and these compounds, which may
in fact be untested, were excluded from our database to
reduce the possibility of erroneous data. This means that all
of the 83 PPL- compounds were reported negative by
electron microscopy. Out of the 102 PPL+ compounds, 34
of these compounds are reported positive by the presence
of foamy macrophages or vacuolations and the remaining
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(ClogP)2 + (calculated pKa)
2 > 90 (1)
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68 of these compounds were confirmed by electron micros-
copy. The phospholipidosis-inducing compounds have been
observed to act on a variety of species including humans,
rats, mice, dogs, rabbits, hamsters and monkeys as well as a
variety of tissue types including lungs, kidney and liver. A
full breakdown of the positive compounds in the Pelletier
data set is shown in Table 1 of Pelletier et al.7 Negative
compounds from the Pelletier data set included “druglike”
molecules searched from the literature, contrasting with the
Kruhlak data included in our data set, in which the negative
compounds were all drugs. As reported by Perez,17 a good
measure of the dissimilarity is the average value of the
dissimilarity of the members of the set:

where T(i, j) is the Tanimoto coefficient. Here a value of 1
would represent a very diverse set and a value of 0 would
be a set of very similar compounds. The value obtained for
our data set was calculated as 0.833 and therefore suggests
that we have a reasonable diversity of compounds contained
within our data. The structures of the compounds were stored
in SMILES18 format, and missing SMILES strings were
obtained from PubChem (http://pubchem.ncbi.nlm.nih.gov)
using the name of the compound as a search term. The
database is supplied as Supporting Information with struc-
tures stored as SMILES.

Method
The SMILES for each molecule was converted into SDF

format and was standardized using tools from ChemAxon.19

The standardization involved removing fragments, rearoma-
tizing, removing explicit hydrogens and cleaning the 2D
structure. Two different sets of descriptors, E-Dragon20 and
Circular Fingerprints,21 were calculated for the data set. The
E-Dragon descriptors were calculated using the online Java
program. Circular Fingerprints were calculated to a depth
of 2 bonds using a Python script. pKa, ClogP and (ClogP)2

+ (pKa)2 were also calculated using ChemAxon tools, and
these were added as descriptors to both of the original sets

of descriptors. This leads to a total of 1,669 descriptors for
E-Dragon and 320 for Circular Fingerprints. A final descrip-
tor set was created by combining both of the different
descriptor sets, creating a total of 1986 descriptors. A
stratified 10-fold cross validation was used for each run: 8
folds were used for training, one was used for internal
validation and one was used as a test set. Stratification was
used to maintain the proportion of positive and negative
compounds in the folds. The test and validation folds were
cyclically rotated so that each fold was used once each as a
test set and as an internal validation set. This internal
validation was used to tune parameters without causing bias
in the prediction of the test fold. Feature selection was then
performed on the training data using the Weka22 function
SVMAttributeEval with default parameters to select the top
50 features. Attributes are ranked by the square of the weight
assigned by SVM.23 We compare two different Machine
Learning algorithms and their power to predict phospholipi-
dosis; the R24 implementation of Random Forest25 and the
R implementation of Support Vector Machines (SVM)16

which uses LIBSVM.26

The number of trees in Random Forest was set to 1000.
The generalization error for forests converges as the number
of trees in the forest become large.25 We can therefore simply
choose a large number of trees, and as our data set is small,
our computation time is not limiting. The variable, mtry,
which controls the number of features selected at random at
each node, of which the feature providing the best split is
chosen, was varied from 1 to 50 with a step size of 1. SVM
was run with an RBF kernel meaning that two parameters
needed tuning, γ and C. These were varied by (2-19, 2-18.75,
..., 22.75, 23) and (2-5, 2-4.75, ..., 214.75, 215) respectively.

The Matthews Correlation Coefficient (MCC)27 was used
as a measure of predictivity. Its value can range from -1 to
1, where -1 is a perfect anticorrelation, 0 is the equivalent
of random guessing and 1 is a perfect correlation. It is used
here for comparison between the two algorithms as it is
arguably the best single valued metric that describes the
confusion matrix of a binary classification problem.

(17) Perez, J. J. Managing molecular diversity. Chem. Soc. ReV. 2005,
34, 143–152.

(18) Weininger, D. SMILES, a chemical language and information
system. 1. Introduction to methodology and encoding rules.
J. Chem. Inf. Comput. Sci. 1988, 28, 31–36.

(19) ChemAxon, Standardizer, JChem 5.2.5.1, 2009. http://www.
chemaxon.com.

(20) Tetko, I. V.; Gasteiger, J.; Todeschini, R.; Mauri, A.; Livingstone,
D.; Ertl, P.; Palyulin, V. A.; Radchenko, E. V.; Zefirov, N. S.;
Makarenko, A. S.; Tanchuk, V. Y.; Prokopenko, V. V. Virtual
computational chemistry laboratory - design and description.
J. Comput.-Aided Mol. Des. 2005, 19, 453–463.

(21) Glen, R. C.; Bender, A.; Arnby, C. H.; Carlsson, L.; Boyer, S.;
Smith, J. Circular fingerprints: Flexible molecular descriptors with
applications from physical chemistry to ADME. IDrugs 2006, 9,
199–204.

(22) Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.;
Witten, I. H. The WEKA Data Mining Software: An Update.
SIGKDD Explor. 2009, 11, 10–19.

(23) Guyon, I.; Weston, J.; Barnhill, S.; Vapnik, V. Gene Selection
for Cancer Classification using Support Vector Machines. Mach.
Learning 2002, 46, 389–422.

(24) R Development Core Team, R: A Language and EnVironment
for Statistical Computing; R Foundation for Statistical Computing:
Vienna, Austria, 2006, ISBN 3-900051-07-0.

(25) Breiman, L. Random Forests. Machine Learning 2001, 45, 5–32.
(26) Chang, C.-C.; Lin, C.-J. LIBSVM: a library for support vector

machines; 2001, software available at http://www.csie.ntu.edu.tw/
∼cjlin/libsvm/.

(27) Matthews, B. W. Comparison of the predicted and observed
secondary structure of T4 phage lysozyme. Biochim. Biophys. Acta
1975, 405, 442–451.

div(A) ) ∑
i)1

N

∑
j)1

i*j

N

[1 - T(i, j)]/[N(N - 1)] (2)
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It can be an especially useful measure where classes are
unbalanced as can be seen in eq 3; it takes into account not
only true positives (TP) and true negatives (TN) but also
false positives (FP) and false negatives (FN). Accuracy, the
percentage of correctly predicted instances, is not a good
measure of prediction quality for unbalanced classes. For
example, when a problem has a very skewed proportion of
two classes, predicting each instance to belong to the larger
class will lead to a high percentage accuracy. This prediction
is, however, not very useful or informative, especially if one
is interested in predicting membership of the smaller class
correctly. The MCC gives a value close to zero for such
uninformative predictions. Indeed, even if either the predicted
or real data contain no members of one class, causing one
of the four sums in the denominator to go to zero, one can
show that the correct limiting value of the MCC is still zero28

and pragmatically one can specify a minimum value of one
for the denominator.29 Hence the uninformative prediction
of the same class for every instance is seen to be no more
useful or informative than random guessing. Ten independent
runs of both methods were used for each fold, and the
average MCC on both the validation and test sets for each
of the parameters was calculated. Initially it was seen that a
single 10-fold cross-validation run could give large deviations
across each individual fold. Therefore in order to get a more
realistic value of performance, we repeated the 10-fold cross
validation 10 times with different fold definitions. Each fold
definition was created using random stratified sampling with
a different input seed.

Results
We report here in Tables 1-3 the average MCC and the

standard deviation for each of the 10-fold cross validations
performed for the three different descriptor sets used. The
parameters are chosen so that the maximum MCC value is
obtained for the internal validation. This is done by calculat-
ing the MCC of the internal validation for all tested
parameters over each of the 10 repeated runs of each fold.
This value is then averaged to give a value for the
performance on that fold. This is done for all of the 10 folds,
in each of the 10 different 10-fold cross validations. These
MCC values are then averaged over their respective 10 folds,
and the value is summed for each parameter across the 10
different definitions of folds. The parameter which produced
the highest averaged MCC value over the different fold
definitions was selected. We report the averaged MCC value

over each of the 10 repeated 10-fold validations and 10-
fold tests, for that parameter. We also report the standard
deviation across the 10 folds for each of the fold definitions,
σT. σ (MCC) is the standard deviation of the MCC of the
test set, across the 10 different fold definitions.

The results for the E-Dragon descriptor set are shown in
Table 1. Random Forest produces the best result with an
averaged MCC of 0.532 across the 10 separate 10-folds.
SVM only produces a better result on one of the different
fold definitions and produces an averaged MCC of 0.485.
Random Forest is also more reliable, producing a smaller
averaged standard deviation on the test folds, σjT, of 0.193
compared to that of SVM. Standard deviations for different
fold definitions range from 0.133 to 0.257 for Random Forest

(28) Baldi, P.; Brunak, S.; Chauvin, Y.; Andersen, C. A. F.; Nielsen,
H. Assessing the accuracy of prediction algorithms for classifica-
tion: an overview. Bioinformatics 2000, 16, 412–424.

(29) Cannon, E. O.; Bender, A.; Palmer, D. S.; Mitchell, J. B. O.
Chemoinformatics-Based Classification of Prohibited Substances
Employed for Doping in Sport. J. Chem. Inf. Model. 2006, 46,
2369–2380.

MCC ) TP × TN - FP × FN

√(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(3)

Table 1. Average MCC Value for the Internal Validation
and Test Set for Each of 10 Different Definitions of a
10-fold Cross Validation for the E-Dragon Descriptorsa

RF (mtry ) 5) SVM (γ ) 0.0003, C ) 6.727)

fold
definitions

int
vals σV test σT

int
vals σV test σT

1 0.524 0.162 0.532 0.144 0.517 0.208 0.500 0.228

2 0.538 0.143 0.488 0.211 0.451 0.274 0.481 0.191

3 0.558 0.179 0.548 0.176 0.570 0.212 0.462 0.182

4 0.538 0.111 0.523 0.133 0.434 0.230 0.474 0.207

5 0.519 0.218 0.552 0.194 0.439 0.258 0.476 0.245

6 0.543 0.259 0.507 0.257 0.434 0.188 0.409 0.206

7 0.457 0.161 0.550 0.188 0.521 0.132 0.519 0.198

8 0.497 0.147 0.573 0.229 0.534 0.130 0.464 0.238

9 0.452 0.182 0.485 0.225 0.543 0.111 0.551 0.293

10 0.567 0.155 0.560 0.176 0.554 0.179 0.517 0.196

av 0.519 0.172 0.532 0.193 0.500 0.192 0.485 0.218

a The average reported at the bottom is the averaged value of
the columns. σV represents the standard deviation across the 10
different folds for the internal validation. Similarly, σT represents
the standard deviation for the test set. Highlighted in bold is the
highest MCC on the test fold for each fold definition.

Table 2. Average MCC Value for the Internal Validation
and Test Set for Each of 10 Different Definitions of a
10-fold Cross Validation for the CFP Descriptorsa

RF (mtry ) 4) SVM (γ ) 0.0110, C ) 0.841)

fold
definitions

int
vals σV test σT

int
vals σV test σT

1 0.650 0.191 0.639 0.207 0.706 0.182 0.719 0.212

2 0.638 0.259 0.647 0.227 0.679 0.188 0.629 0.198

3 0.634 0.223 0.619 0.238 0.648 0.188 0.686 0.205

4 0.591 0.167 0.639 0.171 0.600 0.142 0.644 0.180

5 0.512 0.396 0.536 0.361 0.680 0.080 0.623 0.152

6 0.650 0.264 0.626 0.243 0.668 0.223 0.658 0.182

7 0.696 0.169 0.607 0.191 0.672 0.179 0.633 0.168

8 0.624 0.188 0.610 0.190 0.663 0.182 0.622 0.206

9 0.643 0.222 0.611 0.204 0.696 0.296 0.636 0.234

10 0.675 0.161 0.653 0.180 0.708 0.146 0.653 0.202

av 0.631 0.224 0.619 0.221 0.672 0.181 0.650 0.194

a The average reported at the bottom is the averaged value of
the columns. σV represents the standard deviation across the 10
different folds for the internal validation. Similarly, σT represents
the standard deviation for the test set. Highlighted in bold is the
highest MCC on the test fold for each fold definition.
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and from 0.182 to 0.293 for SVM. For the CFP descriptors,
the results of the 10 independent 10-fold cross validations
are shown in Table 2. SVM produces the best result overall
with an averaged MCC of 0.650 compared to an MCC of
0.619 for Random Forest. Random Forest also has a higher
σT on average at 0.221. The standard deviations for the
averaged MCC for each fold definition (σ(MCC)) are much
lower for both SVM and Random Forest, with values 0.031
and 0.033 respectively.

For the combination descriptor set the results are shown
in Table 3. Here we see again Random Forest producing a
higher averaged MCC value on the test set compared to that
of SVM. Again the best mtry parameter selected is 4 and
Random Forest produces more reliable results with a σjT )
0.178. The standard deviation of the average MCC across
each fold definition is small for both Random Forest and
SVM, with values 0.034 and 0.058.

Overall the most predictive method is an SVM model with
γ ) 0.011 and C ) 0.841 using CFP descriptors.

Discussion
The use of machine learning algorithms and a more

sophisticated descriptor set can lead to improved prediction.
While it is hard to distinguish which had the larger effect, it
has been shown that using more sophisticated descriptors
than simple “dumb” descriptors leads to an increase in
predictivity.30 It has also been shown that both Random
Forest and SVM do significantly better than simpler methods

such as linear trees.31,32 Both SVM and Random Forest
produce good predictivity. Using a repeated 10-fold cross
validation with 10 different definitions allows for a more
reliable result to be obtained. This can be seen by the small
deviation in results across different fold definitions (σ(MCC)).
Another option could have been to select the folds so that
dissimilar compounds appear in each. While this produces
a good test for the algorithm, it may not be similar to how
the algorithms would be used for a real world problem. Often
these techniques will be trained on all possible data available,
therefore when a new molecule is tested it will not always
be highly dissimilar to those molecules in the training set.
When artificially selecting folds it can be the case that the
test set has a larger amount of unseen molecules than when
used in the real world, and hence an artificially lower MCC
value could occur. A stratified cross validation, in which
compounds are selected randomly while maintaining their
class proportions, can still give the variation in folds
necessary to test the algorithm. This can be seen from the
large standard deviation across individual folds (σT). These
large variations across individual folds can suggest that
certain molecules are particularly difficult to predict. A
confidence index was derived which can be used as a guide
to which molecules were hard to predict. For the CFP data
set we calculated the proportion of times the majority
prediction was made for each compound over all the runs.
This produces a value between 0.5, suggesting that over the
runs both classes were predicted equally, and 1.0, for which
over the runs only one class was predicted for this compound.
A table of the compounds and their respective indexes for
both SVM and Random Forest is included in the Supporting
Information.

In order to validate that our model was not overfitting,
we investigated y-scrambling33 of the data. This was
performed on the CFP data set as this produced our best
model. The data were initially split into a training set and a
test set (60%/40%) using a weighted random sampling. In
the training set the class column was permuted randomly,
and then the same procedure as before was followed. 50
features were selected using SVMAttributeEval with default
parameters, and then SVM with γ ) 0.011 and C ) 0.841
and Random Forest with mtry ) 4 were trained on the data.
These models were then used to predict the original test set.
This was repeated 50 times. The MCC and the fraction of
correct predictions, ACC, are shown in Figure 1 for Random
Forest and SVM respectively. The model was also trained
without the initial scrambling following the same procedure

(30) Bender, A.; Glen, R. C. A Discussion of Measures of Enrichment
in Virtual Screening: Comparing the Information Content of
Descriptors with Increasing Levels of Sophistication. J. Chem.
Inf. Model. 2005, 45, 1369–1375.

(31) Svetnik, V.; Liaw, A.; Tong, C.; Culberson, J. C.; Sheridan, R. P.;
Feuston, B. P. Random Forest: A Classification and Regression
Tool for Compound Classification and QSAR Modeling. J. Chem.
Inf. Comput. Sci. 2003, 43, 1947–1958.

(32) Burbidge, R.; Trotter, M.; Buxton, B.; Holden, S. Drug design
by machine learning: support vector machines for pharmaceutical
data analysis. Comput. Chem. 2001, 26, 5–14.

(33) Rücker, C.; Rücker, G.; Meringer, M. y-Randomization and Its
Variants in QSPR/QSAR. J. Chem. Inf. Model. 2007, 47, 2345–
2357.

Table 3. Average MCC Value for the Internal Validation
and Test Set for Each of 10 Different Definitions of a
10-fold Cross Validation for the Combination of
Descriptorsa

RF (mtry ) 4) SVM (γ ) 0.019, C ) 0.354)

fold
definitions

int
vals σV test σT

int
vals σV test σT

1 0.502 0.171 0.586 0.134 0.553 0.223 0.403 0.215

2 0.535 0.227 0.506 0.233 0.527 0.151 0.506 0.220

3 0.564 0.218 0.565 0.165 0.584 0.229 0.516 0.140

4 0.512 0.070 0.589 0.117 0.581 0.220 0.564 0.217

5 0.449 0.200 0.523 0.140 0.429 0.260 0.478 0.221

6 0.511 0.169 0.508 0.212 0.529 0.242 0.481 0.240

7 0.511 0.224 0.545 0.158 0.509 0.235 0.590 0.214

8 0.476 0.221 0.495 0.147 0.522 0.239 0.430 0.162

9 0.542 0.226 0.517 0.272 0.579 0.177 0.536 0.269

10 0.531 0.096 0.557 0.199 0.546 0.173 0.540 0.190

av 0.513 0.182 0.539 0.178 0.536 0.215 0.505 0.209

a The average reported at the bottom is the averaged value of
the columns. σV represents the standard deviation across the 10
different folds for the internal validation. Similarly, σT represents
the standard deviation of the test set. Highlighted in bold is the
highest MCC on the test fold for each fold definition.
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with 10 repeats, and the results are shown as red stars. It
can be seen that our methods do produce both higher MCC
and higher ACC, fraction of correct predictions, than those
with y-scrambling, suggesting that information is gained in
the process of learning. The results from the y-scrambled
models are statistically in line with those expected on the
basis of purely random prediction. We also see a good
correlation between MCC and ACC, which is as expected
for a reasonably balanced data set. The best result for
scrambling has an MCC value of 0.384 and an ACC around
0.689. The mean of the scrambled data for both SVM and
Random Forest lies around the (0.5,0.0) point as expected,
and all points lie within 2 standard deviations. With a larger
data set and therefore test set we would expect a reduction
in the deviation of the MCC and ACC values for scrambling.

Table 4 shows the top 10 ranked features across all of the
runs for the combination of descriptors data set. Out of the
top 10, 8 features are selected from CFP, and 2 are selected
from the E-Dragon descriptors which are the sophisticated
descriptors: 3D-MoRSEssignal 23/unweighted (Mor23u)
and the Ghose-Viswanadhan-Wendoloski antihypertensive-
like index at 50% (Hypertens-50). For the top 50 features
selected for the combination data set, 25 were on average
chosen as CFP descriptors and 25 were chosen as E-Dragon.
Despite the use of feature selection, as can be seen from the
results, using a larger number of descriptors can lead to a
less predictive model. Surprisingly, as they have been
suggested as important descriptors in previous work,7,13 pKa

and ClogP do not appear in the top 10 selected features.
Looking at the top 50 features for the CFP data set, however,
both ClogP (top) and pKa (third) appear. This could be the
main reason why we see a large improvement with CFP, as
these descriptors seem important and are picked out more
easily with the smaller number of descriptors to choose from.

This also gives a good justification for believing that just
using a large number of features, and hoping that feature
selection will pick the most descriptive features out, is a bad
approach to machine learning.

We have made numerous attempts to repeat Ivanciuc’s
study15 of the Pelletier database. Structures were downloaded
using the CAS numbers supplied by Pelletier et al.7 using
PubChem (http://pubchem.ncbi.nlm.nih.gov). E-Dragon20

descriptors were calculated from these structures once any
fragments had been removed. We have used the same feature
selection method from Weka,22 SVMAttributeEval with
default parameters, to choose the top 50 E-Dragon descrip-
tors, just as Ivanciuc did. We have implemented a workflow
which is effectively identical to that with which Dr. Ovidiu

Figure 1. (a) SVM (γ ) 0.0110, C ) 0.841) results for y-scrambling. The MCC is plotted against the accuracy, ACC
(the fraction of correct predictions). Blue stars show the repeated runs of different scrambled data. Red stars show
our best model run on this split of the unscrambled data which is repeated 10 times. For SVM this produces the same
confusion matrix for all runs as expected. (b) Random Forest (mtry ) 4) results for y-scrambling. Here Random
Forest produces 3 distinct confusion matrices for the 10 runs on the unscrambled data.

Table 4. Average Rank of the Features across All Runs
for the Combined Data Seta

feature average rank

1 0-Cac;1-C3;1-O.co2;1-O.co2 9.86
2 0-N3;1-C3;1-C3;1-C3 18.71
3 0-C2;1-C2 21.98
4 0-Car;1-Car;1-Car;1-Nar 23.09
5 0-C3;1-C3 23.58
6 Mor23u 28.51
7 0-C3;1-C2;1-C3;1-N3 29.35
8 0-O.co2;1-Cac 29.60
9 Hypertens-50 29.70
10 0-C2;1-Nam;1-Nam;1-O2 30.12

a The rank is determined from the feature selection performed
using SVMAttributeEval on the training folds. Here the top 10
highest ranked features are shown. All features apart from 6 and 9
are represented in circular fingerprint notation. Mor23u relates to
3D-MoRSEssignal 23/unweighted and Hypertens-50 relates to
Ghose-Viswanadhan-Wendoloski antihypertensive-like index at
50%. Both are descriptors calculated by E-Dragon.
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Ivanciuc kindly supplied us, using Weka to build an SVM
model with a Gaussian radial basis function kernel. As
previously discussed, this involves the use of two parameters
γ and C. We chose the same γ parameters as Ivanciuc reports
and chose C ) 100 just as he did (private communication).
We randomly split the Pelletier database into 10 folds for
cross validation, and repeated this splitting 10 times, so that
we have carried out 10 independent 10-fold cross validations
on the 117-molecule data set.

This procedure generated an average prediction accuracy
of 0.820 and MCC of 0.658. This is a significant difference
compared with the accuracy of 0.970 and MCC of 0.944
reported by Ivanciuc, but is in line with what we report for
our own models. To ensure that our own results can be
reproduced, we supply as Supporting Information our
database containing structures in SMILES format and the
necessary scripts used to run our models.

As can be seen from the results reported for our models
on the smaller 117 molecule data set, an increase in the size
of the data set can cause a difference in predictivity. One
possible reason for the large deviation across folds is the
relatively small number of molecules in each fold (∼18 in
the full data set and only ∼12 in the smaller one) and hence
in the test set. A small number of molecules implies that the
MCC will vary to a much greater extent when a single
molecule’s prediction is changed. Therefore despite the
∼50% increase in size of our full 185 molecule data set, an
individual molecule can still have a large effect on the results.
Figure 1 shows that, with a small test set, in this case 74
molecules, there is a greater chance of a random y-scrambled
model predicting reasonably well. Hence, with a larger data
set more reliable measures of performance can be calculated.
A further future increase in the size of the available data
sets for phospholipidosis would also hopefully cause an

increase in the size of chemical space sampled and allow
for more general rules to be learned.

Conclusion
We have used SVM and Random Forest to generate

predictive models for phospholipidosis inducing potential.
SVM produces the best predictive model using CFP descrip-
tors giving an average MCC of 0.650 in a 10-fold cross
validation. Indeed, we obtain universally better results with
CFP than either with E-Dragon descriptors or with a
combination of the two. The results of the y-scrambling tests
confirm that our models have actually learned and that their
success is not due to chance correlations. A relatively large
deviation occurs between individual folds in each set of 10,
suggesting that some individual molecules could be hard to
predict. However, the deviation is small between the aver-
aged results from the different partitions of the whole data
set into folds. This suggests that we have a reliable value
for the MCC describing the overall predictivity of our
models. We find lower MCC values for the larger 185
molecule data set than for the 117 molecule Pelletier data
set. This suggests, for more reliable and robust predictivity,
the need for a much larger publicly available database of
phospholipidosis inducing potential.
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