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Amyloid-ß (Aß) is best known as themisfolded peptide that is involved in the pathogenesis

of Alzheimer’s disease (AD), and it is currently the primary therapeutic target in attempts

to arrest the course of this disease. This notoriety has overshadowed evidence that Aß

serves several important physiological functions. Aß is present throughout the lifespan, it

has been found in all vertebrates examined thus far, and its molecular sequence shows

a high degree of conservation. These features are typical of a factor that contributes

significantly to biological fitness, and this suggestion has been supported by evidence of

functions that are beneficial for the brain. The putative roles of Aß include protecting the

body from infections, repairing leaks in the blood-brain barrier, promoting recovery from

injury, and regulating synaptic function. Evidence for these beneficial roles comes from

in vitro and in vivo studies, which have shown that the cellular production of Aß rapidly

increases in response to a physiological challenge and often diminishes upon recovery.

These roles are further supported by the adverse outcomes of clinical trials that have

attempted to deplete Aß in order to treat AD. We suggest that anti-Aß therapies will

produce fewer adverse effects if the known triggers of Aß deposition (e.g., pathogens,

hypertension, and diabetes) are addressed first.
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INTRODUCTION

The presence of large numbers of “senile plaques” in the hippocampus and overlying
cortical regions is one of the definitive features of Alzheimer’s disease (AD). These spherical
proteinaceous deposits consist primarily of a 38–42 amino acid long peptide known as amyloid-
ß (Aß). The Aß peptide is derived from a transmembrane protein called amyloid-β precursor
protein (APP). β-site APP cleaving enzyme 1 (BACE1) cleaves APP to release the C99 fragment
of APP. This fragment gives rise to various species of Aβ peptide during subsequent cleavage by γ-
secretase. In the brain, Aß is produced by astrocytes and neurons; however, non-neural tissues such
as skin, skeletal muscle and intestinal epithelium also secrete Aß (Puig and Combs, 2013). Normally
present in a soluble form, Aß is secreted into the extracellular space of the brain and then cleared
by the cerebrospinal fluid (CSF) and vascular system. In the CSF of cognitively normal humans,
the most abundant isoform is 40 amino acids long (Aß40; 2–3 ng/mL), while the second most
common isoform (Aß42) is present at approximately 0.75 ng/mL (Ida et al., 1996; Mo et al., 2015).
Experiments with transgenic mice that overexpress Aß have revealed that the turnover of soluble
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Aß is rapid, and it is cleared from the extracellular space and CSF
with a half-life of just 0.7–2.0 h (Savage et al., 1998; Abramowski
et al., 2008). Radioactive tracer studies have shown that Aß is
removed from the circulation by the capillary beds of the kidneys,
liver, gastrointestinal tract, and skin (Xiang et al., 2015).

Soluble Aß can bind to other molecules of Aß to form
oligomers that are cleared more slowly from the brain, or which
can accrete to form insoluble Aß plaques. Numerous in vivo
and in vitro experiments demonstrated that the oligomeric and
insoluble forms of Aß are toxic to brain cells. These findings
have led to the prevailing view that Aß exhibits a “toxic gain-of-
function” when it forms oligomers and aggregates into plaques,
thereby directly contributing to the pathogenesis of AD, and
making it the logical target for therapeutic intervention (Masters
and Selkoe, 2012). However, of more than 200 clinical trials that
specifically targeted Aß between 1984 and 2013, none improved
clinical outcomes in AD patients (Schneider et al., 2014). Indeed,
some of these trials were associated with adverse outcomes. This
situation has continued through to the present day, with not a
single clinical trial between 2012 and 2017 producing a significant
cognitive benefit. This frustrating lack of progress has led to
suggestions that Aß needs to be targeted at an earlier stage
of the disease, prior to the onset of dementia or even before
any cognitive changes are detectable (Tarawneh and Holtzman,
2009).

The term “amyloidogenic” is applied to any soluble peptide or
protein that has the capacity to interact with similar molecules
to self-assemble into insoluble fibrils, which then bond with
other fibrils to form a regular β-pleated sheet. The molecular
conformation of these amyloid sheets makes them strongly
resistant to degradation by proteolytic enzymes. Functional
amyloids and amyloidogenic peptides are common in biological
systems. For instance, colonial bacteria utilize amyloids to
aggregate, attach to a substrate, and improve the strength of
their protective biofilms (Dueholm et al., 2013). Plants produce
amyloids with strong antifungal and antimicrobial properties
(Villar-Piqué et al., 2010; Garvey et al., 2013).

A meta-analysis of APP-like and Aß-like sequences in living
species has found that these sequences are present in hydra
and sea anemones, indicating that the sequences must have
evolved prior to the evolution of arthropods, around 500 million
years ago (Tharp and Sarkar, 2013). All vertebrates produce
APP, ß-secretase, and Aß; Aß in birds, reptiles and amphibians
has a >90% sequence homology with human Aß, while in
mammals the sequence homology exceeds 95% (Tharp and
Sarkar, 2013). The conservation of the Aß molecular sequence
throughout vertebrate evolution implies that it must confer a
selective advantage for species survival. This notion is further
supported by evidence that depletion of endogenous Aß has
adverse consequences in a variety of species and animal models
(summarized in Table 1). Although this concept runs counter to

Abbreviations: Aß, Amyloid-ß; AD, Alzheimer’s disease; APP, amyloid-ß

precursor protein; AMP, antimicrobial protein; BACE1, β-site APP cleaving

enzyme 1; HSV1, herpes simplex virus-1; APOE, apolipoprotein; CSF,

cerebrospinal fluid; ARIA, amyloid-related imaging abnormalities; BBB,

blood-brain barrier; TBI, traumatic brain injury; LTP, long-term potentiation.

research that has focused on Aß’s neurotoxic potential in AD,
enough evidence has accumulated to suggest that Aß serves a
beneficial role in human physiology, where it may contribute to:

• Antimicrobial activity: Aß has antibacterial, antifungal, and
antiviral properties that are effective against at least eleven
species of microbes.

• Tumor suppression: Aß may intercept oncogenic viruses and
suppress tumor growth.

• Sealing leaks in the blood-brain barrier (BBB): Aß binds
blood-borne solutes together to form a plug that prevents the
spread of neuroactive and toxic components into the brain.

• Promoting recovery from brain injury: The presence of Aß
results in better outcomes in animal models of controlled
cortical impact, spinal cord injury, hypoxia, and autoimmune
disease.

• Regulating synaptic function: Aß regulates the
responsiveness of glutamatergic and cholinergic synapses
in the hippocampus, thereby contributing to memory
consolidation.

Such beneficial properties may explain the persistence of Aß
throughout the vertebrate series. The following sections consider
the evidence that supports each of these putative functions.

Aß HAS ANTIMICROBIAL PROPERTIES

Among the first physiological functions of Aß to be proposed
was the “Bioflocculant hypothesis” (Bishop and Robinson, 2002;
Robinson and Bishop, 2002), where we noted that the widespread
occurrence of Aß in healthy individuals suggests that Aß plays a
natural physiological role, one that is most probably protective.
We suggested that “Aß may have a broader role as a general
chelator and flocculant of potentially toxic agents that are dissolved
in the extracellular fluid. In addition to metal ions, this would
include bacteria and viruses, proteins, and neuroactive molecules
that have been inadvertently released into the extracellular fluid.”
Once bound and taken out of solution, we envisaged that these
pathogens could be phagocytosed and cleared by microglia and
macrophages. In our review of the recent evidence for Aß’s role
as an antimicrobial peptide (AMP), a class of innate immune
molecules with broad-spectrum antimicrobial properties, we
noted that Aß not only binds and intercepts microbial pathogens,
as suggested by the Bioflocculant hypothesis, but also possesses
microbicidal activity that enables it to directly kill bacteria and
viruses (Gosztyla et al., 2018).

The notion that Aß is an AMP is consistent with reports
that several other amyloid peptides have antimicrobial properties,
including serum amyloid A, microcin E492, temporins, and
protegrin-1 (for reviews see Bishop and Robinson, 2004a; Kagan
et al., 2012). Their antimicrobial activity may be partly due to
the capacity of these peptides to form fibrils that insert into cell
membranes and create pores that permit the unregulated passage
of solutes into and out of microbes, leading to the death of
these cells (Kagan et al., 2012). Similarly, Aß may capture and
perforate microbes with its hairpin loop, while aggregates of Aß
may immobilize microbes, akin to neutrophil extracellular traps,
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TABLE 1 | Adverse consequences of endogenous Aß depletion.

Experiment Model (Strain) Results References

BACE1 knockout Mice (C57BL/6) Worse motor performance following controlled

cortical impact

Mannix et al., 2011a

BACE1 knockout or γ-secretase

inhibition

Mice (C57BL/6) More white matter damage and impaired locomotor

recovery following spinal cord injury

Pajoohesh-Ganji et al., 2014

APP or BACE1 knockout Mice (C57BL/6) No compensatory increase in blood flow after

cerebral ischemia, resulting in increased acute

mortality

Koike et al., 2012

APP knockout Mice (C57BL/6) Worse progression of experimental autoimmune

encephalomyelitis

Grant et al., 2012

Aß immunodepletion, blocking of Aß

binding, or APP knockdown

Mice (CD-1 or C57BL/6) Reduced hippocampal LTP and PTP, impaired

spatial and contextual fear memory; rescued by

treatment with human Aß42

Morley et al., 2010; Puzzo

et al., 2011

BACE1 knockout Mice (C57BL/6) Spontaneous epileptic seizures, impaired spatial

memory

Hu et al., 2010

BACE1 and BACE2 double knockout Mice (mixed 129S5 and 129P2) Increased mortality, reduced weight, hyperactive

behavior

Dominguez et al., 2005

Aß immunodepletion Rats (Long-Evans) Impaired short- and long-term memory retention,

rescued by treatment with human Aß42

Garcia-Osta and Alberini,

2009

BACE1 or γ-secretase inhibition or Aß

immunodepletion

Rat (Wistar) cortical or cerebellar

granule neurons, human SH-SY5Y

cells

Reduced cell viability, rescued by incubation with

human Aß40

Plant et al., 2003

Aß immunodepletion Mouse lemur primates Microhemorrhages, iron accumulation in the choroid

plexus

Joseph-Mathurin et al.,

2013

Anti-APP morpholino or ß-secretase

inhibition

Zebrafish Cerebrovascular defects, rescued by treatment with

human Aß40

Luna et al., 2013

APP, Aß precursor protein; BACE1, ß-site APP cleaving enzyme 1; PTP, post-tetanic potentiation; LTP, long-term potentiation.

and the destruction of microbes may be accelerated by increased
oxidation in the presence of iron from ferritin-rich cells like
microglia (Batton et al., 1997; Robinson et al., 2003; Bishop and
Robinson, 2004b; Wang et al., 2012).

The antimicrobial activity of human Aß was confirmed by
Soscia et al. who demonstrated that the addition of 25µg/mL of
synthetic Aß42 slowed the proliferation of seven different bacteria
and one fungal species in culture as effectively or better than
the innate defensin LL-37. Aß42 was found to be slightly more
potent than Aß40 when delivered at the same concentrations. It
may be argued that this antimicrobial effect is not representative
of the in vivo situation, because the concentrations of Aß
used by Soscia et al. exceeded the physiological range by 4–5
orders of magnitude. However, this limitation was addressed by
demonstrating that homogenates of temporal cortex from AD
brain are more effective at inhibiting the growth of Candida
albicans cultures than homogenates from cognitively normal
subjects. This inhibitive effect was neutralized by pre-incubating
the homogenates with anti-Aß antisera, indicating that the
antimicrobial activity was probably due to the higher Aß burden
in the AD brains (Soscia et al., 2010). Additionally, if Aß
responds to pathogens, it is likely that the concentration of Aß
in the immediate vicinity would far exceed the concentration of
Aß averaged across a given brain region. These findings were
confirmed by Spitzer et al. who found that 25–50µg/mL of Aß42
agglutinated and reduced the viability of four bacterial species
and the yeast C. albicans (Spitzer et al., 2016). Direct evidence for

Aß’s antimicrobial activity in vivo was reported in a recent study
by Kumar et al. Here, mice and nematodes that overexpressed
human Aß demonstrated enhanced resistance to bacterial or
yeast infections. Electron microscopy images revealed that Aß
fibrils entrapped bacterial and yeast cells in vitro and in vivo
(Kumar et al., 2016).

In addition to bactericidal and fungicidal activity, Aß has
virucidal properties (reviewed by Bourgade et al., 2016a). Lukiw
et al. demonstrated that high concentrations of Aß42 inhibit the
infection of human neuron-glia co-cultures by herpes simplex
virus 1 (HSV1) as effectively as the antiviral agent acyclovir
(Lukiw et al., 2010). An in vitro study by Bourgade et al. solidified
this finding by demonstrating that Aß42 and Aß40 prevent HSV1
infection as effectively as LL-37, by binding to the virus and
preventing its uptake into cells (Bourgade et al., 2015). This
team further demonstrated that human H4 neuroglioma cells
produce Aß upon exposure to HSV1 and that transfer of cell
media containing Aß to naive H4 cells prevented HSV1 infection
(Bourgade et al., 2016b). Aß was ineffective against the non-
enveloped human adenovirus, leading Bourgade et al. to conclude
that the antiviral activity of Aß is associated with a capacity to
interact with viral coat proteins.

This conclusion is consistent with the findings of White et al.
who showed that Aß42, and to a lesser extent Aß40, are effective
at preventing infection of cultured cells by the pandemic strains
H1N1 and H3N2 of the influenza virus (an enveloped virus)
(White et al., 2014). The primary antiviral mechanism involves
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Aß binding viral particles into extracellular aggregates that were
then precipitated from the supernatant and unable to infect
cultured fibroblasts. Furthermore, pre-incubation of the virus
with soluble Aß stimulated the subsequent uptake of virus by
phagocytes but the virus did not replicate within these cells,
indicating that the aggregated viral particles had been neutralized
by the Aß. The strength of these effects increased as a function
of Aß concentration. It appears that the antimicrobial property
of Aß is largely due to its capacities to permeablize cells and to
bind and aggregate pathogens. A recent study by the same group
found that the Aß42 C-terminal amino acids 41 and 42 are critical
for this function, as fragments lacking these amino acids show an
impaired ability to flocculate and promote neutrophil uptake of
viruses and bacteria (White et al., 2018).

Indirect evidence from animal studies has shown that the
production of Aß waxes and wanes in response to immune
challenge and healthy resolution. For example, Aß deposits
have been noted in wild-type mice infected with Chlamydia
pneumoniae (Little et al., 2004, 2014; Boelen et al., 2007),
HSV1 (Wozniak et al., 2007), pseudorabies virus (Tanaka
and Nagashima, 2017), or Toxoplasma gondii (Torres et al.,
2018), while transgenic-AD mice infected with Porphyromonas
gingivalis showed increased Aß deposition (Ishida et al., 2017).
Notably, Aß returned to normal levels after the C. pneumoniae
infection had resolved. In addition, wild-type mice infected with
persistent cerebral toxocariasis acquire insoluble Aß deposits in
the hippocampus at concentrations 10–20-fold higher than in
uninfected mice (Chou et al., 2017). The presence of Aß deposits
in non-transgenic mice is significant because it may provide
insight into the presence of Aß in the 95% or more AD patients
who have non-hereditary “sporadic” AD. This interpretation is
further supported by evidence from human studies. CSF levels of
soluble APP or Aß decrease during CNS infection (Sjögren et al.,
2001; Gisslén et al., 2009; Jesse et al., 2010; Mattsson et al., 2010;
Angel et al., 2012; Krut et al., 2013), indicating that APP and Aß42
are sequestered within the brain during this time. After resolution
of Lyme neuroborreliosis and bacterial meningitis, CSF levels of
APP, or Aß42 return to normal (Sjögren et al., 2001; Angel et al.,
2012).

Several researchers have championed the “Pathogen
hypothesis” of AD (for review see Robinson et al., 2004b;
Itzhaki et al., 2016), which postulates that AD may be caused
by a cerebral infection of HSV1 (Ball, 1982; Ball et al., 2013;
Itzhaki, 2014), Borrelia (Miklossy, 2015), or C. pneumoniae
(Balin et al., 2008). While a discussion of that literature is beyond
the scope of the present review, it is pertinent to note a variety
of microbial species have been observed in Aß plaques or AD
brains. Specifically, HSV1 DNA (Wozniak et al., 2009), and
Borrelia antigen and DNA (Miklossy, 2016) have been found
in plaque cores, both Borrelia and C. pneumoniae have been
cultured from AD brain tissue (Balin et al., 1998; Gérard et al.,
2006; Dreses-Werringloer et al., 2009), and extracellular and
intracellular C. pneumoniae and various intraneuronal fungal
infections have been reported in AD brain tissue (Hammond
et al., 2010; Alonso et al., 2014, 2015; Pisa et al., 2015a,b). These
observations can be viewed within the context of work by
Michael D’Andrea and others, which have demonstrated that

intracellular accumulations of Aß can burst out following cell
death to produce extracellular dense-core plaques (reviewed by
D’Andrea, 2014, 2016). A viral infection could contribute to
intraneuronal deposition of Aß, resulting in cell lysis, and the
release of dense-core plaques containing viral DNA into the
extracellular space. In contrast, extracellular Aß accumulation
could be attributed to the interception of bacterial or fungal
pathogens. Taken together, these data suggest that Aß responds
to and limits various types of infections in cells, animals, and
humans (Figure 1).

Since Aß acts as an AMP, depletion of Aß would be expected
to increase infection rates or infection severity. Indeed, clinical
trials that have targeted Aß in AD patients have provided
support for this notion (Table 2). For instance, approximately
6% of trial participants that received AN-1792, an active anti-
Aß immunization, developed meningoencephalitis (Orgogozo
et al., 2003; Robinson et al., 2004a; Gilman et al., 2005; Patton
et al., 2006). Increased infection rates, including orolabial herpes
relapse, and upper respiratory infections, have been reported
in clinical trials of ß- or γ-secretase inhibitors [Green et al.,
2009; Doody et al., 2013; AlzForum (n.d.-d, h, m)] and the Aß-
binding compound ELND005 (Salloway et al., 2011; Alonso et al.,
2014). A recent meta-analysis of ten clinical trials concluded that
γ-secretase inhibitors are associated with an increased risk of
infections (Penninkilampi et al., 2016). While these observations
are not direct evidence of an antimicrobial role for Aß, they
are certainly consistent with this possibility and indicate that
future clinical trials should be alert to the potential for such
outcomes.

Aß MAY PROTECT AGAINST SOME
FORMS OF CANCER

There is an impressive inverse relationship between AD and
cancer. One interesting example is the naked mole rate, a
notoriously cancer-resistant rodent that accumulates Aß at levels
similar to AD-mice bearing at least three human transgenes
without developing memory impairment (Edrey et al., 2013;
Deweerdt, 2014). Multiple studies have demonstrated that
cognitively normal elderly patients who are diagnosed with
cancer are less likely to subsequently develop AD, whereas
patients who have been diagnosed with probable AD are half
as likely to have had cancer or to develop cancer compared
to age-matched, cognitively-normal peers (Driver et al., 2012;
White et al., 2013; Catalá-López et al., 2014; Ma et al., 2014;
Shi et al., 2015; Yarchoan et al., 2017). While some reports have
suggested that this relationship may be due to ascertainment
bias (Freedman et al., 2016; Bowles et al., 2017; Hanson et al.,
2017), a recent examination of nearly 3.5 million veterans
found that the risk of several types of cancer is lower in
AD patients, even after accounting for bias (Frain et al.,
2017).

AD patients have significantly lower incidences of non-
melanoma skin cancer, head and neck cancer, colorectal cancer,
lung cancer, breast cancer, bladder cancer, and hematologic
malignancies (reviewed by Shi et al., 2015). A recent analysis
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FIGURE 1 | Aß is antimicrobial against bacteria, fungi, and viruses. Aß has the mechanical properties to trap microbes, insert into and permeabilize their membranes,

and create a toxic oxidative response that is likely accelerated in the presence of iron obtained from nearby ferritin-rich cells.

of 4,357 subjects observed a reduced risk of AD following a
diagnosis with incident cancer, though no difference in AD risk
was found for prevalent cancers. However, when the analysis was
restricted to late-stage prevalent cancers, diagnosis was associated
with a 50% reduction in AD or dementia risk (Bowles et al., 2017).
The fact that patients with vascular dementia have incidences
of cancer that are comparable to those in the general elderly
population (Roe et al., 2010) implies that there is something
specific about AD that confers protection against cancer. This
conclusion is supported by a meta-analysis of over 50 clinical
studies involving more than half a million participants, in which
it was found that AD is associated with a greatly reduced risk of
cancer (Catalá-López et al., 2014).

While the basis of the protection against cancer is unknown,
the outcomes of the AD clinical trials do not support a direct
role for Aß in the repression of cancer. While some of the trials
reported increased rates of cancer, such trials involved γ-secretase
inhibitors, rather than inhibitors of BACE1 or immunotherapy
against Aß (Table 2). For instance, clinical trials of the γ-secretase
inhibitor Avagacestat were halted early, in part because seven
patients developed squamous-cell or basal-cell carcinomas of the
skin, compared to none in the placebo group (Coric et al., 2012,
2015). Similarly, a phase III trial of the γ-secretase inhibitor
Semagacestat was discontinued after 5–6% of patients developed
squamous-cell carcinomas of the skin and 15–16% developed
“neoplasms,” compared to the placebo group who had rates of 1
and 5%, respectively (Doody et al., 2013). A meta-analysis found
that γ-secretase inhibitors are associated with a nearly five-fold
increase in skin cancer risk (Penninkilampi et al., 2016). It should
be noted that increased rates of cancer have not been reported for
clinical trials that have specifically targeted Aß, so it is likely that
the adverse effects were related to functions of γ-secretase that

are separate from its cleavage of Aß, such as a loss of the APP
cleavage product, Notch (Roperch et al., 1998; Paris et al., 2005).

Although the evidence from clinical trials does not support
an active role for Aß in the suppression of cancer, it is
possible that circulating Aß plays an indirect role by intercepting
oncogenic viruses. Up to 18% of cancers are thought to be
induced by oncogenic viruses (Parkin, 2006). For example,
most non-melanoma skin cancers, including squamous-cell and
basal cell carcinomas, contain human papillomavirus (Arroyo
Mühr et al., 2015). It is notable that these forms of cancer are
underrepresented in AD. The finding that the oncogenic virus
Epstein-Barr stimulates the production of anti-Aß antibodies,
raises the possibility that some viruses may benefit from the
elimination of Aß (Xu and Gaskin, 1997). Since high titers of
anti-Epstein-Barr virus antibodies in patients with mild cognitive
impairment are predictive of future cognitive decline (Shim et al.,
2017), it is tempting to speculate that AD may involve attempts
by oncogenic viruses to neutralize the defenses provided by Aß,
which are then countered by increased production of antibodies
against the virus. Such counter-responses could account for the
lower rate of some cancers in AD.

Experimental evidence indicates that Aß is capable of
inhibiting tumor cell growth. For instance, the treatment of
cultured cancer cell lines with conditioned media containing
Aß significantly reduced the rate of proliferation of human
glioblastoma, human breast adenocarcinoma, and mouse
melanoma cells (Zhao et al., 2009). The extent of the reduction
was associated with the concentration of Aß present in the
medium and was not linked to the presence of APP. In
mice, Aß suppresses tumor growth when injected directly
into human glioblastoma and human lung adenocarcinoma
xenografts (Paris et al., 2004). Similarly, Aß delivered into the
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TABLE 2 | Adverse events in Aß-targeted clinical trials.

Drug (Mechanism) Aß endpoints Relevant adverse effects References

Aducanumab

(Anti-Aß immunization, Passive)

↓ Aß plaques ARIA

↑ Urinary tract infection

↑ Upper respiratory tract

infection

AlzForum (n.d.-a); Ferrero et al., 2016; Sevigny

et al., 2016

Affitope AD02

(Anti-Aß immunization, Active)

↓ Aß plaques ↑ Atrophy and worsened

cognition compared to

unexpectedly beneficial placebo

AlzForum (n.d.-b); Schneeberger et al., 2009;

AlzForum, 2014b

Alzhemed

(Aß-binding)

↓ CSF Aß ↑ Hippocampal atrophy

↑ GI reactions

Aisen et al., 2006, 2007; Gauthier et al., 2009;

Saumier et al., 2009

AN-1792

(Anti-Aß immunization, Active)

↓ Focal plaques

NE total Aß

NE/↑ vascular Aß

↑ Soluble Aß in gray matter

↑↑↑ Aß in white matter

↑ Atrophy transiently

NE/↑ Atrophy on follow-up

6% meningoencephalitis

8 deaths with “virtually complete

plaque removal”

AlzForum (n.d.-c) Nicoll et al., 2003; Ferrer

et al., 2004; Fox et al., 2005; Masliah et al.,

2005; Patton et al., 2006; Holmes et al., 2008;

Kokjohn and Roher, 2009; Vellas et al., 2009;

Boche et al., 2010

Avagacestat

(γ-secretase inhibitor)

↓ Aß slightly in CSF NE/worsened cognition

↑ Atrophy

↑ ARIA

↑ ↑ Skin cancer

Skin/GI reactions

Coric et al., 2012, 2015

Bapineuzumab

(Anti-Aß immunization, Passive)

↓ Fibrillar Aß ARIA (∼33% in APOE4/4, 7%

APOE4/X, 4% non-APOE4),

↑ Seizures

↑ Paranoia

↑ Skin/GI/cardiovascular

reactions

Salloway et al., 2009; Black et al., 2010; Rinne

et al., 2010; AlzForum, 2012a,b; AlzForum

(n.d.-e);Pfizer, 2008, 2013; AlzForum, 2013;

Hu et al., 2015; Ketter et al., 2017

BI1181181 (BACE-inhibitor) ↓ CSF Aß ∼80% ↑ Skin reactions AlzForum (n.d.-f)

CAD106

(Anti-Aß immunization, Active)

↓ Brain Aß

NE CSF Aß

↑ Plasma Aß 2-5X

↑ ARIA in strong responders

∼8% Attrition for safety

concerns

↑ Acute psychosis

↑ Skin/cardiovascular reactions

AlzForum (n.d.-g); AlzForum, 2014a

E2609

(BACE-inhibitor)

↓ Plasma Aß

↓ CSF Aß ∼80%

↑ Infections

↑ Relapse of orolabial herpes

AlzForum (n.d.-h)

ELND005

(Aß-binding)

↓ CSF Aß ↑ Ventricular volume

↑ Infections

9 deaths at high doses

AlzForum (n.d.-i); Transition Therapeutics

Ireland Limited, 2007, 2009; AlzForum, 2009;

Salloway et al., 2011; Ma et al., 2012

Gantenerumab

(Anti-Aß immunization, Passive)

↓ Aß ∼11% ↑ ARIA (temporary and in areas

with the most Aß reduction)

“Futility”

AlzForum (n.d.-j);Ostrowitzki et al., 2012, 2017;

Roche, 2014

LY2886721

(BACE-inhibitor)

↓ BACE activity 50–75%

↓ Aß42 ∼72%,

↑ Abnormal liver biochemistry AlzForum (n.d.-k)

RG7129

(BACE-inhibitor)

↑ Liver toxicity AlzForum (n.d.-l)

Semagacestat

(γ-secretase inhibitor)

NE/↓ CSF Aß

↓ Plasma Aß40 38–72%

NE/worsened cognition

↑ Infections

↑ Skin cancer, skin reactions

AlzForum (n.d.-m); Siemers et al., 2006, 2007;

Eli Lilly Company, 2008; Fleisher et al., 2008;

Bateman et al., 2009; Doody et al., 2013

Documented negative outcomes from clinical trials that have targeted Aß. Not all results are reported. Only drugs with reported effects or side-effects outside of Aß modulation are

included on this table. ARIA, Amyloid-related imaging abnormalities; APOE, apolipoprotein; NE, no effect.

peritoneal cavity reduces the growth of lung adenocarcinoma
xenografts (Paris et al., 2004). In transgenic mouse lines that
overexpress Aß, the rates of growth of implanted glioma
tumor masses are suppressed by 40–50% at 8 months of age
compared to tumor masses in wild-type mice (Paris et al.,
2010).

Paris et al. demonstrated that high concentrations of Aß
inhibit capillary growth both in vivo and in vitro, and when
present at very high concentrations it causes capillaries to

degenerate. They concluded that Aß may slow tumor growth
by retarding neovascularization (Paris et al., 2004, 2010). An
alternative possibility, suggested by the present authors, relates to
the exceptionally high binding affinity of Aß for iron, copper, and
zinc (Bishop and Robinson, 2002; Robinson and Bishop, 2002).
By scavenging free metal ions, Aß may limit the availability of
these essential micronutrients and slow the proliferation of tumor
cells. Evidently there are several potential mechanisms that could
account for the inverse relationship between AD and some forms
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of cancer, and until further research has been conducted, the basis
of this relationship will remain a matter for speculation.

Aß SEALS LEAKS IN THE BLOOD-BRAIN
BARRIER

In contrast to cancer, the link between Aß and the integrity of
the BBB is firmly established. Aß plaques in AD brain tissue
contain many different blood proteins and peptides, including
serum albumin, fibrinogen, thrombin, IgG, von Willebrand
factor, collagen IV, and hemin (Cullen et al., 2006), which are
normally foreign to the brain. Hemoglobin also binds to Aß in
an iron-dependent manner and colocalizes with Aß plaques and
vascular deposits in post-mortem AD brains (Oyama et al., 2000;
Wu et al., 2004; Chuang et al., 2012). In 2002, one of us proposed
that if the BBB becomes leaky, allowing pro-inflammatory and
neuroactive compounds to enter the brain, soluble Aß will
bind these compounds into an insoluble mass to prevent their
spread through the neuropil (Bishop and Robinson, 2002).
Other researchers have built on this idea. Stone demonstrated
that practically all plaques in AD are closely associated with a
capillary, thereby supporting a causal link between a leaky BBB
and Aß deposition (Stone, 2008), while Atwood et al. (2003)
proposed that Aß may serve as a vascular “scab” that seals
breaches of the BBB.

Aß may slow bleeding with filamentous aggregates that pull
the walls of the capillary endothelial cells back together (Atwood
et al., 2003). In fact, incorporation of Aß into the surface of
either red blood cells or endothelial cells increases the probability
that the cells will adhere to the microvasculature (Ravi et al.,
2004; Figure 2). Viewed from this perspective, the heavier plaque
burden in AD may be because the BBB is more porous than in
non-demented elders. A recent imaging study reported that the
BBB becomes more permeable in the human hippocampus with
age, and that permeability is more pronounced in individuals
with mild cognitive impairment than in age-matched controls or
those with multiple sclerosis (Montagne et al., 2015). In support
of this hypothesis, cortical superficial siderosis is seven times
more common in AD than in age-matched controls (Dubessy
et al., 2012; Wollenweber et al., 2014); this condition is due to
the accumulation of iron from extravasated hemoglobin, and
its presence is indicative of a history of micro-hemorrhages
(Charidimou et al., 2015). It follows that removal of Aß in AD
is likely to lead to increased BBB permeability and an increase in
micro-hemorrhages and subsequent brain edema.

Clinical trials targeting Aß have provided dramatic
confirmation of this hypothesis. The most common adverse
side-effect of these trials has been MRI evidence of brain
edema and/or micro-hemorrhages, sometimes accompanied
by increased confusion and disorientation. This pattern of
pathological change, so characteristic of amyloid depletion, has
been termed “Amyloid-Related Imaging Abnormalities” (ARIA).
The prevalence of ARIA has been very high in clinical trials of
passive immunotherapies (e.g., Bapineuzumab, Solenezumab,
Aducanumab, and Gantenerumab) (reviewed by Lannfelt
et al., 2014; DiFrancesco et al., 2015). In the clinical trials with

Bapineuzumab for instance, the incidence of ARIA with edema
increased from 7.1% of patients on the lowest dose of the drug
to 30.8% of patients on the highest dose; 47.2% of these patients
also exhibited evidence of micro-hemorrhages, while a further
4% had micro-hemorrhages without evidence of increased
edema (Sperling et al., 2012). In the Aducanumab trials, the
incidence of ARIA was even higher, at 47–55% of participants
in the highest dosage group (AlzForum (n.d.-a); DiFrancesco
et al., 2015; Sevigny et al., 2016). A meta-analysis of fourteen
clinical trials found that anti-Aß immunotherapies are associated
with a nearly five-fold increase in ARIA (Penninkilampi et al.,
2017). Unlike trials targeting secretases, these immunotherapies
targeted Aß without altering APP processing, suggesting that
ARIA is directly related to the loss of Aß. ARIA resulting from
the targeting of Aß is more likely to occur in carriers of the
apolipoprotein ε4 (APOE ε4) allele AlzForum (n.d.-e), and
imaging confirms that the edema occurs at focal sites that exhibit
the greatest reductions in Aß (Ostrowitzki et al., 2012). The
edema results from the entry of blood solutes into the neuropil,
followed by an influx of water into the brain along the osmotic
gradient.

Although ARIA was not observed in the early experiments
with transgenic mice, subsequent experiments have confirmed
that the link exists. For instance, anti-Aß immunotherapy of
PDAPP mice, which overexpress APP, leads to an increase in
BBB permeability in a subset of mice that is accompanied
by cerebral microbleeds, siderosis, and localized edema, which
are the hallmarks of ARIA (Blockx et al., 2016). Similarly,
aged mouse lemur primates, which exhibit an age-associated
accumulation of endogenous Aß with a peptide sequence
that is similar to that in humans, also develop ARIA
following anti-Aß immunotherapy (Joseph-Mathurin et al.,
2013).

Several lines of experimental evidence from mice indicate
that BBB breakdown leads to increased Aß deposition. Mice
that overexpress endothelin-1, resulting in a weakened BBB,
show increased astrocytic secretion of Aß following an ischemic
stroke (Hung et al., 2015). Micro-hemorrhages created with Rose
Bengal dye in transgenic-AD mice drove transient increases
in Aß plaques in infarcted and adjacent areas (Garcia-Alloza
et al., 2011). Similarly, micro-hemorrhages created with diet-
induced hyperhomocysteinemia in transgenic-AD mice shifted
the distribution of Aß deposits from the parenchyma to the
vasculature (Sudduth et al., 2014). Furthermore, hemorrhages
induced by needle stick lesions in wild-type rats led to
a transient up-regulation of APP, Aß, and phosphorylated
tau near the lesion site and a longer-lasting deposition of
Aß along the needle tract (Purushothuman et al., 2013).
Mice that have been chronically subjected to high blood
pressure develop Aß deposits around their cerebral blood
vessels and display learning impairments (Carnevale et al.,
2016).

Collectively, the preceding observations provide powerful
support for the view that Aß seals leaks in the BBB, a role
that probably becomes increasingly important as the aging
BBB gradually loses its integrity. Viewed from this perspective,
comorbid conditions that are likely to enhance the permeability
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FIGURE 2 | Aß seals leaky vessels. Traumatic brain injury and cerebrovascular insults stimulate Aß production and draw Aß to the vasculature. Aß binds to red blood

cells (RBCs), blood proteins, and to iron (Fe) and copper (Cu) ions. These interactions cause Aß to aggregate at the site of hemorrhage or breaches of the BBB. Aß

anchors into cell membranes and increases adherence between RBCs and vascular endothelial cells, helping to seal leaks in the vasculature.

of the BBB, such as diabetes and vascular hypertension, should
be correlated with a heavier plaque burden. Indeed, a diabetic
phenotype does increase the expression of Aß in AD-Tg mice
(Ho et al., 2004), is sufficient to do the same in wild-type rabbits
(Bitel et al., 2012), and is associated with greater plaque pathology
in the subset of diabetic AD patients with an APOE ε4 genotype
(Malek-Ahmadi et al., 2013). Similarly, vascular hypertension is
associated with higher Aß burdens in wild-type animal models
(Gentile et al., 2009; Schreiber et al., 2014; reviewed by Bueche
et al., 2014), increased Aß aggregates in the human placenta
(Kalkunte et al., 2013; Buhimschi et al., 2014), and increased Aß
deposits in the AD brain (Ashby et al., 2016).

Aß MAY IMPROVE RECOVERY FROM
BRAIN INJURY

The presence of Aß plaques in the hippocampus and cerebral
cortex has become synonymous with AD, to the point where
cognitively normal persons with significant Aß burdens are
assumed to have incipient AD. However, as was seen in the
preceding sections, the presence of Aß deposits does not
necessarily indicate AD; they may indicate sites where pathogens
have been intercepted and neutralized or where a leaky BBB
has been repaired. Another well-documented role of Aß is in
assisting the brain to recover from traumatic and ischemic
injuries.

In humans, a traumatic brain injury (TBI) elevates APP
levels in the brain within 2 h (McKenzie et al., 1996) and
Aß plaques become evident within 4 h (Roberts et al., 1994;
Graham et al., 1995; Johnson et al., 2010). Two microdialysis
studies of brain extracellular fluid from TBI patients found that
those with the higher titers of Aß experienced better outcomes

(Brody et al., 2008; Magnoni et al., 2012). Aß plaques form
routinely after a head injury, even in children as young as
10 years, who presumably would not otherwise have plaques
(Roberts et al., 1994; Graham et al., 1995), and they are
more likely to form in APOE ε4 carriers (Nicoll et al., 1995;
Zunarelli et al., 1996; Mauri et al., 2006; Abu Hamdeh et al.,
2017). A PET study of TBI patients found that while Aß
deposits colocalized with areas of white matter damage, the
Aß burden was not significantly correlated with the extent
of neuropsychological impairment (Scott et al., 2016). Though
Aß accumulation occurs immediately after a traumatic injury
and can persist in damaged axons for years (Johnson et al.,
2012; Scott et al., 2016; Bagnato et al., 2017), the brains of
long-term survivors of head injury do not have greater plaque
numbers or increased APP expression when compared to age-
and APOE-matched controls (Macfarlane et al., 1999; Chen et al.,
2009). This suggests that Aß accumulates transiently in response
to injury.

Evidence from animal models also shows that Aß expression
responds rapidly to injury, resolves over time, and may be
necessary for a good recovery. A recent meta-analysis of 19
animal studies reported that Aß expression consistently increases
within 24 h of TBI, including in models that lack AD-related
transgenes (Bird et al., 2016). For example, controlled cortical
impact leads to an upregulation of APP and BACE1 expression
in wild-type rats (Blasko et al., 2004; Acosta et al., 2017)
and accelerates Aß deposition in transgenic-AD mice (Tajiri
et al., 2013; Washington et al., 2014; Shishido et al., 2016).
Controlled cortical impact increases the expression of Aß40
and Aß42 in transgenic-AD mice within one day, with levels
returning to baseline within one week (Washington et al., 2014).
During this early period, post-injury macrophage activation is
suppressed (Kokiko-Cochran et al., 2016), which may provide
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injured neurons with time to repair and recover, instead of being
phagocytosed.

It is notable that controlled cortical impact results in worse
motor performance in mice that are deficient in BACE1
compared to wild-type mice (Mannix et al., 2011a), and when the
mice are treated with intra-ventricular injections of Aß40 after the
injury, motor performance improves in the knock-out mice but
worsens in the wild-type mice (Mannix et al., 2013). These results
suggest that the level of Aß production in wild-type mice after
controlled cortical impact was tuned and appropriate. Recovery
after controlled cortical impact is also modulated by age and
APOE genotype; in immature and adult mice expressing human
APOE ε4, only adults showed worse spatial memory performance
compared to wild-type, as well as high Aß40 levels 1 month
after injury (Mannix et al., 2011b). Similarly, Aß expression
increases during the first 3 days after spinal cord injury, and if
Aß production is prevented by BACE1 knock-out or by treatment
with a γ-secretase inhibitor, the mice develop more white matter
damage, and display impaired recovery from locomotor deficits
(Pajoohesh-Ganji et al., 2014).

Steinman et al. noted that Aß42 is prominent in cerebral
lesions and in the damaged axons of patients with multiple
sclerosis, and postulated that this might represent a protective
response to injury (Ferguson et al., 1997; Trapp et al., 1998;
Han et al., 2008). Steinman’s group delivered intraperitoneal
injections of Aß40 or Aß42 into four different animal models
of multiple sclerosis. Stunningly, they found that the treatment
attenuated motor paralysis, reduced the extent of demyelinated
lesions, suppressed lymphocyte activation, and lowered pro-
inflammatory cytokine expression in blood. In contrast, APP
knockout mice fared much worse than wild-type mice. It is
important to note that protection in this model was associated
with a hexameric form of Aß that reduces T-cell activation (Grant
et al., 2012).

Another example of the protection that Aß affords from
brain injury comes from experimental models of stroke. In wild-
type mice, occlusion of the common carotid artery drives a
compensatory increase in blood flow in the cerebral arteries,
but this compensatory increase is attenuated in APP knock-out
mice (Koike et al., 2012). This reduction of compensatory blood
flow is lethal, and consequently APP knock-out mice die shortly
after bilateral occlusion of the common carotid artery, whereas
wild-type mice survive; since BACE1 knockout mice suffer the
same fate, this loss of viability is likely due to the absence of
Aß rather than other products of APP cleavage (Koike et al.,
2012). Further evidence that Aß is protective during a stroke
comes from a rat model of middle cerebral artery occlusion,
in which the mean infarct volume is significantly reduced in
transgenic-AD rats compared to wild-type rats (Clarke et al.,
2007).

The preceding observations show that the presence of Aß
improves outcomes after injury to the central nervous system.
Consequently, pre-emptive anti-Aß treatments for AD are likely
to increase the probability that the treated individuals will display
poorer prognoses if they have the misfortune of sustaining a TBI
(e.g., from a fall) or a stroke.

Aß MAY REGULATE ACTIVITY AT
HIPPOCAMPAL SYNAPSES

A growing body of evidence demonstrates that soluble Aß
is necessary for synaptic plasticity and memory (reviewed by
Puzzo and Arancio, 2013; Morley and Farr, 2014). During
periods of neuronal activity, APP is transported anterogradely
to synapses, where Aß is cleaved and released along with
neurotransmitter into the synaptic cleft (Kamenetz et al., 2003;
Cirrito et al., 2005; Tampellini et al., 2009). Aß then acts
on presynaptic neurons to increase the probability of further
neurotransmitter release (Fedele et al., 2015; Puzzo et al., 2015).
Depletion of endogenous Aß in rodents greatly reduces LTP
and short- and long-term memory; this can be rescued by
the addition of human Aß42 (Garcia-Osta and Alberini, 2009;
Morley et al., 2010; Puzzo et al., 2011). Additionally, rodents
treated with picomolar concentrations of human Aß42 show
enhanced memory compared to a scrambled control peptide or
vehicle (Garcia-Osta and Alberini, 2009; Morley et al., 2010).
The duration of Aß exposure seems to be important for this
process. Mouse hippocampal neurons exposed to physiological
concentrations of oligomeric Aß42 show enhanced plasticity
within minutes, but reduced plasticity with prolonged exposure
(Koppensteiner et al., 2016). This was confirmed in vivo, as brief
hippocampal infusions of Aß42 enhanced contextual memory in
mice, while longer infusions impaired memory (Koppensteiner
et al., 2016).

Aß may enhance long-term potentiation (LTP) by increasing
the amount of acetylcholine released into the synaptic cleft
and increasing the probability that the postsynaptic neuron will
depolarize. Mice injected with low concentrations of Aß into
the hippocampus showed enhanced memory retention in two
memory tasks and increased acetylecholine production in the
hippocampus (Morley et al., 2010). Picomolar concentrations of
Aß directly activate α7-nicotinic acetylcholine receptors, whereas
nanomolar concentrations of Aß block and inactivate the
receptors. Similarly, picomolar concentrations of Aß42 enhance
LTP, and memory consolidation in mice, while nanomolar
concentrations impair memory (Fedele et al., 2015; Puzzo et al.,
2015; Ricciarelli and Fedele, 2017). Furthermore, Aß-mediated
enhancement of memory is ineffective in the absence of α7-
nicotinic acetylcholine receptors (Fedele et al., 2015; Puzzo et al.,
2015; Ricciarelli and Fedele, 2017).

In addition to interacting with acetylcholine signaling,
Aß can also stimulate glutamatergic receptors. Nanomolar
concentrations of Aß facilitate NMDA (N-methyl-D-aspartate)
receptor-mediated LTP, while picomolar concentrations enhance
contextual fear memories. When Aß is present at high picomolar
concentrations (which are pathological), it can disrupt the
clearance of glutamate from the extracellular space by astrocytes,
leading to a build-up of extracellular glutamate that then causes
aberrant activation of NMDA receptors and eventual synaptic
dysfunction (Tu et al., 2014).

Some clinical trials that have depleted patients’ brains
of Aß have reported increased rates of adverse events that
might be attributable to synaptic dysfunction. For instance,

Frontiers in Aging Neuroscience | www.frontiersin.org 9 April 2018 | Volume 10 | Article 118

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Brothers et al. Physiological Roles of Amyloid-β

increased seizure activity was reported in clinical trials of
the anti-Aß immunotherapy Bapineuzamab (AlzForum (n.d.-
e)). In other clinical trials the removal of Aß has been
accompanied by worse cognitive outcomes. For example, the
γ-secretase inhibitor Semagacestat caused significantly lower
scores on tests of cognitive status, functional status, and
dementia in a dose-dependent manner, which did not resolve
until 32 weeks after termination of drug dosing (Doody
et al., 2013). Avagacestat, another γ-secretase inhibitor, was
also associated with a decrease in performance on these
same cognitive tests, though it did not reach statistical
significance (Coric et al., 2012, 2015). In trials of active anti-Aß
immunotherapies, Affitope AD02 counteracted the surprisingly
beneficial effect of the placebo on cognitive function (AlzForum
(n.d.-b); Schneeberger et al., 2009; AlzForum, 2014b), while
CAD106 caused an increase in acute psychosis (AlzForum
(n.d.-g); AlzForum, 2014a). The negative cognitive effects
of anti-Aß immunotherapies support a direct role of Aß
depletion in contributing to synaptic dysfunction in these
trials.

While most animal studies have not reported adverse
cognitive or behavioral effects after immunization with Aß, two
anti-Aß immunotherapies (one was the rodent equivalent of
Bapineuzumab) were recently tested in two transgenic mouse
models of AD and all four conditions resulted in neuronal
hyperactivity and dysfunction, independent of the effects of
these antibodies on the clearance of Aß plaques (Busche et al.,
2015). Notably, however, others have reported that anti-APP/Aß
immunotherapy successfully reduced neuronal hyperexcitability
and epileptiform discharges in triple transgenic-ADmice (Kazim
et al., 2017). This may be explained by the use of older mice
in the former study, compared to younger pre-plaque mice in
the latter. Additionally, the inability of the antibody used in
the latter study to differentiate between APP and Aß could
also be a contributing factor to the discrepancy. Other studies
have reported that the absence of APP and Aß, due to the
knockout of APP or BACE1, increases spontaneous seizure
activity and potentiates elicited seizures (Steinbach et al., 1998;
Hu et al., 2010). Finally, the treatment of healthy wild-type
mice with Aß immunotherapy or with antisense directed at
APP significantly impaired their learning on a T-maze foot-
shock avoidance task (Morley et al., 2010). Collectively, the
evidence reviewed in this section provide strong evidence for Aß
serving a physiological role in hippocampal LTP and memory
retention.

CONCLUSION

The research reviewed in the current paper reveals that the Aß
peptide is involved in the protection and repair of the central
nervous system. Aß regulates synaptic function and contributes
to memory consolidation; it may also protect from some forms
of cancer and aid recovery from TBI. There is solid evidence that
pathogens or a breach in the BBB trigger soluble Aß to aggregate
into insoluble deposits in order to intercept the pathogen or seal
the leak. Some of the adverse outcomes associated with clinical
trials can be understood from this perspective: a reduction in
the capacity to intercept pathogens leads to a higher incidence
of infections, while a loss of capacity to seal leaks in the BBB leads
to increased numbers of micro-bleeds and brain edema (ARIA).
This being the case, targeting the production or removal of Aß
earlier in the course of AD is likely to be associated with the same
adverse events, except that the longer duration between start of
treatment and patient death will increase the likelihood of these
adverse events occurring during the lifetime of the patient and
may reduce the patients’ capacity to recover.

More favorable outcomes might be achieved by treating the
known triggers of Aß deposition before targeting Aß production.
This would involve screening patients for potential causes
of BBB leakage (such as diabetes or vascular hypertension)
and/or for evidence of latent microbial infections, and then
treating accordingly. Such treatments should slow the rate of
Aß deposition, with corresponding benefits for cognition. Once
these known sources of Aß deposition have been addressed, we
would expect subsequent anti-Aß therapies to be associated with
fewer instances of ARIA or brain infection. However, it remains
possible that anti-Aß therapies will adversely affect learning and
memory, recovery from TBI or the incidence of some forms of
cancer.
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