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Abstract: Theil entropy is a statistical measure used in economics to quantify income inequalities.
However, it can be applied to any data distribution including biological signals. In this work, we
applied different spectral methods on heart rate variability signals and cellular calcium oscillations
previously to Theil entropy analysis. The behavior of Theil entropy and its decomposable prop-
erty was investigated using exponents in the range of [−1, 2], on the spectrum of synthetic and
physiological signals. Our results suggest that the best spectral decomposition method to analyze
the spectral inequality of physiological oscillations is the Lomb–Scargle method, followed by Theil
entropy analysis. Moreover, our results showed that the exponents that provide more information to
describe the spectral inequality in the tested signals were zero, one, and two. It was also observed
that the intra-band component is the one that contributes the most to total inequality for the studied
oscillations. More in detail, we found that in the state of mental stress, the inequality determined
by the Theil entropy analysis of heart rate increases with respect to the resting state. Likewise, the
same analytical approach shows that cellular calcium oscillations present on developing interneurons
display greater inequality distribution when inhibition of a neurotransmitter system is in place. In
conclusion, we propose that Theil entropy is useful for analyzing spectral inequality and to explore
its origin in physiological signals.

Keywords: Theil entropy; spectral inequality; frequency spectrum; heart rate variability;
intracellular calcium

1. Introduction

Biological signals are diverse and of great value as they can be used to understand
physiological processes [1,2]. For instance, direct evaluation of signals in the clinic can
provide an intuitive description that facilitates diagnostics [3]. Like most signals in the real
world, they have irregularities and various shapes, and they are neither purely periodic
nor can they be expressed with an analytical formula. These irregularities are signs of
the uncertainty in the evolution of the observed physiological processes. Importantly,
this uncertainty limits the predictability of the signals analyzed but also carries important
information [3,4]. Due to this unpredictability in the temporal domain, some researchers
have considered the analysis of the frequency domain. The Fourier transform converts
signals from the time domain to the frequency domain, decomposing a signal into multiple
periodic components. The discrete Fourier transform is an adaptation used in most scenar-
ios for the digitization of a continuous natural phenomenon in finite samples uniformly
spaced. The problem with this approach is that it only provides a discrete description
of the phenomenon and does not provide complete information regarding its evolution.
It must also be noted that the energy spectrum obtained from the physiological signals
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is not distributed in a linear way at some frequencies due to the irregularities inherent
to these frequencies [3,4]. Thus, there are additional methods that try to characterize the
irregularities of digital signals in the frequency domain. One of the preferred methods
is based on spectral entropy, analogous to Shannon entropy in information theory [5,6].
Spectral entropy is a function of the irregularity of amplitude and frequency of the power
spectrum peaks and it is derived by applying Shannon entropy to power spectra [7–9].
Estimations on the frequency grid are firstly divided by the total power, and then, a list
of proxies in the form of probabilities, whose sum is one, is obtained. Then, the Shannon
entropy formula, which is the negative sum of probability-weighted log probabilities, maps
those proxies into a quantity representing the irregularity of energy distribution on the fre-
quency domain. Under this perspective, a flat spectrum has maximal spectral entropy, and
the spectrum of a single frequency signal has minimal spectral entropy, which is zero [4].
Spectral entropy has been applied in diverse areas, including endpoint detection in speech
segmentation [10] and spectrum sensing in cognitive radio networks [11]. Moreover, it
has also served as the base for a famous inductive bias, maximum entropy [12], which
is widely adopted for spectrum estimation of some kinds of physiological signals like
electroencephalogram (EEG).

Although spectral entropy provides information on the irregularity of a signal, it does
not provide information on the origin of spectrum inequalities. This is in line with the fact
that any permutation of the values in the frequency spectrum will give the same value
of the spectral entropy [4]. That said, it would be reasonable to think that the methods
derived from Shannon entropy do not contain information about the location where the
greatest irregularity in the spectrum occurs, nor about the changes that occur in the low
or high tail of the distribution formed by ordering the frequencies from lowest to highest
energy. In conclusion, the frequency components of different intensities in the spectrum
close to one or the other, or those components with similar intensity, whether they are far
apart in the frequency spectrum or not, are obviated in traditional methods, which in turn
are limited to globally capturing the irregularities of the spectrum.

Here, we are introducing Theil entropy for the analysis of the frequency domain
of the spectrum. This has been used mainly in the analysis of economic inequalities
between various agents [13], along with other indicators such as the Gini index [14,15]. An
increase in biological inequality implies the concentration of oscillations around a certain
type, meaning that the occurrence of same type oscillations increases. Complementarily,
the diversity of oscillation types, as defined by their frequency and energy, decreases.
This phenomenon can be clearly appreciated with synchronic discharges observed in
the EEG, however this is a more general effect susceptible to analysis in all biological
signals. In particular, the application of the Gini coefficient to biological phenomena has
recently been explored for the analysis of the electrocardiogram [16], in EEG [17], in the
evaluation of diffusion magnetic resonance imaging [18], exploring the variability of the
radionic characteristics of lung cancer lesions in non-contrast and contrast-enhanced chest
computed tomography images [19], as an unbiased tool for the selection of genes in the
analysis of gene expression [20], and in the study of oscillations of intracellular calcium
in developing neurons [21]. In these cases, the Gini coefficient, applied to determine the
spectral inequality of biological oscillations, has been used as a linear measure of the
inequality of the distributions [16,17,21]. However, although the Gini coefficient and Theil
entropy are used as indicators of inequality, they are very different when it comes to
providing information on the origin of inequality by not setting the same criteria in the
distributive analysis [22].

Theil entropy fulfills most of the desirable properties that can be required of inequality
indices. That is, being independent of the scale and size of the population and satisfying
the principle of transfers of Pigou–Dalton, while also being decomposable [13,23–26]. More
in detail, the β parameter in the Theil entropy equation (Equation (4)) affects the sensitivity
of the index to transfers between rich and poor, depending on where is computed in the
distribution. Shorrocks showed that as β decreases, the T (β) index is more sensitive to
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transfers in the lower part of the distribution [13]. Extrapolating this to the frequency
spectrum answers the question of how much inequality can be attributed to the differences
in low and high energy frequencies.

Previous work on the inequality of the frequency spectrum for biological oscilla-
tions [16,17,21] has been limited to describing the inequality of the spectrum without
addressing its origin. Among the possible application of these inequality indices, one is
to provide information about the causes of inequality, as well as clarifying the relative
importance of the contributing elements. In this context, the most widely used analysis is
the additive decomposition of the Theil index.

Decomposing an index additively into a series of factors is equivalent to determining
which part of the total inequality is attributed to each of those factors [24,27]. One of the
most widespread proposals applied in distributive analysis is the one in which inequality
is the result of differences within subgroups and of gaps between subgroups [22,28,29]. For-
mally in 1984, Shorrocks defined the additively decomposable measure into an intragroup
component and described the part of the total inequality that is attributable to differences
within subgroups [13]. This term is a weighted average of the inequality of the subgroups
where the weights depend on the population and the income share, when applied to eco-
nomics. A second term is the intergroup component and measures the existing inequality
due to differences in group mean income. This term represents the inequality that would be
observed if the income of each person were replaced by the mean income of each respective
subgroup [27].

Extrapolating the above, it would be possible to apply Theil entropy analysis in the
subdivision of frequency bands in the spectral analysis of physiological signals from a
wide rage. Application of Theil entropy to the analysis of Heart Rate Variability (HRV) and
cellular calcium oscillation will transcend the previous analyses of spectral inequality using
the Gini Coefficient [16,30]. For these signals the decomposability involves the subdivision
of frequencies into homogeneous, exhaustive and mutually exclusive frequency bands, to
analyze what part of the total inequality is attributable to each of these bands [24]. Thus,
in this article the effectiveness of the Theil Family indices applied on frequency spectra of
physiological signals is explored.

2. Materials and Methods
2.1. Signals and Clinical Datasets

To test the proposed methodology, tests were carried out on both synthetic signals
and biological signals; these being the tachogram derived from the RRs of ECG signals and
calcium signals captured in developing cortical interneurons.

2.1.1. Synthetic Signals

The signals were created with a component of DC (static component) and AC (variant
component), to which white noise (WN) was added to contaminate it. The fixed frequencies
were determined in a range that goes from 0.003 Hz to 0.4 Hz, which corresponds to
the range of the frequency bands of interest, associated with the analysis of Heart Rate
Variability (VLF, LF and HF). The model that was considered for the signals was:

y(t) = AC + DC + WN; where AC = 4cos(2π( fi)t), DC = 1 (1)

To know the impact of energy transfers from one frequency to another, the AC com-
ponent was varied and the DC and WN were kept constant. The signals were constructed
by iterating on a vector containing 40 frequency values, equally spaced, between 0.003
and 0.4 Hz. Therefore, 40 signals were obtained each with the maximum energy peak
coinciding with a value of the vector as previously explained. The function that was used
for the construction of these 40 signals was:

y(t, f ) = 1 + 4cos(2π( fi)t) + 1.5
[

t
1000

+ randn(length(t))
]

(2)
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where f is the vector with 40 values equally spaced between 0.003 Hz and 0.4 Hz, fi the
i-th frequency of this vector, WN = 1.5

[ t
1000 + randn(length(t))

]
, t is the time vector with

1000 s length and 1000 Hz sampling rate. Matlab function randn was used to generate
random numbers.

Likewise, to assess the changes produced in the Theil entropy when varying the
exponent, a vector A was constructed with 20 values equally spaced from −1 to 2, iterating
the Theil entropy equation (Equation (4)) over A.

For the generation of PSDs, the Matlab FFT function was used. For a signal of N points
in the time domain, FFT calculates a signal of frequencies of N points that ranges from zero
to the Nyquist frequencies, therefore the length of the signal limits the resolution of the
frequencies. This can be extended by increasing the length of the time series with zeros.
This process is known as zero padding and constitutes the N argument of the Matlab FFT
function. We use N = 2048 to obtain a frequency spectrum with 1025 points (N/2 + 1).

To obtain the PSD, the Fourier transform was conjugated and normalized dividing it
by N. After this process the first N/2 values are valid, as the other half is an inverted image
and therefore redundant of the first. However, it contains the same power information,
which must be considered by multiplying the power spectrum by a factor of two, except
for the first and last value.

Spectral leakage is a phenomenon that occurs when the power of the spectrum is
calculated using the Fourier transform. This effect can be attenuated using the Hanning
window, which is defined by:

WHanning(tn) = 0.5− 0.5cos
2πtn

tN
, 0 ≤ tn ≤ tN (3)

White noise was computed 1000 times, with the aim of averaging the matrices re-
sulting from the iteration on vectors F and A, obtaining a single 20 × 40 matrix. Figure 1
shows a signal and its corresponding PSD built under the proposed model, with one DC
component (invariant component equal to 1) and one AC component (variant component)
plus WN (white noise), for each determined frequency.

Figure 1. Synthetic signal sample and its computed power spectral density analysis: (a) Synthetic
signal considering a duration of 1000 s; (b) power spectral density (PSD) analysis of synthetic signal.

2.1.2. RR Intervals

The interbeat intervals (RR-interval signals, the abbreviation of RR referred to the
interval between two successive R peaks of electrocardiogram (ECG) signals) were collected
for a previous study [16] and were obtained from measurements of RR intervals and
databases found at [31]. More in detail, as described previously, thirteen healthy subjects
(seven females, six males) aged 19 ± 1.5 years participated in this study. Body mass index
(BMI) for participants was 22.3 ± 1.3 kg/m2. A-priori power analysis found that this
number of participants would yield 80% power at an alpha level of 0.05. All the subjects
were non-smokers and had no history of heart disease, systemic hypertension or any other
disease. Participants did not take any medications, drugs or alcohol for 12 h preceding
the experiment and were advised not to drink any caffeinated beverages on the morning
of the study. ECGs were taken in a sitting position and RR intervals were obtained by
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electrocardiogram during rest (five min) and during mental stress (arithmetic challenge;
five min).

2.1.3. Image Intensity Data Collection

Images analyzed in this study were obtained from data sets collected in a previous
study [32]. Sample images can be observed in the following link to our recent publication:
https://www.mdpi.com/1422-0067/21/21/8013/htm (accessed on 21 Ocober 2021). In
more detail, signals were collected using two photon microscopy on brain slices prepared
from embryonic mouse brain at the embryonic day 13 (E13). For this purpose, brain
slices were loaded with Fluo 4 am and recording of spontaneous activity was performed
using culture media on the air liquid interface at 37 ◦C and 5% CO2. In the experimental
condition, glycine receptor inhibition was achieved using strychnine at a final concentration
of 1 µM, introducing it just before imaging. As per the image analysis, fluorescence intensity
measurements were performed using Imagej software V1.49k. Regions of interest (ROI)
were defined to circle the entire cytoplasm of the cell and were repositioned in every frame
using the ROI manager tool ensuring precise tracking of the cell along the entire time series.
Then, mean intensity values were extracted measuring the circled area intensity using the
same tool.

2.2. Theil Entropy

This article proposes a new method for the analysis of the uniformity of the spec-
trogram of a signal based on Theil Entropy (TE). This family of indices has been used to
measure economic inequality as well as racial segregation in different social settings.

Theil entropy assigns a value to the feature set {y1, . . . , yn}. Taking this into account, it
is possible to assign a generalized entropy value to the spectral density. This is possible as
it is a mathematical function that assigns an energy value to each frequency that makes up
the signal. Therefore, from the analysis of the spectral density, two vectors X = [x1, . . . , xn]
and Y = [y1, . . . , yn] are derived, where x is the vector of the frequencies and Y is the vector
of the spectral density of associated energy. That said, the frequencies (X) can be considered
as the agents or subjects and the spectral density (Y) as the income of each agent. If we
establish the spectral density as the so-called characteristics of the n frequencies, we obtain
that the Theil entropy would be given by the following formula,

TE(α) =
1

n(a2 − a) ∑n
1

[(
yi
y

)α

− 1
]

for α 6= 0, 1 (4)

Since the denominator is equal to 0 in for values of α = 0.1; Using the l’Hopital rule,
we obtain:

TE(0) =
−1
y ∑n

1 ln
(

yi
y

)
(5)

and TE(0) =
1
n ∑n

1
yi
y

ln
yi
y

, where y =
∑ yi

n
, (6)

yi is the equivalent of the spectral density of the frequency i, α = {−∞, ∞}, and n is the
frequency number in the band. The parameter α summarizes the sensitivity of the index to
income differences in different parts of the spectrum. For long values of α and positive the
generalized entropy is sensitive to changes in the distribution that affect the upper bound
of the distribution, with a small and positive alpha it will do so for the lower bound of
the distribution. If it is negative, it is sensitive to changes in the distribution that affect the
lower bound. It should be noted that when talking about the lower or upper bound of the
frequency distribution, it refers to those frequencies with lower or higher energy and not to
low or high frequencies.

The Theil index, when α = 1, values the frequencies differently, unlike other indices
such as Atkinson’s, which assigns the same weight to all agents. In this case, ln (yiy) is a
weighting factor that assigns a negative and proportionally greater weight to frequencies

https://www.mdpi.com/1422-0067/21/21/8013/htm
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that have lower than average energy and positive and proportionally lower ones to those
that have higher than average energy. While the lower limit of GE (α) is always zero, perfect
equality, the upper limit varies with the value of α. For α > 0 T (α) presents an upper bound
that depends on n, the maximum value for the Theil index being equal to ln (n); on the
contrary, when α ≤ 0 the family of Theil indices is not bounded superiorly.

The total inequality can be written as the sum of the inequality within the GEW bands
(α) and the inequality between the TEB bands (α), where the former is the weighted sum of
the inequalities within each band:

TE(α) = TEW(α) + TEB(α) (7)

TE(α) =
G

∑
j=1

TEj(α)

(yj

y

)α

+
1

α2 + α

[
G

∑
j=1

gj

(yj

y

)
− 1gj

(yj

y

)
− 1

]
(8)

TE(0) =
G

∑
j=1

TEj(0) +

[
G

∑
j=1

gjln

(
y
yj

)]
(9)

TE(1) =
G

∑
j=1

TEj(1)gj

(yj

y

)
+

[
G

∑
j=1

gj

(yj

y

)
ln

(
y
yj

)]
(10)

where j refers to band, GEj is the inequality in band j and gj, which represents the number
of frequencies in band j of the total number of frequencies.

2.3. Spectral Density Analysis

The PSD presents spectral power density of a time series as a function of frequency.
Therefore, PSD estimates can give information about the amount of power in which certain
frequencies contribute to a time series. Estimating the PSD can be performed using many
methods, however methods based on Fast-Fourier Transform (FFT) and autoregressive (AR)
modeling are perhaps the most popular. Classical power spectrum estimates developed
by Bartlett (1948), Blackman and Tukey (1958), and Welch (1967) are examples of methods
based on FFT [33]. As the FFT makes no assumptions on how the data are generated
the classical methods are often referred to as non-parametric. The AR power spectrum
methods do make assumptions and are therefore called parametric. Contributing to the
popularity of the FFT based estimates are their simplicity, broad understanding, and ease
of computation using modern computers and software. However, both FFT and AR based
PSD estimates have prerequisites that are seldom, if ever, met by biological signals such as
cardiac RR series [33]. Both methods require the analyzed time signal to be stationary and
evenly sampled, which is inherently not the case with RR series [34]. Traditional methods
require the transformation of the original non-uniformly spaced electrocardiogram RR
interval series into regularly spaced ones using interpolation or other approaches [35].
Consequently, other methods such as the Lomb–Scargle periodogram have become popular
as they do not require resampling [33,36,37]. The Lomb–Scargle (L-S) method uses the raw
original RR series, avoiding different artifacts introduced by traditional spectral analysis
methods [35]. Despite the aforementioned limitations of FFT and AR based PSD estimates,
they are widely used in signal processing.

As mentioned before, the Theil index family is a mathematical function that assigns
an energy value to each frequency that makes up the signal. However, the spectral density
analysis is calculated using several methods.
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2.3.1. Welch Periodogram

To understand Welch’s periodogram one must first understand the discrete Fourier
transform (DFT), the basic periodogram, and the modified periodogram. The N-point DFT
of a random variable X(n) is given by:

DFTx( f ) =
N−1

∑
n=0

X(n)e−i2π f n

Practical computations of the DFT use the FFT for speed advantages. The periodogram,
extension of the DFT, is a basic method of estimating power spectral density of a time series
and is given by:

P( f ) =
1
N
∨∑N−1

n=0 X(n)e−i2π f k/L ∨ 2; k = 0, 1, ..., L− 1

Reducing spectral leakage of the periodogram can be accomplished by incorporating a
weighted windowing function w(n), e.g., Hamming and Hanning, to the input series. Data
near the edges of the time series are given less weight compared to data nearer the center.
Thus, the modified periodogram is given by:

P( f ) =
1

MU ∑M−1
n=0 X(n)w(n)e−i2π f n∨2, where U = 1/M ∑M−1

n=0 w2(n)

Finally, in an effort to reduce the variance of the periodogram estimation, the Welch
method separates the data series into N overlapping segments. As with the modified
periodogram the Welch method applies a weighting window to reduce spectral leakage,
however, weighting is applied to each segment. Finally an averaged PSD is calculated
using all segments [33]. Power spectral density by the Welch periodogram is given by:

PW( f ) =
1
N

N−1

∑
i=0

PM,i( f )

where PM,i (f ) is the ith modified periodogram from data series.

2.3.2. Lomb–Scargle Periodogram

Lomb–Scargle periodogram (LSP) method of estimating PSD does not require re-
sampling. The LSP only uses available data. Conceptually LSP estimates the frequency
spectrum by performing a least squares fit of sinusoids to the data. Unlike Welch’s pe-
riodogram, weighted windowing functions are not applied to data in LSP as standard
weighting methods cannot be applied to unevenly sampled data.

The LSP of a non-uniformly sampled, real-valued data sequence X of length N for
arbitrary times tn is defined by

PLS( f ) =
1

2σ2

[
∑N

n=1
(
X(ti)− X

)
cos(2π(tn − τ))

]2

∑N
n=1 cos2(2π f (tn − τ))

+

[
∑N

n=1
(
X(ti)− X

)
sin(2π(tn − τ))

]2

∑N
n=1 sin2(2π f (tn − τ))

2.3.3. Burg Periodogram

Autoregressive spectral estimation methods differ from non-parametric methods in
that they attempt to model the data instead of estimating the PSD directly [35]. Several
modeling methods exist for AR spectrum estimation, however the Burg method is one of
the most used in HRV analysis.

The power spectrum of a pth order autoregressive process is given by

PBurg( f ) =
1
fs

ep

1 + ∑
p
k=1 ap(k)e−2π jk f / fs∨2
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where εp is the total least square error, fs is the sample rate, and ap are the Burg AR model
parameters [38] suggests that a model order of p = 16–20 is a sound choice for physiological
signal in a human resampled at 2–4 Hz.

3. Results
3.1. Theil Entropy Analysis of Synthetic Signals Shows the Potential of This Method to Account for
Inequality Distribution of Power Spectra

To get a sense of how Theil entropy could aid in providing an improved description of
inequality distribution of power spectra obtained from biological signals, we computed
synthetic signals and analyzed their behavior. This allowed us to know the change that
occurs in the values of Theil entropy due to the transfer of energy within the same band (TI)
and between the bands (TB). In each case, Theil entropy graphs show how Theil entropy
values from synthetic signals change as the energy peak moves from the low frequencies to
the higher frequencies (Figure 2).

Figure 2. Cont.
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Figure 2. Three-dimensional graphs showing Theil entropy values for synthetic signals. Values were
obtained by averaging the 1000 matrices generated and are shown as total and decomposed. (a) Total
Theil entropy that can be decomposed into (b) an inter-band compontent (TEB), inequality not from
within each frequency band but among them, and (c) an intraband component (TEW), inequality
within each frequency band.

In more detail, Theil entropy analysis performed on synthetic signals showed that the
intra-band component is the one that contributes the most to the total value, this means
that the origin of the spectral inequality is found in the energy difference that exists within
each band and not in the differences between the bands (Figure 2). Likewise, it shows how
the Theil entropy value increases as the exponent (alpha) passes through the most negative
values. Moreover, the values change if the exponent is kept constant at −1 and the energy
peak varies. In this case (when alpha =−1) the index is higher when traveling through high
frequencies. If we eliminate the alpha values < −1, we can better appreciate the changes
that occur when varying the exponent for positive values, which we have not seen before,
since the negative alpha values are very high. For alpha values > 0, Theil entropy tends to
grow, and no noticeable differences are observed as the energy peak passes from low to
high frequencies.

To observe the behavior of the two additive components of Theil entropy, the calculated
value was decomposed and expressed as percentage (Figure 3). As expected, it was found
that the intra-band component contributed a greater weight to the spectral inequality. The
decomposition showed a clear division of the frequency bands, increasing the intragroup
component as the energy peak moves from low to higher frequencies. Variations are more
evident for positive alpha values.

Figure 3. Decomposition of Theil entropy for synthetic signals. Theil entropy is shown decomposed
into its two additive components and expressed as a percentage. (a) Intra-band Theil Entropy,
(b) Inter-band Theil Entropy.
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3.2. Theil Entropy Effectively Captures Inequality Distribution of Heart Rate Variations in
Response to Stress

To evaluate the applicability of the additive decomposition of the Theil index to the
analysis of physiological signals, HRV data sets in control conditions and under stress were
analyzed. Power spectra were calculated using Burg, Welch and Lomb–Scargle spectral
methods (Figure 4). Figure 4 shows the average spectrum calculated from the spectrograms
of each of the subjects, where blue represents the basal state and red is the spectrum in the
mental stress state. A side of the spectrum is shown the average spectrum ordered from
lowest to highest energy, which guides us on the distribution of the lower bound and top
of the spectrum. In the three spectral methods it can be observed that the maximum energy
peak is found in the LF, and there is also a second lower energy peak in the HF. In addition,
it is shown that there is greater energy during mental stress. Looking at the ordered spectra,
we can see that the Lomb method is smoother and that the greatest irregularities are found
in the upper bound of the curves.

Figure 4. Average spectrogram of all subjects according to the three methods applied. Upper
raw shows Burg (A1,A2), middle raw shows Welch (B1,B2), and lower raw shows Lomb–Scargle
(C1,C2) methods in baseline stress. Left (A1–C1): general spectrum. Right (A2–C2): sorted spectrum
according showing in the x axis frequency counts according to their energy from lower to higher. For
the ordered spectrum frequency range was divided in 512 bins.

In relation to Theil analysis, while the Lomb–Scargle method showed more significant
results than the rest, exponents 1 and 2 showed the greatest changes. As can be seen
in Table 1, Theil entropy values for exponent −1 are high using the three methods. In
turn, exponent 1 provided the lowest values of the Theil index, as well as a larger effect
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size in those values that were significant (Table 1). The analysis performed using the
additive decomposition of the Theil index for each of the selected spectral methods is
shown in Tables 2–4. On these, it is evident that the inter-band component yielded more
significant results. This component quantifies the total inequality part attributed to the
differences between the bands disregarding the distribution of energy within the same
band. Table 2 shows the analysis when the decomposition of the signal was performed
using the Burg method. If we analyze the Theil entropy using the global spectrum and the
spectrum of frequencies between 0.004 and 0.4 Hz, the Theil entropy of the global spectrum
is greater than that of the reduced spectrum. Similarly, the table shows that the inequality
is greater in stress than in the baseline with significant differences (Exp −1, 0, 2). Focusing
on the additive decomposition, the component that weights the most is the intra-band.
However, the inter-band component shows significant differences in stress and baseline,
being significantly higher in stress with a large effect size. The fact that there are significant
differences with the four exponents suggests that this decrease in inequality is evident
both in the upper and lower bounds of the distribution. Decomposing the intra-band
component, the observable inequality is due to the differences in the distribution of high
frequencies (HF) in both states, comparatively.

Table 1. Theil entropy applied to the global spectrum of heart rate obtained with the Burg, Welch
and Lomb–Scargle periogram. Results of the analysis of heart rate in normal conditions and under
stress is shown with standard deviation and coefficient of variation values for the exponents −1, 0, 1
and 2. X: average value, SD: standard deviation, CV: Coefficient of variation, p: p-value, RB: rank
biserial correlation [effect size).

Method Exponent
Rest Mental Stress

p RB
X SD CV X SD CV

Burg

−1 328.48 430.19 130.97 83.45 71.6 85.8 0.99 0.74
0 2.57 0.63 24.51 2.37 0.34 14.41 0.89 0.39
1 1.2 0.22 18.5 1.32 0.19 14.59 0.05 * −0.54
2 2 0.86 43.01 2.34 0.79 33.83 0.21 −0.28

Welch

−1 189.03 171.03 90.48 56.98 40.77 71.55 0.99 0.69
0 2.48 0.63 25.45 2.25 0.63 28.01 0.91 0.41
1 1.07 0.19 17.61 1.21 0.13 11 0 * −0.89
2 1.38 0.44 32.19 1.83 0.39 21.44 0 * −0.85

Lomb-
Scargle

−1 780.01 624.44 80.06 33,059.8 100,850.69 305.06 0.42 −0.08
0 1.45 0.44 30.07 1.85 0.5 26.96 <0.001 * −0.96
1 1.09 0.35 31.9 1.6 0.33 20.84 <0.001 * −1
2 2.29 1.35 59.01 6.02 2.88 47.9 <0.001 * −1

* Statistically significant differences.

Table 2. Additive decomposition of Theil entropy for the Burg periogram analysis of heart rate.
Decomposition of the signal was performed using the autoregressive method. TI: Intra-band, TB:
Inter-band.

Theil Exp
Rest Mental Stress

p RB
X SD CV X SD CV

VLF

−1 0.001 0.0004 40.00 0.001 0.0005 50.00 0.5 −0.011
0 0.0006 0.0002 33.33 0.0007 0.0004 57.14 0.271 −0.209
1 0.0004 0.0003 75.00 0.0007 0.0008 114.29 0.42 −0.077
2 0.0002 0.0003 150 0.0009 0.002 222.2 0.294 −0.187

LF

−1 0.005 0.003 60.00 0.005 0.003 60.00 0.658 0.121
0 0.018 0.009 50.00 0.026 0.016 61.54 0.122 −0.385
1 0.067 0.043 64.18 0.132 0.085 64.39 0.029 * −0.604
2 0.282 0.250 88.65 0.691 0.474 68.59 0.024 * −0.626
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Table 2. Cont.

Theil Exp
Rest Mental Stress

p RB
X SD CV X SD CV

HF

−1 0.054 0.043 79.63 0.084 0.058 69.05 0.007 * −0.758
0 0.102 0.062 60.78 0.107 0.054 50.47 0.249 −0.231
1 0.226 0.171 75.66 0.143 0.061 42.66 0.892 0.385
2 0.550 0.510 92.72 0.203 0.096 47.29 0.966 0.560

TI

−1 0.06 0.043 71.67 0.09 0.057 63.33 0.009 * −0.736
0 0.121 0.064 52.89 0.133 0.056 42.11 0.207 −0.275
1 0.294 0.167 56.80 0.276 0.121 43.84 0.473 −0.033
2 0.832 0.444 53.36 0.895 0.522 58.32 0.368 −0.121

TB

−1 0.086 0.047 54.65 0.139 0.046 33.09 <0.001 * −0.912
0 0.059 0.045 76.27 0.105 0.035 33.33 0.002 * −0.868
1 0.05 0.049 98.00 0.099 0.038 38.38 0.002 * −0.868
2 0.110 0.060 54.54 0.110 0.047 42.72 0.002 * −0.846

TI + TB

−1 0.146 0.081 55.48 0.229 0.094 41.05 <0.001 * −0.978
0 0.179 0.081 45.25 0.238 0.085 35.71 0.004 * −0.802
1 0.344 0.161 46.80 0.375 0.133 35.47 0.271 * −0.209
2 0.883 0.439 49.71 1.005 0.527 52.43 0.368 * −0.121

* Statistic significant differences.

Table 3. Additive decomposition of Theil entropy for the Welch periogram analysis of heart rate. TI:
Intra-band, TB: Inter-band.

Theil Exp
Rest Mental Stress

p RB
X SD CV X SD CV

VLF

−1 0.017 0.006 35.29 0.019 0.011 57.89 0.42 −0.077
0 0.011 0.003 27.27 0.01 0.002 20.00 0.607 0.077
1 0.007 0.002 28.57 0.01 0.008 80.00 0.368 −0.121
2 0.005 0.004 80.00 0.016 0.028 175.00 0.368 −0.121

LF

−1 0.001 0.0007 70.00 0.003 0.002 66.67 0.02 * −0.648
0 0.005 0.003 60.00 0.013 0.01 76.92 0.004 * −0.802
1 0.019 0.017 89.47 0.064 0.047 73.44 0.003 * −0.824
2 0.085 0.108 127.06 0.318 0.234 73.58 0.005 * −0.78

HF

−1 0.04 0.033 82.50 0.062 0.043 69.35 0.005 * −0.78
0 0.073 0.038 52.05 0.082 0.039 47.56 0.207 −0.275
1 0.151 0.083 54.97 0.114 0.05 43.86 0.927 0.451
2 0.334 0.236 70.66 0.169 0.087 51.48 −0.78 0.648

TI

−1 0.059 0.031 52.54 0.083 0.038 45.78 0.002 * −0.868
0 0.089 0.04 44.94 0.105 0.041 39.05 0.108 −0.407
1 0.177 0.087 49.15 0.188 0.085 45.21 0.446 −0.055
2 0.424 0.234 55.19 0.503 0.3 59.64 0.249 −0.231

TB

−1 0.072 0.045 62.50 0.131 0.032 24.43 <0.001 * −0.956
0 0.053 0.044 83.02 0.099 0.026 26.26 <0.001 * −0.912
1 0.047 0.047 100.00 0.093 0.03 32.26 0.002 * −0.868
2 0.3 0.057 19.00 0.101 0.036 35.64 0.003 * −0.824

TI + TB

−1 0.131 0.071 54.20 0.214 0.064 29.91 <0.001 * −0.956
0 0.142 0.068 47.89 0.203 0.059 29.06 <0.001 * −0.956
1 0.224 0.092 41.07 0.28 0.087 31.07 0.013 * −0.692
2 0.473 0.23 48.63 0.604 0.291 48.18 0.108 −0.407

* Statistically significant differences.
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Table 4. Additive decomposition of Theil entropy for the Lomb–Scargle periogram analysis of heart
rate variation.

Theil Exp
Basal Mental Stress

p RB
X SD CV X SD CV

VLF

−1 0.309 0.341 110.36 0.17 0.105 61.76 0.936 0.473
0 0.035 0.021 60.00 0.04 0.023 57.50 <0.001 * −1
1 0.01 0.015 150.00 0.022 0.045 204.55 0.207 −0.275
2 0.004 0.009 225.00 0.031 0.099 319.35 0.227 −0.253

LF

−1 0.018 0.008 44.44 0.014 0.005 35.71 0.945 0.495
0 0.048 0.009 18.75 0.076 0.02 26.32 0.473 −0.033
1 0.152 0.091 59.87 0.416 0.13 31.25 <0.001 * −1
2 0.599 0.707 118.03 2.345 0.955 40.72 <0.001 * −1

HF

−1 0.121 0.041 33.88 0.168 0.081 48.21 0.007 * −0.758
0 0.173 0.036 20.81 0.177 0.048 27.12 0.02 * −0.648
1 0.264 0.101 38.26 0.196 0.05 25.51 0.945 0.495
2 0.431 0.291 67.52 0.229 0.094 41.05 0.971 0.582

TI

−1 0.449 0.352 78.40 0.352 0.092 26.14 0.58 0.055
0 0.256 0.056 21.88 0.292 0.067 22.95 <0.001 * −0.934
1 0.426 0.426 100.00 0.634 0.152 23.97 <0.001 * −1
2 1.034 0.678 65.57 2.605 0.931 35.74 <0.001 * −1

TB

−1 0.345 0.27 78.26 0.305 0.074 24.26 0.554 0.033
0 0.098 0.047 47.96 0.165 0.035 21.21 0.002 * −0.868
1 0.063 0.051 80.95 0.143 0.044 30.77 <0.001 * −0.978
2 0.059 0.064 108.47 0.157 0.055 35.03 <0.001 * −0.978

TI + TB

−1 0.793 0.594 74.91 0.657 0.14 21.31 0.554 0.033
0 0.354 0.083 23.45 0.457 0.094 20.57 <0.001 * −0.956
1 0.488 0.157 32.17 0.777 0.182 23.42 <0.001 * −1
2 1.094 0.731 66.82 2.763 0.978 35.40 <0.001 * −1

* Statistic significant differences.

Unlike the previous method, the Welch’s method shows that the inequality attributable
to low frequencies (LF) shows significant differences in the states, being greater in stress
(Table 3). The inter-band component shows significant differences between the two states.
However, the intra-band component is the one that contributes the most to existing inequal-
ity. It should be noted that for −1 exponent that assigns greater weight to the lower bound
of the distribution, the opposite occurs, and the observable difference is explained by the
differences between the frequency bands (Inter).

Table 4 shows the results of application of the Lomb–Scargle method. With this
analysis we can see that inequality is greater at the lower end of the spectrum. Focusing
on exponents zero, one, and two; although the inequality is relatively small, there are
significant differences, being greater in stress. The same occurs with the inter- and intra-
band components. The additive decomposition shows that the inequality of the high
frequencies contributes more to the total inequality, and this inequality is significantly
higher in stress. In the LF band these differences are significant in the upper bound,
whereas in the HF they are so in the lower bound.

The analysis of the HRV signals of Stress-baseline using Theil entropy and analyzing
the results of the three periograms indicated that in mental stress, inequality increases
significantly with respect to the basal state. This increase in inequality has its origin in
the intra-band component, however the contribution of the inequality of the bands differs
depending on whether we assign a greater weight to the upper or lower bound. In the case
of the lower bound (exp −1), the VLF band has a greater weight, and in the upper bound
(exp 2), where the frequencies close to the peak are found, the inequality in the LF band has
a greater contribution.
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3.3. Theil Entropy Analysis Reveals Inequality Distribution of Calcium Oscillations in the
Developing Brain

To broaden the application of the proposed analytical method, we studied intracellular
calcium variations that occur spontaneously in interneurons during embryonic cerebral
cortical development in mice. Interneurons of the cerebral cortex were analyzed in the
early stages of development in control condition and under inhibition by blocking glycine
receptors with strychnine. Applicability of the Theil family indices for studying the degree
of inequality in calcium oscillations was assessed on spectra generated by the three different
methods used before (Figure 5). The average spectra using the three spectral methods
in the control and inhibited interneurons shows that the highest energy is found at the
lower frequencies and that this energy is higher in the control neurons compared to the
inhibited cells.

Figure 5. Average spectra of spontaneous calcium oscillation in inhibitory interneurons. Burg (A1,A2),
Welch (B1,B2), Lomb (C1,C2) methods were applied to raw data and are presented in each raw from
top to bottom. (A1–C1) disordered spectrum. (A2–C2) ordered spectrum showing in the x axis
frequency counts from lower to higher energies. For the ordered spectrum frequency range was
divided in 512 bins.

More importantly, application of the Theil index to the calcium spectra shows greater
inequality in the lower bound, where the exponent −1 registers the highest values in the
3 methods (Table 5). In inhibited cells, inequality increases except for the lower bound,
which decreases, although these differences are only significant for the upper bound. In
other words, if the frequencies with higher energy between the two states are analyzed, the
inequality is greater in the inhibited cells with significant results and a large effect size.
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Table 5. Theil index applied to spontaneous calcium oscillation in inhibitory interneurons. Burg,
Welch, Lomb methods were applied to raw data.

Method. Exp
Control Under Inhibition

p RB
X SD CV X SD CV

Burg

−1 13.442 16.813 125.08 9.652 5.795 60.04 0.294 0.084
0 2.032 0.878 43.21 2.267 0.591 26.07 0.148 −0.161
1 2.01 0.727 36.17 2.386 0.602 25.23 0.016 * −0.326
2 8.084 5.482 67.81 10.794 6.094 56.46 0.027 * −0.292

Welch

−1 9.076 11.91 131.23 5.595 3.658 65.38 0.562 0.023
0 1.73 0.771 44.57 1.749 0.48 27.44 0.342 −0.063
1 1.481 0.472 31.87 1.643 0.33 20.09 0.116 −0.183
2 3.188 1.374 43.10 3.769 1.087 28.84 0.042 * −0.262

Lomb

−1 4.791 × 10 25 2.443 × 10 26 500.99 9.448 × 10 24 1.616 × 10 25 171.04 0.643 0.054
0 2.256 0.719 31.87 2.366 0.418 17.67 0.148 −0.161
1 2.003 0.591 29.51 2.282 0.431 18.89 0.013 * −0.337
2 8.357 5.095 60.97 11.272 4.813 42.70 0.004 * −0.398

* Statistically significant differences.

4. Discussion

The analysis of the spectrogram of biological signals is useful to understand various
biological phenomena. The present study used Theil entropy in the analysis of inequality of
the spectrogram of biological signals. From this analysis we conclude that: (1) the suggested
spectral decomposition method to analyze spectral inequality is the Lomb–Scargle; (2) the
exponents that provide the most information to describe the spectral inequality are zero,
one, and two; (3) the additive decomposition of generalized entropy provides important
information about the origin of this, with the intra-band component being the one that
contributes the most to total inequality; (4) in the state of mental stress inequality increases
with respect to the state of rest; (5) in developing interneurons, spectral inequality is greater
when there is inhibition of calcium dynamics by blocking glycine receptors.

Among the spectral methods used, the Lomb–Scargle method has several properties
that make it a more attractive alternative than the others for the study of spectral inequality
in biological signals [39]. One of these properties is that it can be used in stochastic and
irregularly sampled signals, such as RR signals [40]. The Lomb–Scargle periogram reduces
distortions or errors that may result from any interpolation process performed by other
methods [41]. In turn, the Welch and Burg methods have a smoothing effect that limits the
resolution of the frequencies. Although this can be beneficial in the case of outliers in the
time series [35], this effect does not exist in the Lomb–Scargle periogram allowing better
frequency resolution and therefore peaks and valleys are exhibited at the most distinctive
frequencies. Additionally, unlike methods where the highest concentration of energy occurs
around the peaks, the Lomb–Scargle periogram is more accurate when distributing the
energy [40]. This phenomenon can be seen in Figure 4, where the frequencies with higher
energy belong to the band where the energy peak is found in the Burg and Welch methods,
but not in the Lomb–Scargle method, where the energy peaks in a more specific frequency
range allowing higher resolution by not smoothing the spectrum.

Jenkins SP [42] indicated that for values of the exponent outside the interval [−1, 2]
the generalized entropy would be influenced highly by a small number of frequencies with
very low energy or with very high energy. In our work, it was found that outside these
limits the entropy values were very large. We also obtained that, although the use of the
value −1 is recommended for values of the lower bound of the distribution, the entropy
values were too large in some of the spectrograms used. In addition, we found that the
generalized entropy measures are not bounded superiorly for exponent values less than
zero. However, for small positive exponent values close to zero these measures would
be more sensitive to the changes that occur in the lower bound of the distribution [42].
One of the limitations of our study was not using values between zero and one that could
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explain these changes in the lower bound and that would be bounded by ln(n) as opposed
to−1. Another limitation was, for reasons of simplicity, the use in the simulation of a single
energy peak in the frequencies of the spectrum as this was a first approach.

As we are proposing, one of the advantages of Theil entropy, in comparison with
indices such as Gini’s, is that it can be additively decomposed, providing information on the
origin of inequality. Accordingly, the subdivision into frequency bands of the HRV signals
spectrogram showed that the intra-band component was the one that contributed the most
to the total inequality. Despite that, there are differences regarding the exponent used,
with exponent −1 showing a similar contribution to the two components and exponent 2
showing that the intra-band contributes more than 90% to the total inequality. This means
that if we analyze the frequencies with lower energy, more than half of the inequality can
be explained by the differences between the frequency bands, while if we analyze the
frequencies with higher energy, inequality is almost entirely explained by differences in
the bands. More in detail, inequality is almost entirely explained by differences between
the frequencies of the LF band. The existence of the energy peak in the LF frequency band
explains this phenomenon when calculating the Theil entropy with the exponent 2.

An increase in Theil entropy means that the energy is concentrated in few frequencies.
This increase could have occurred in the upper or lower side of the distribution, being
reflected in the exponent used. It is well known in the study of HRV that the HF band reflects
parasympathetic activity while the LF reflects both parasympathetic and sympathetic
activity [30,43–46]. As can be seen in the analysis of HRV, during mental stress the energy
peak in the LF is greater than the energy peak that occurs in the basal state, this would
explain the increase in spectral inequality by concentrating the total energy in a few
frequencies. There are studies investigating the factors that contribute to the energy of LF.
Roach et al. [47] reported that 75% of the energy contribution of LFs is due to fluctuations
called ripple and that this is probably due to the functions of arterial baroreceptors. Reyes
del Paso et al. [48] showed that there is a strong association between baroreflex activity and
mental stress. A previous study of spectral inequality using the Gini coefficient showed
an increase in inequality in the state of mental stress and that the greatest inequality is
concentrated in the LF frequency band [16]. These results agree with ours, as the total
inequality increases significantly in the state of mental stress due to inequalities in the
LF range. Focusing on the upper bound, that reflects the frequencies with higher energy
where the energy peak occurs, it can be seen how Theil entropy increases significantly in
mental stress, explaining more than 90% of the observed inequality. In the lower bound,
the opposite occurs and the LF only contributes with 3% to the inequality within the bands,
while the HF contributes to most of the inequality in the state of mental stress. This is due
to the HF band being the one with the highest amount of low energy frequencies.

As it has been mentioned, this research shows an increase in the inequality in the
state of mental stress at the expense of inequality within the bands. During the state
of mental stress, it is possible that a healthy cardiovascular system generates more LF
oscillations especially at frequencies close to 0.1 Hz. This possibility is supported by Bates
who evaluated the real-time changes of the spectrum of RR intervals in response to placebo
and alcohol. Bates et al. [49] suggested that under the effects of alcohol or other adverse
conditions, one of the main adaptations includes maintaining slow oscillations at the
expense of fast ones. This is in accordance with the results obtained in our work, where not
only did global inequality increase in stress, but so did those of the intra-band and inter-
band components, and LF was the band where the most significant differences occurred.

Complementarily, Theil entropy analysis in calcium signals of developing neurons
showed that inequality increases significantly at low frequencies close to the energy peak,
when comparing neurons under inhibition with control cells. In contrast, at the lower end
of the distribution inequality tends to decrease, however this decrease is not significant.
Therefore, we hypothesize that inequality increases in inhibited neurons as there is greater
synchronization, with calcium oscillating at very similar frequencies where the energy peak
occurs. Peak energy is more unequal in inhibited neurons compared to control neurons;



Entropy 2022, 24, 370 17 of 19

this means that there is a higher concentration of energy in this area. For this case, one of
the limitations of the study is that the origin of the inequality cannot be explored using the
additive decomposition property of Theil entropy due to the non-existence of frequency
bands in the spectrum.

Finally, for the study of spectral inequality, the Gini index has been used in biological
signals [21]. Although the Gini index is easier to interpret, since it has values between
zero and one and is easier to calculate, Theil entropy has certain advantages over Gini. For
example, there are distributions that, using the Gini index, are not comparable when the
two Lorenz curves intersect as the Lorenz dominance criterion is not met [50,51]. Another
limitation of the Gini index resides in the fact that two energy distributions can have the
same value of the Gini, having the same area, and being very different distributions [52].
Another disadvantage lies in the additive decomposition of the index that does not allow
us to explore the origin of the inequality in the frequency bands and whether these are
attributed to inequalities within the bands or between the bands [14]. Theil entropy
overcame the limitations of the Gini index on this aspect, as it was additively decomposable.
Likewise, the use of the exponent allowed us to focus our analysis on frequencies close to
the energy peak or those far from the energy peak with a lower power.

5. Conclusions

From the analysis of the inequality of the spectrogram of biological signals using Theil
entropy, it is concluded that the exponents that provide the most information to describe
the spectral inequality are zero, one, and two, being the Lomb–Scargle method suggested to
analyze the spectral inequality. The additive decomposition of the Theil entropy provides
important information about the origin of inequality, being the intraband component
that contributes the most to the total inequality. In the state of mental stress, inequality
increases with respect to the state of rest. Inhibition of glycinergic neurotransmission during
brain development affected calcium oscillations increasing their spectral inequality when
comparing with control neurons. More generally, Theil entropy is useful in the analysis of
spectral inequality and the exploration of its origin in biological signals.
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