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a b s t r a c t

Background: Human epidermal growth receptor 2-positive (HER2+) breast cancer (BC) is a heterogeneous 
subgroup. Estrogen receptor (ER) status is emerging as a predictive marker within HER2+ BCs, with the 
HER2+/ER+ cases usually having better survival in the first 5 years after diagnosis but have higher recur-
rence risk after 5 years compared to HER2+/ER-. This is possibly because sustained ER signaling in 
HER2+ BCs helps escape the HER2 blockade. Currently HER2+/ER+ BC is understudied and lacks biomarkers. 
Thus, a better understanding of the underlying molecular diversity is important to find new therapy targets 
for HER2+/ER+ BCs.
Methods: In this study, we performed unsupervised consensus clustering together with genome-wide Cox 
regression analyses on the gene expression data of 123 HER2+/ER+ BC from The Cancer Genome Atlas Breast 
Invasive Carcinoma (TCGA-BRCA) cohort to identify distinct HER2+/ER+ subgroups. A supervised eXtreme 
Gradient Boosting (XGBoost) classifier was then built in TCGA using the identified subgroups and validated 
in another two independent datasets (Molecular Taxonomy of Breast Cancer International Consortium 
(METABRIC) and Gene Expression Omnibus (GEO) (accession number GSE149283)). Computational char-
acterization analyses were also performed on the predicted subgroups in different HER2+/ER+ BC cohorts.
Results: We identified two distinct HER2+/ER+ subgroups with different survival outcomes using the ex-
pression profiles of 549 survival-associated genes from the Cox regression analyses. Genome-wide gene 
expression differential analyses found 197 differentially expressed genes between the two identified sub-
groups, with 15 genes overlapping the 549 survival-associated genes. 

XGBoost classifier, using the expression values of the 15 genes, achieved a strong cross-validated per-
formance (Area under the curve (AUC) = 0.85, Sensitivity = 0.76, specificity = 0.77) in predicting the sub-
group labels. Further investigation partially confirmed the differences in survival, drug response, tumor- 
infiltrating lymphocytes, published gene signatures, and CRISPR-Cas9 knockout screened gene dependency 
scores between the two identified subgroups.
Conclusion: This is the first study to stratify HER2+/ER+ tumors. Overall, the initial results from different 
cohorts showed there exist two distinct subgroups in HER2+/ER+ tumors, which can be distinguished by a 
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15-gene signature. Our findings could potentially guide the development of future precision therapies 
targeted on HER2+/ER+ BC.

© 2023 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural 
Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ 

licenses/by-nc-nd/4.0/).

1. Background

Breast cancer (BC) is the most commonly diagnosed cancer and 
the second leading cause of cancer mortality in U.S. women, ac-
counting for nearly 31% of all new cancer cases and 15% of cancer- 
related deaths [1]. Though often referred to as a single disease, BC is 
heterogeneous in histology, progression, therapeutic response, and 
clinical outcome [2]. In the clinic, the expression levels of estrogen 
receptor (ER), progesterone receptor (PR), and human epidermal 
growth receptor 2 (HER2) are routinely tested using im-
munohistochemistry (IHC) to determine BC subtypes, which is fun-
damental for treatment decision and prognosis of BC [3]. Around 
15–20% of BCs express HER2 and thus are referred to as HER2+ tu-
mors. In the past, patients with HER2+ tumors had the worst prog-
nosis among all subtypes of invasive BC. But with the development 
of anti-HER2 therapy, such as trastuzumab and lapatinib, survival 
rates for both early- and late-stage HER2+ disease have increased [3]
with varying degrees.

Though HER2+ BC is a heterogeneous disease showing different 
relapse, survival outcomes, and treatment responses, there are cur-
rently no prognostic and/or predictive biomarkers[4]. Recently, ER 
status is emerging as a robust predictive marker within HER2+ BCs. 
Approximately half of all HER2+ BCs co-express hormone receptors 
(HRs), namely ER+ and/or PR+ [5]. Of HER2+/HR+ BC patients, over 
95% are HER2+/ER+ , who usually have better survival in the first 5 
years following a diagnosis but have higher recurrence risk after 5 
years compared to those with HER2+/ER- tumors [6,7], possibly due 
to sustained HR (mainly ER) signaling helps tumor escape from HER2 
blockade [5,8]. Multiple studies found that HER2+/ER+ patients 
treated with anti-HER2 therapy showed lower pathological complete 
response (PCR) rates than patients with other types of BCs [9–11]. 
Given the predictive value of ER status, it would be reasonable for 
the next wave of clinical trials to target HER2+/ER+ and HER2+/ER- 
patients separately. As well, the development of new therapeutic 
strategies is of utmost importance to overcome the limitations to 
targeted therapies and improve treatment for HER2+/ER+ breast 
cancer. Currently, there is no comprehensive study focused specifi-
cally on HER2+/ER+ BC. Thus, a better understanding of the mole-
cular diversity of the ER+/HER2+ BC could pave the way to 
breakthroughs in HER2+/ER+ treatments.

Gene expression has been used in cancer stratification and gene 
signature identification since 1999 [12]. Gene expression signatures 
can help improve patient care by classifying tumors into distinct 
groups, providing guidance for personalized clinical decisions. Mo-
lecular classification of BC based on gene expression profiles has 
been extensively explored, with the most established subtyping 
scheme as the intrinsic classification (also known as PAM50) [13]. 
Using the PAM50 classification, BCs can be divided into 5 subtypes 
(luminal A, luminal B, HER2-enriched, basal-like, and normal-like), 
but not all HER2+ tumors fall into the HER2-enriched subtype [14]. 
Based on the PAM50 genes, Prosigna (rorS) was developed as a gene 
expression signature estimating distant recurrence risk of ER+ , PR+ , 
hormone-treated, postmenopausal women with BC [15]. Besides 
rorS, there are several other commercialized BC gene expression 
signatures which can be used to estimate different risks for different 
BC subgroups. Oncotype DX and EndoPredict are gene signatures 
that estimate the distant recurrence in ER+/HER2- and hormone- 
treated BC from the expression of 21 genes and 11 genes expression, 

respectively [16,17]. PIK3CA-GS is derived from exon 20 (the kinase 
domain) mutations and is able to predict PIK3CA mutation status 
and tamoxifen sensitivity of ER+/HER2- BC [18]. MammaPrint (also 
called GENE70) is a 70-gene expression signature that could predict 
the benefit of adjuvant therapy for BC patients under the age of 61 
[15,19]. Gene Prognostic Index Using Subtypes (GENIUS) is a prog-
nostic gene expression signature applicable for any subtype of BC 
[20]. Gene expression Grade Index (GGI) is a 97-gene signature 
generated from differentially expressed genes between different 
histological grades of BC and can estimate the prognostic and re-
currence risks of ER+ BC patients [21]. However, currently there is no 
such gene signature for HER2+/ER+ BC patients. Thus, exploring the 
gene expression profiles of HER2+/ER+ BC and generating prognostic 
and predictive gene signatures is critical for better HER2+/ER+ BC 
clinical guidance.

To better understand the heterogeneity of HER2+/ER+ breast 
tumors and improve the current HER2+/ER+ BC stratification, we 
sought to establish prognostic gene expression signatures for iden-
tifying reproducible HER2+/ER+ BC subgroups. To this end, we ap-
plied unsupervised clustering using Cox regression filtered genes on 
HER2+/ER+ BCs and subsequently performed genome-wide expres-
sion differential analysis between the identified HER2+/ER+ BC 
subgroups. A gene expression signature was generated based on the 
significant genes in both Cox regression analysis and gene expres-
sion differential analysis. A supervised classifier was then trained 
based on the expression of the proposed gene signature and vali-
dated in two independent HER2+/ER+ BC cohorts.

2. Methods

2.1. Data sources

An overall workflow of this study is shown in Fig. 1. The raw read 
counts of RNA-sequencing data and clinical information of The 
Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA) co-
hort [22] were downloaded through R package “TCGAbiolinks” [23]. 
TCGA-BRCA has 1102 patients, with each having more than 
55,368 gene expression values. After filtering for the patients 
showing ER+ and HER2+ by immunohistochemistry (IHC), there are a 
total of 123 HER2+/ER+ BC patients. TCGA also provides the gene 
expression data of 113 normal adjacent breast tissue samples. The 
microarray-based gene expression data of Molecular Taxonomy of 
Breast Cancer International Consortium (METABRIC) [24] and Gene 
Expression Omnibus (GEO) (accession number GSE149283) BC co-
horts [25] were also collected. METABRIC provides more than 24,368 
gene expression values for all 1904 BC patients, with 104 patients 
being HER2+/ER+. GSE149283 provides neoadjuvant trastuzumab 
therapy response information and 24,352 gene expressions for 18 BC 
samples. Among these 18 samples, 14 are HER2+/ER+ BCs.

TCGA-BRCA was used as the discovery data in this study, while 
METABRIC and GSE149283 were used for validation. A total of 15,850 
common genes present in all three cohorts were kept. Batch effect 
removal was performed among TCGA-BRCA, METABRIC and 
GSE149283 data using “ComBat_seq” function in the “sva” R package 
[26]. The gene expression data of TCGA-BRCA and normal samples 
before and after batch effect removal were visualized using principal 
component analysis (PCA) plots (Supplementary Fig. 1A). The PCA 
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plots of the expression data from the three data sets before and after 
batch effect removal are shown in Supplementary Fig. 1B.

For the TCGA-BRCA data, we removed the genes that consistently 
have zero counts, which resulted 12,236 genes left for the following 
analysis. We first normalized the raw count data based on Trimmed 
Mean of M values (TMM) [27] and then calculated the log trans-
formed count per million (LogCPM) value using R package “edgR”. 
We subsequently performed feature selection using Cox regression 
model with a cut-off p-value of 0.01. Genes significant in univariate 
Cox regression analysis were selected, resulting in 549 survival-as-
sociated genes.

The expression data of the TCGA normal samples was used as 
reference for the later gene expression differential analysis. We also 
used the Bayesian tensor factorization (BTF) integrated and encoded 
17 multi-omics features from the copy number variation (CNV), DNA 
methylation, and gene expression data of 68 out of the 123 TCGA- 
BRCA HER2+/ER+ patients with the three types of data available to 
compare the single-omics and multi-omics-based subtyping for 
HER2+/ER+ BCs. The details of the BTF method and the integrated 
multi-omics features could be found in [28].

2.2. Unsupervised clustering on discovery data

We used the R package “CancerSubtypes” [29] to run the con-
sensus clustering (CC) [30] on the TCGA-BRCA HER2+/ER+ data ma-
trix (549 genes × 123 patients). Traditional subtyping methods such 
as K-mean [31] and hierarchical clustering have some limitations. 
For K-mean clustering, a pre-defined K, which is the number of 
clusters, is needed. However, for most of the unsupervised clustering 
problems, the number of clusters is unknown. Although hierarchical 
clustering could provide us a tree-based results, a pre-defined cut- 
off point is still needed to decide the number of clusters. However, 
CC is a resampling-based clustering algorithm which could estimate 
the number of clusters and obtain robust clustering result according 
to the consensus among several clustering runs [30,32].

In our case, CC first subsampled the gene expression data matrix 
for 30 times. Then, non-negative matrix factorization (NMF) was 
applied on these 30 sample sets to obtain 30 clustering results. The 
maximum number of subtypes (k) was set as 10, which means we 
could expect up to 10 subtypes in each of the 30 clustering runs. The 

30 clustering results for each subtype number (from 1 to k, which is 
10 in our case) were then used to calculate the pairwise consensus 
value, which is defined as the probability of two items being clus-
tered together [30]. These consensus values formed a consensus 
matrix for each cluster number. Which means, we obtained 10 
consensus matrices, each one corresponding to a specific number of 
clusters. In the end, an agglomerative hierarchical consensus clus-
tering was applied to each of the 10 consensus matrices, to obtain 
the final 10 clustering results.

Next, we calculated the silhouette value for each patient, which 
measures how similar a sample is to its own cluster compared to 
other clusters. The silhouette value ranges from −1 to 1 with a high 
value indicating that the sample is well matched to its own cluster 
and poorly matched to other clusters. If most samples have a high 
positive value, then the clustering configuration is appropriate. We 
then did survival analysis to test whether there are survival differ-
ences between the identified subtypes. The result was visualized 
using the Kaplan-Meier (KM) curve [33], which is widely used in 
clinical and healthcare fundamental research. It shows what the 
probability of an event (survival) is at a certain time interval. To 
compare the subtyping results based on single-omics and multi- 
omics, we applied the same CC and NMF clustering method on the 
TCGA-BRCA HER2+/ER+ multi-omics data matrix (17 BTF features × 
68 patients). The silhouette value for the multi-omics based 
HER2+/ER+ subtypes was also calculated, and the survival differ-
ence was visualized by KM plot as well.

2.3. Gene expression differential analysis for identified subgroups

We performed the differential analyses of each of the identified 
subgroups relative to the normal tissue samples in TCGA-BRCA co-
hort using R package “limma” [34]. We also performed differential 
analyses between the identified HER2+/ER+ subgroups. The differ-
ential expressed genes of each HER2+/ER+ subgroup versus the 
normal samples were then used to perform gene set enrichment 
analysis (GSEA; detailed later) to explore the enriched biological 
pathways. The differentially expressed genes between the identified 
subgroups were further used to filter for the genes for gene signature 
construction.

Fig. 1. Overall workflow of this study. 15,850 genes are in common among TCGA-BRCA, METABRIC, and GSE149283 HER2+/ER+ patients. Of them 12,236 genes with at least one 
count in one sample are kept and input into a Cox regression-based feature selection step, which results in 549 significant genes based on the criteria of p-value <  0.01. Consensus 
clustering are then performed to stratify TCGA-BRCA HER2+/ER+ patients based on gene expression profile of these 549 significant genes. Gene differential analysis is done among 
the identified subtypes to identify most differentially expressed genes. Genes that are significant in both Cox regression analysis and gene expression differential analysis are 
selected to form the proposed gene signature. Validation of this gene signature is performed on METABRIC and GSE149283 HER2+/ER+ cohorts. A XGBoost classifier is trained 
using the proposed gene signature on TCGA-BRCA data, and then applied to assign METABRIC and GSE149283 BCs into two subgroups. For METABRIC, survival difference of the 
predicted subgroups is tested. For GSE149283, the drug response difference between the predicted subgroups is tested.
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2.4. Gene set enrichment analysis for identified subgroups

GSEA was applied on the differentially expressed genes identified 
in the previous step, and only included genes with adjusted p-value 
less than 0.05 and |logFC| (absolute value of the log2 transformed 
folder change) large than 0.5. We pre-ranked the genes based on 
their adjusted p-values in the differential analysis, then input them 
into the GSEA software [35].

2.5. Gene signature creation and validation

Using eXtreme Gradient Boosting (XGBoost)-based supervised 
classification, we built a gene signature from the genes that are 
significant in both Cox regression analysis and the expression dif-
ferential analysis between the identified HER2+/ER+ subgroups. The 
TCGA-BRCA data was then used to train and evaluate the XGBoost 
classifier in a 5-fold cross validation way using the R package “caret” 
[36]. The model’s performance was measured by the area under of 
the curve (AUC) of receiver operating characteristic (ROC), accuracy, 
sensitivity, and specificity. Shapley Additive Explanation (SHAP) 
values were calculated to increase the interpretability of the 

XGBoost model [37]. A higher SHAP value of a given feature in the 
model implies stronger influence on the model’s decision.

We applied the well-trained XGBoost model to classify the 
METABRIC and GSE149283 cohorts using the expression profile of 
the proposed gene signature. Survival analysis and hierarchical 
heatmap were also performed to visualize the predicted subgroup 
on METABRIC. For GSE149283, we visualized the difference of the 
neoadjuvant trastuzumab therapy response between each sub-
groups using bar plot. To evaluate the extendibility of the identified 
gene signature, we also applied the well-trained XGBoost model to 
classify all the TCGA-BRCA patients (not limited to HER2+/ER+ BCs). 
Survival analysis and hierarchical heatmap were also performed to 
visualize the predicted subgroup on the entire TCGA-BRCA patients.

We further checked the uniquely mutated genes in each sub-
group for both TCGA-BRCA and METABRIC cohorts using the 
CBioPortal OncoPrint function [38]. The tumor immune estimation 
resource (TIMER) [39] quantified abundance of the tumor-in-
filtrating lymphocytes (TILs) (B cells, CD4 + T cells, CD8 + T cells, 
neutrophils, macrophages, and dendritic cells), the PAM50 intrinsic 
subtypes, rorS, GENIUS, GENE70, and GGI scores of each sample in 
both TCGA-BRCA and METABRIC cohorts were also tested.

Fig. 2. Results of consensus clustering on TCGA-BRCA data. A: Symmetric consensus matrix hierarchical clustering heatmap for TCGA-BRCA data. Columns and rows are patients. 
The color represents the probability that two patients were clustered together. B: Silhouette plot for the TCGA-BRCA data. Each horizontal line represents a sample, and the length 
of the line is the silhouette value for the sample. The color represents different subtypes: red ones are in Subgroup 1, while green ones are in Subgroup 2. A high value indicates 
that the sample is well matched to its own cluster and poorly matched to other clusters. If most samples have a high positive value, then the clustering configuration is 
appropriate. The overall silhouette value is 0.91, which means the clustering is appropriate. C: KM plot of two subgroups identified by CC.
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The Cancer Dependency Map (DepMap) project provides sys-
tematically identifies genetic and pharmacologic dependencies that 
were measured on CRISPR-Cas9 knockout cancer cell lines [40]. To 
extend the cell line DepMap to tumors, Chiu et al. developed a deep 
learning model named DeepDep to predict the effect scores of the 
dependency of interest (DepOI) from genomics data [41]. We applied 
DeepDep on our HER2+/ER+ BC gene expression data to get 
the predicted effect score of the DepOIs for TCGA-BRCA and 
METABRIC cohorts, and then checked the difference between two 
HER2+/ER+ BC subtypes.

3. Results

3.1. Two distinct subgroups within HER2+/ER+ identified

To stratify TCGA-BRCA HER2+/ER+ patients, we performed CC on 
survival significant genes. We first obtained 549 genes associated 
with survival outcome according to the genome-wide univariate Cox 
regression analysis. When the unsupervised CC cluster number 
equals to 2, we could get the most significant survival difference (p- 
value = 0.0021). The consensus matrix heatmap, silhouette plot, gene 
expression heatmap, and KM plot are shown in Fig. 2. We observed a 
clear two-cluster pattern on both consensus matrix heatmap 
(Fig. 2A) and gene expression heatmap (Supplemental Fig. 2). The 
average silhouette value is 0.91, indicating two robust different 
subgroups existing in the TCGA-BRCA HER2+/ER+ cohort (Fig. 2B). 
Sixty-three patients were assigned to Subgroup 1, while the other 60 
patients were assigned to Subgroup 2. The survival difference be-
tween these two subgroups is significant (p-value = 0.0021). Patients 
in Subgroup 2 suffered poor prognosis (Fig. 2C). In addition, from the 
differential analyses between Subgroup 1 versus normal and Sub-
group 2 versus normal (Supplemental Fig. 3), Subgroup 2 has more 
differentially expressed genes than Subgroup 1 relative to normal. 
GSEA results (Supplemental Fig. 3) based on the two pre-ranked lists 
of differentially expressed genes (Subgroup 1 versus normal and 
Subgroup 2 versus normal) found that only the Martens Bound by 
Promyelocytic leukemia (PML) retinoic acid receptor alpha (RARA) 
Fusion pathway is significantly downregulated in Subgroup 2 re-
lative to normal (false positive rate (FDR) = 0.006).

The demographic and clinical information of the two identified 
subgroups for TCGA-BRCA HER2+/ER+ cohort is shown in Table 1. 
Except for age (p-value = 0.0258), no other significant demographic 
or clinical differences exist between these two subgroups.

The differential analyses of Subgroup 1 versus Subgroup 2 
identified 197 genes differentially expressed (|logFC| > 1 and ad-
justed p-value < 0.05) (Supplementary Fig. 3). Among these 197 dif-
ferentially expressed genes, 15 overlapped with the 549 survival- 
associated genes from Cox regression analyses: TNNI2, CCDC88B, 
CYBA, ASB2, LTB, S1PR4, PSTPIP1, CD6, CD27, WNT10A, NAPSB, CD79A, 
ADAMTS8, CPNE7, and TPSAB1. These 15 genes have both survival 
significance and subgroup distinguishing significance and constitute 
the proposed gene signature. In this way, we decreased the gene 
number from 549 to 15 for easier application to other datasets Fig. 3.

The consensus matrix heatmap, silhouette plot, gene expression 
heatmap, and KM plot of the multi-omics-based subtyping are 
shown in Supplementary Fig. 4. Multi-omics method also resulted a 
clear two-cluster pattern on consensus matrix heatmap 
(Supplementary Fig. 4A). However, the overall silhouette value of 
multi-omics-based subtyping (0.62) is smaller than that of the 
single-omics-based subtyping (0.91), which means the single-omics- 
based subtyping methods might be more appropriate than multi- 
omics-based subtyping. As can be noted in Supplementary Fig. 4B, the 
survival difference between the two multi-omics-based HER2+/ER+  
subtypes (p-value = 0.027) is less significant than the single-omics-based 
HER2+/ER+ subtypes (p-value = 0.0021). The difference of the subtype 

assignment between the single-omics and multi-omics were compared 
in Supplementary Fig. 5, most of the patients (45 of 68) were assigned to 
the same subtypes based on the two methods (single-omics and multi- 
omics). The 23 differently assigned patients were mainly Luminal sub-
types with good or moderate prognosis (Supplementary Fig. 5B and 5C).

Table 1 
Demographic and clinical information of the identified HER2+/ER+ subgroups in 
TCGA-BRCA cohort. 

Subgroup 1 Subgroup 2 p-value

No. patients 63 60

Age min 34 29 0.02581*
max 88 90
mean 57.13 62.65
Standard deviation 13.67 13.46

T T1, T1b, T1c 14 10 0.2133
T2 41 39
T3 7 7
T4 (T4, T4b) 1 4

N N0, N0 (i-), N0 (i + ) 31 23 0.2202
N1, N1a, N1b 23 19
N2, N2a 6 11
N3, N3a 3 6
NX 0 1

M cM0 (i + ), M0 50 50 0.1991
M1 1 1
MX 12 9

Stage I, IA 7 9 0.2414
II, IIA, IIB 43 28
IIIA, IIIB, IIIC 12 21
IV 1 1
X 0 1

Surgery Lumpectomy 8 4 0.2650
Modified Radical 
Mastectomy

17 20

Simple Mastectomy 12 4
Other 19 28
Not Available 7 4

Fig. 3. The SHAP importance score of each gene in the XGBoost classifier. 
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3.2. HER2+/ER2 + BC gene signature development

A supervised classification model (XGBoost) was trained to 
classify the TCGA-BRCA HER2+/ER+ patients into the CC identified 
two subgroups. The fine-tuning process and 5-fold cross-validated 
performance of the XGBoost classifier are shown in Table 2. The 5- 
fold cross-validated AUC, sensitivity, and specificity on TCGA-BRCA 
data are 0.85, 0.76, and 0.77, respectively. The importance score of 
each gene in the XGBoost model is shown in Fig. 3. TNNI2 is the most 
important feature for the model to make the prediction decision.

HER2+/ER2 + BC gene signature validation.
The well-trained XGBoost classifier was applied to two external 

datasets (METABRIC HER2+/ER+ cohort and GSE149283 HER2+/ER+ 
cohort) and one extended dataset (entire TCGA-BRCA cohort, 
which is not restricted to the 123 HER2+/ER+ BC cases) for vali-
dation. The expression profiles of the 15-gene signature on MET-
ABRIC HER2+/ER+ cohort, GSE149283 HER2+/ER+ cohort, and 
entire TCGA-BRCA cohort are presented in Fig. 4A, B, and 
Supplementary Fig. 6A, respectively. METABRIC HER2+/ER+ pa-
tients, GSE149283 HER2+/ER+ patients, and entire TCGA-BRCA 
patients that are assigned into Subgroup 2 showed overall lower 

Table 2 
Hyperparameter finetuning process and 5-fold cross-validated model performance of 
the XGBoost classifier. 

Learning rate Max depth AUC Sensitivity Specificity

0.005 6 0.84 0.78 0.73
8 0.82 0.78 0.75
10 0.84 0.78 0.75
12 0.82 0.73 0.75

0.01 6 0.81 0.76 0.73
8 0.83 0.81 0.75
10 0.85 0.76 0.77
12 0.83 0.79 0.77

0.05 6 0.81 0.79 0.77
8 0.81 0.79 0.73
10 0.82 0.78 0.72
12 0.79 0.79 0.73

0.07 6 0.80 0.78 0.72
8 0.82 0.76 0.75
10 0.80 0.76 0.75
12 0.80 0.79 0.72

0.1 6 0.80 0.78 0.72
8 0.82 0.79 0.72
10 0.80 0.81 0.75
12 0.79 0.81 0.73

Fig. 4. Predicted subgroups of external validation HER2+/ER+ BC cohorts. A: The expression profile of the proposed 15-gene signature on METABRIC HER2+/ER+ BC cohort. 
Columns are 104 patients, while rows are 15 genes. The XGBoost predicted subgroup labels are shown in the top side bar. B: The expression profile of the proposed 15-gene 
signature on GSE149283 HER2+/ER+ BC cohort. Columns are 14 patients, and rows are 15 genes. The XGBoost predicted subgroup labels are shown in the top side bar. C: KM plot of 
the two subgroups of METABRIC cohort predicted by XGboost. D: The stacked histogram of the trastuzumab therapy response for the XGBoost predicted subgroups. PCR, 
pathological complete response; PPR, pathological partial response; OR, odds ratio.
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expression values of the 15 gene signature than Subgroup 1, which 
is similar to what is observed in the TCGA-BRCA HER2+/ER+ cohort.

For the 104 HER2+/ER+ patients from the METABRIC cohort, 57 
were assigned to Subgroup 1, while 47 were assigned to Subgroup 2 
by the XGBoost model. The survival difference of these two sub-
groups was significant with Subgroup 2 showing worse survival than 
Subgroup 1 (Fig. 4C), which is similar to the two subgroups inthe 
TCGA-BRCA HER2+/ER+ cohort (Fig. 2C). However, unlike the TCGA- 
BRCA HER2+/ER+ cohort findings, there were no significant differ-
ences in demographic or clinical characteristics between these two 
subgroups (Table 3). For the 14 HER2+/ER+ patients in GSE149283, 
eight patients were in Subgroup 1 and six patients were assigned to 
Subgroup 2. According to Fig. 4D, there is a higher proportion of 
patients in Subgroup 2 (three out of six) showed partial response to 
trastuzumab than Subgroup 1 (three out of eight patients). However, 
the significance of the difference was not significant according to the 
Fisher’s exact test (p-value = 1, odds ratio = 1.61). For the entire 1102 
TCGA-BRCA patients, 807 were assigned to Subgroup 1, while 295 
were assigned to Subgroup 2 by the XGBoost model. The survival 
difference of these two subgroups was significant with Subgroup 2 
showing worse survival than Subgroup 1 (Supplementary Fig. 6B), 
which is consistent to that observed in the TCGA-BRCA HER2+/ER 
+ and METABRIC HER2+/ER+ cohorts.

3.3. Computational characterization of the two subgroups (external 
validation)

Uniquely mutated genes, TILs, PAM50 subtypes, some other 
published gene signatures such as rorS, GENIUS, GENE70, GGI scores, 
and DepMap dependency were calculated to characterize the iden-
tified two HER2+/ER+ subgroups. We found that there are 1914 
mutated genes in the genome of TCGA-BRCA Subgroup 1 patients 
that were not observed within Subgroup 2 patients’ genome, while 
TCGA-BRCA Subgroup 2 patients’ genome have 3293 mutated genes 
that are absent in Subgroup 1′s genome. There are six genes 

(CDKN1B, PRKCE, ACVRL1, UBR5, AGMO, SMARCC2) commonly mu-
tated in both TCGA-BRCA Subgroup 1 and METABRIC Subgroup 1 
(Fig. 5A top left). While another six common genes (PALLD, DCAF4L2, 
MAP3K13, RPGR, SHANK2, FANCA) are altered in both TCGA-BRCA 
Subgroup 2 and METABRIC Subgroup 2 (Fig. 5A bottom left).

The quantified abundance of six immune cell types were esti-
mated using TIMER on both TCGA-BRCA and METABRIC cohorts to 
check the TILs difference in two HER2+/ER+ subgroups (Fig. 5B). The 
infiltration of dendritic cells, neutrophils, and CD4 + T cells are sig-
nificantly lower in TCGA-BRCA Subgroup 2 than in Subgroup 1 (p- 
values are 0.0009, 0.0500, and 0.0028, while absolute fold changes 
are 0.7171, 0.7812, and 0.7132). The combined Subgroup 2 patients 
(TCGA-BRCA Subgroup 2 plus METABRIC Subgroup 2) also show 
fewer dendritic cell (p-value = 0.0026, absolute fold change = 0.8286) 
and CD4 + T cell infiltrations (p-value = 0.0016, absolute fold change = 
0.7883) than the combined Subgroup 1 patients (TCGA-BRCA Sub-
group 1 plus METABRIC Subgroup 1) also showed lower dendritic 
cell (p-value = 0.0026, absolute fold change = 0.8286) and CD4 + T cell 
infiltrations (p-value = 0.0016, absolute fold change = 0.7883).

Fig. 5C and Fig. 5D are showing the PAM50 intrinsic subtypes and 
the published gene signatures (rorS and GENIUS) of different subgroups 
in both TCGA-BRCA and METABRIC cohorts. There is a lower proportion 
of Normal PAM50 subtype in TCGA-BRCA HER2+/ER+ Subgroup 2 
compared with TCGA-BRCA HER2+/ER+ Subgroup 1. For METABRIC, 
there is a lower proportion of LumA type in the HER2+/ER+ Subgroup 2 
than Subgroup 1. TCGA-BRCA HER2+/ER+ Subgroup 2 showed sig-
nificantly higher intrinsic rorS score and GENIUS score than Subgroup 
1. However, other published gene signatures didn’t show difference 
between the two HER2+/ER+ subgroups in both cohorts. The predicted 
effect scores of DepOIs are visualized in Supplementary Fig. 7. Please be 
noted that only top 15 DepOIs with most significant differences be-
tween HER2+/ER+ Subgroup 1 and Subgroup 2 are shown in the 
heatmaps. As can be seen, there are visible differences in TCGA-BRCA 
cohort, but not in METABRIC cohort. TCGA-BRCA HER2+/ER+ Subgroup 
1 shows lower dependency effect scores of the top 15 DepOIs.

4. Discussion

We have identified a 15-gene expression signature which could 
stratify HER2+/ER+ BC patients into two prognostically different 
subgroups in both unsupervised and supervised manners. This 15- 
gene expression signature could be extended to predict prognosis in 
all BCs, not just HER2+/ER+ BCs. The prognostic difference between 
the two HER2+/ER+ subgroups was observed in both TCGA-BRCA and 
METABRIC cohorts, not confounded by other clinical characteristics, 
including tumor size, grade, or stage. The two subgroups also tend to 
exhibit difference in terms of their response to trastuzumab in 
GSE149283 with 14 samples, suggesting the predictive potential of 
the proposed 15-gene signature. However, no statistical significance 
was observed in the GSE149283 cohort, which might be due to the 
small sample size (n = 14). Thus, further validation is required once a 
large drug response dataset becomes available. According to the 
GSEA results of the differentially expressed genes, Martens Bound by 
PML RARA Fusion pathway was significantly enriched in Subgroup 2 
but not in Subgroup 1. This pathway is a diagnostic marker of the 
acute promyelocytic leukemia [42] and maybe used as a diagnostic 
marker for HER2+/ER+ Subgroup 2 in the near future.

Six genetic alterations were found in Subgroup 1 that were not 
seen in Subgroup 2. Among them, UBR5 amplification was observed 
in 17% TCGA-BRCA Subgroup 1 patients’ genome and 37% METABRIC 
Subgroup 1 patients’ genome. UBR5 encodes a HECT-domain con-
taining E3 ubiquitin ligase that is involved in regulating DNA damage 
response, cell cycle, metabolism, transcription, and apoptosis [43]. 
Multiple studies have demonstrated that elevated expression of 
UBR5 is implicated in different cancers, including breast and ovarian 
cancers, and is closely associated with advanced clinical stage, 

Table 3 
METABRIC demographic information. 

Subgroup 1 Subgroup 2 p-value
No. patients 57 47

Age Min 29 39 0.1035
Max 87 87
Mean 60 64
Standard deviation 13.72 12.20

Tumor size Min 5 10 0.1074
Max 70 50
Mean 27 23.17
Standard deviation 13.60 7.60

Lymph nodes 
positive

Min 0 0 0.0894
Max 25 25
Mean 1.83 3.68
Standard deviation 4.61 6.11

Grade 1 2 1 0.2318
2 18 14
3 35 32
Null 2 0

Stage 0 15 9 0.2424
1 14 8
2 13 19
3 2 2
4 1 0
Null 12 9

Treatment Chemotherapy (CT) 2 1 0.2578
Radiotherapy (RT) 4 2
Hormonotherapy (HT) 12 9
CT/RT 3 2
CT/HT 0 3
CT/HT/RT 5 6
HT/RT 23 21
None 8 3
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Fig. 5. Computational characterization of the HER2+/ER+ subgroups for both TCGA-BRCA cohort and METABRIC cohort. A top panel: The common genes that are mutated in both 
TCGA-BRCA Subgroup 1 and METABRIC Subgroup 1. A bottom panel: The common genes that are altered in both TCGA-BRCA Subgroup 2 and METABRIC Subgroup 2. B: The TIMER 
quantified abundances of tumor-infiltrating lymphocytes for both TCGA-BRCA and METABRIC cohorts. T-test were used to test the significance of the differences. C: Histograms of 
the PAM50 intrinsic subtypes distributions for two subgroups. D: Density plots of the published gene signatures (rorS, GENIUS, GENE70, GGI) of different subgroups in both TCGA- 
BRCA and METABRIC cohorts.
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distant metastasis, and shorter overall survival in patients [43]. UBR5 
exhibits oncogene-like characteristics as it is proposed to promote 
breast and ovarian cancer growth and metastasis, which makes it an 
attractive therapeutic target for aggressive BC [44]. Our study further 
suggests that UBR5 might offer a potential way to target 
HER2+/ER+ Subgroup 1 as it is amplificated in Subgroup 1 (17% 
TCGA-BRCA HER2+/ER+ BC Subgroup 1 patients; 37% METABRIC 
HER2+/ER+ BC Subgroup 1 patients) but not in Subgroup 2. Similarly, 
several other genetic alterations were unique to Subgroup 2, in-
cluding DCAF4L2 amplification (14% TCGA-BRCA HER2+/ER+ BC 
Subgroup 2 patients; 34% METABRIC HER2+/ER+ BC Subgroup 2 
patients) and SHANK2 amplification (25% TCGA-BRCA HER2+/ER+ BC 
Subgroup 2 patients; 15% METABRIC HER2+/ER+ BC Subgroup 2 pa-
tients). DCAF4L2 belongs to the WD-repeat domain (WDR) protein 
family, which commonly functions mediating protein-protein in-
teractions [45]. DCAF4L2 overexpression in human colorectal cancer 
is associated with a more advanced clinical stage as in lymphatic and 
distant metastasis. Moreover, overexpression was also found to 
promote cell migration, invasion, and epithelial-mesenchymal- 
transition (EMT) through activating NFκB signal pathway [46]. High 
expression of DCAF4L2 may be positively associated with poor 
overall survival of BC [45]. However, it remains to be determined 
how DCAF4L2 is implicated HER2+/ER+ BC pathology and whether it 
could be used as a novel candidate target for HER2+/ER+ treatment. 
SHANK2 is one of the SHANK family of master scaffolding proteins 
and plays important roles in regulating synapse plasticity. The 
SHANK family proteins were recently found to be involved in cancer 
cell invasion [47]. Methylation of SHANK2 could promote BC cell 
migration through activating endosome focal adhesion kinase FAK 
signaling [47]. FAK is a cytoplasmic protein-tyrosine kinase which is 
important in cell adhesion, survival and migration [48]. SHANK2 
methylation was also identified as a potential biomarker of BC me-
tastasis [47]. However, the precise roles of SHANK2 in HER2+/ER+ BC 
have yet to be determined.

The TIMER estimated tumor infiltrations of two types of immune 
cells (dendritic cells and CD4 + T cells) were significantly lower in 
HER2+/ER+ BC Subgroup 2 than in Subgroup 1. According to Jin et al., 
lower tumor infiltration of these two types of immune cells were 
associated with worse prognosis [49], which is consistent with our 
findings that Subgroup 2 patients have lower TILs and worse prog-
nosis. PAM50 intrinsic subtypes, the related rorS score, and the 
Genius score also showed different distributions between two 
HER2+/ER+ BC subgroups in TCGA-BRCA cohort, indicating a higher 
survival risk of Subgroup 2 than Subgroup 1. However, these differ-
ences were not observed in METABRIC HER2+/ER+ BC cohort. Other 
published gene signatures such as GENE70 and GGI were not sig-
nificantly different between two subgroups in both TCGA-BRCA 
HER2+/ER+ and METABRIC cohorts, suggesting their unsuitable for 
HER2+/ER+ BC. DeepDep predicted DepMap dependency scores 
showed visible different pattern between two subgroups in TCGA- 
BRCA HER2+/ER+ cohort according to our results, which further 
confirmed the difference between these two subgroups. However, 
this pattern cannot be reproduced in METABRIC HER2+/ER+ cohort.

In summary, we found that some of the differences between the 
proposed two HER2+/ER+ subgroups were observed in TCGA-BRCA 
cohort but not in METABRIC cohort, such as the tumor infiltrations of 
dendritic and CD4 + T cells, two published gene signatures (rorS and 
GENIUS), DeepDep predicted gene dependency scores, etc., possibly 
due to the different acquisition technologies used to obtain the raw 
gene expression data of these two cohorts [50]. TCGA-BRCA gene 
expression data were obtained through RNA sequencing, while 
METABRIC used microarray technology. Another possible reason is 
that TCGA-BRCA biospecimens were collected from newly diagnosed 
patients who had received no prior treatment, while lymph node- 
positive METABRIC patients received chemotherapy before the 
biopsy [22] [24].

5. Conclusion

In conclusion, our study is the first to explore the heterogeneity 
within HER2+/ER+ BCs. We identified and validated the potential 
subgroups of HER2+/ER+ breast tumors with reproducible prognostic 
and other properties. We tried both single-omics and multi-omics 
methods, but we decided to focus on single-omics due to the limited 
sample size of the multi-omics data and the better performance of 
the single-omics method. We provided a well-trained HER2+/ER 
+ subgroup classifier to assign new patients to a specific subgroup. 
We also discussed potential biological explanations of the identified 
subgroups and linked it with existing knowledge of BC. Most im-
portant, our findings may provide guidance for future new target 
therapies of the HER2+/ER+ BC patients.
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