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The world has witnessed unimaginable damage from the corona-
virus disease-19 (COVID-19) pandemic. Because the pandemic 
is growing rapidly, it is important to consider diverse treatment 
options to effectively treat people worldwide. Since the immune 
system is at the hub of the infection, it is essential to regulate 
the dynamic balance in order to prevent the overexaggerated 
immune responses that subsequently result in multiorgan damage. 
The use of stem cells as treatment options has gained tremend-
ous momentum in the past decade. The revolutionary mea-
sures in science have brought to the world mesenchymal stem 
cells (MSCs) and MSC-derived exosomes (MSC-Exo) as thera-
peutic opportunities for various diseases. The MSCs and MSC- 
Exos have immunomodulatory functions; they can be used as 
therapy to strike a balance in the immune cells of patients with 
COVID-19. In this review, we discuss the basics of the cyto-
kine storm in COVID-19, MSCs, and MSC-derived exosomes 
and the potential and stem-cell-based ongoing clinical trials for 
COVID-19. [BMB Reports 2020; 53(8): 400-412]

INTRODUCTION

The world has been facing a dreadful situation due to the 
spread of the Severe Acute Respiratory Syndrome–Coronavirus-2 

(SARS-CoV-2) (1). However, neither confirmed effective antiviral 
medications nor vaccines are available to deal with this emer-
gency (2). Many reports have suggested that it is the cytokine 
storm in COVID-19 that leads to acute respiratory distress 
syndrome (ARDS) (3). The cytokine storm in COVID-19 refers 
to the fact that a variety of cytokines are rapidly produced after 
viral infections (4). In addition, such a cytokine storm induces 
hypoxia, and direct viral infection can cause cellular damage. 
Multiorgan damage and injury have been concomitant with 
COVID-19, and can be observed more in patients with a more 
severe form of the disease (5). 

Stem cells are specialized cells that can renew themselves 
by means of cell division and can differentiate into multilineage 
cells. Mesenchymal stem cell (MSCs) have immunomodulatory 
features and secrete cytokines and immune receptors that regu-
late the microenvironment in the host tissue (6). In addition, it 
has been observed that the crucial role of MSCs in therapy has 
been mediated by exosomes released by the MSCs. These exo-
somes have exhibited immunomodulatory, antiviral, anti-fibrotic, 
and tissue-repair-related functions in vivo; similar effects have 
been observed in vitro (6). 

COVID-19 AND THE IMMUNE SYSTEM

The dynamic equilibrium maintained by innate and adaptive 
immunity is essential for impeding the progression of COVID-19 
(7). In patients infected with SARS-CoV-2, the plasma levels of 
IL-1, IL-1RA, IL-7, IL-8, IL-10, IFN-, monocyte chemoattrac-
tant peptide (MCP)-1, macrophage inflammatory protein (MIP)-1A, 
MIP-1B, G-CSF, and TNF- are significantly higher than in 
controls. The levels of these factors are also increased in 
patients who were admitted to ICUs (8). Similarly, reductions 
in the levels of T cells and NK cells have been observed in 
COVID-19 patients (9). The loss of such cells can impair the 
immune system (10). The levels of the helper T cells, cytotoxic 
suppressive T cells, and regulatory T cells are much lower in 
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Fig. 1. Role of cytokine storm in 
COVID-19. When SARS-CoV-2 binds the 
cell, the ACE2 receptors become occu-
pied. This increases AngII which results 
in lung fibrosis, inflammation, and dam-
age. The infected cell also undergoes 
cell death as a result of the viral in-
fection. Macrophages engulf the dead 
cells and release DAMPSs, which bind 
the TLR and activated NF- by means 
of MyD88. Activated NF- binding 
activates the inflammasome. Binding of 
the virus to the receptor also upregu-
lates IL-6 and TNF-alpha, further activa-
ting NF-. Increase in ATP binds the-
P2X7 receptor, which in turn increases 
Ca2+, which causes lysosomal damage 
and further activation of the inflamma-
some. Continuous activation of the in-
flammasome produces the cytokine storm, 
resulting in multiorgan damage.

patients with COVID-19 than in their healthy and less severe 
counterparts. The decrease in the regulatory T cells may hamper 
their ability to inhibit the chronic inflammation (11). Interes-
tingly, a remarkable increase is observed in the naïve T cells, 
where as the memory T cells are reduced in infected patients 
(10). The reduced expression of memory cells may be a plau-
sible explanation for the increased rates of reinfection by SARS- 
CoV-2. 

THE CYTOKINE STORM

SARS-CoV-2 binds to the Angiotensin-converting enzyme 2 
(ACE2) receptor and enters the host cell (1). During infection, 
the innate and adaptive immune systems work together to 
inactivate the virus. Since leukocytes and neutrophils are 
present in higher concentrations in COVID-19 individuals, 
these immune cells may result in the cytokine storm (10). After 
viral entry, the virus induces pyroptosis and cell death. The 
dead cells recruit macrophages to the site of injury that phago-
cytose them. The phagocytes then express damage-associated 
molecular patterns (DAMPs), which bind to the toll-like 
receptors (TLR) and induce nuclear factor kappa B (NF-) 
signalling by means of the MyD88 pathway. NF- enters the 
nucleus and catalyzes the transcription of pro-IL-1 and pro-
caspase-1. When additional signals are detected, the pro-IL-1 
and procaspase 1 are cleaved into IL-1 and caspase 1 (12). 
The activated NOD-, LRR- and pyrin domain-containing protein 
3 (NLRP3) recruits the apoptosis-associated speck-like protein 
containing a caspase recruitment domain (ASC) and pro-cas-
pase-1 to form the NLRP3 inflammasome (13). In addition, the 

phagocytosis releases ATP, which binds to the P2X purino-
ceptor 7 (P2RX7) and activates the inflammasome (14). The 
increased calcium levels caused by the viral proteins results in 
lysosomal damage, thereby releasing cathepsins that activate 
the inflammasome (15). Further, the binding of SARS-CoV-2 to 
the ACE2 reduces the available ACE2 receptors on the cell 
surface. This increases the levels of Angiotensin II (AngII) in 
the extracellular space, because ACE2 converts AngI and AngII 
into Ang 1-9 and Ang1-7, respectively. AngII increases the 
levels of TNF- and IL-6 in the cell that upregulates NF-, 
activating the inflammasome (12). The continuous activation 
of the inflammasome results in a cytokine storm, which recruits 
more immune cells, necrosis, and cell death. This inflamma-
some pathway further causes tissue injury in various organs 
(Fig. 1). 

MSCs AND IMMUNOMODULATION

MSCs are predominantly isolated from the bone marrow, 
adipose tissue, dental pulp, umbilical cord, Wharton’s jelly, 
placenta, synovial fluid, endometrium, and peripheral blood. 
These cells exhibit different cell-surface markers and can be 
used for a variety of treatment options (Table 1). MSCs can 
undergo in vitro amplification and self-renewal, and have low 
immunogenicity and immune-modulatory functions; the latter 
have attracted attention in clinical trials (16). MSCs have been 
widely used in various cellular therapies, such as pre-clinical 
studies, as well as in some clinical trials, because of their high 
safety and efficacy (17, 18). MSCs can exert immune-modu-
latory effects in the host cells of both the innate and the 
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Table 1. Commonly used sources of MSCs

S. No Source Extraction route Purity 
level

Proliferation 
rate

Doubling 
time MSCs Marker

1. Bone Marrow Bone Marrow Aspiration High Lowest 40 Hrs Stro-1, CD271, SSEA-4, CD146
2. Adipose Tissue Liposuction, lipectomy Medium Higher 5 days CD271, CD146
3. Dental pulp Tooth extraction or root canal Low High 30-40 Hrs Stro-1, SSEA-4, CD146
4. Umbilical Cord After birth from umbilical cord High Medium 30 Hrs CD146
5. Wharton’s jelly After birth from umbilical cord High High 30 Hrs CD73, CD90, CD105
6. Placenta Obtained after delivery High High 36 Hrs SSEA-4, CD146
7. Synovial Fluid Synovium or synovial fluid High High 10 days Stro-1, SSEA-4, CD146
8. Endometrium Endometrium biopsies or 

menstrual blood
High High 18-36 Hrs Stro-1, CD146

9. Peripheral Blood Density Gradient Centrifugation Low Low 95 Hrs CD133

Fig. 2. Molecules released by MSC-Exos. MSC-Exos affect their 
targets by means of various molecules that they secrete. The 
MSC-Exos secrete molecules that maintain the homeostasis in the 
neighboring cells while also secreting glycolytic enzymes. Other 
molecules involved in cell growth, proliferation, and modulation 
of the immune response and signalling pathways are secreted by 
the MSC-Exos. Some membrane-bound molecules that aid in cell 
signalling and miRNAs with various functions are also released by 
MSC-Exos.

adaptive immune system. The direct or indirect interactions of 
MSCs with the immune cells make the MSCs activate the 
immunomodulatory responses (19). The immunomodulatory 
functions of MSCs depend on the environment of the host 
cells; based on the inflammatory status, the MSCs decide the 
type of immunoregulatory effect (20). MSCs represent pro-inflam-
matory immune reactions and anti-inflammatory reactions (21). 
MSCs regulate the immune system via the transforming growth 
factor 1 (TGF1), which can trigger the proliferation of Tregs, 
induce IL-6, which prevents the proliferation of neutrophils, 
and stimulate the prostaglandin E2 (PGE2), which inhibits the 
antigen presentation by dendritic cells and proliferations of 
T-effector cells (22, 23). MSCs mediate these kinds of effects by 
direct contact, where it releases the regulatory cytokines, such 
as IFN-, indoleamine 2,3-dioxygenase, TGF, IL-10, and PGE2 
(24). Moreover, MSCs can hinder the proliferation and/or func-
tions of the CD4+ Th1 and TH17 cells, CD8+ T cells, and the 
natural killer (NK) cells, mainly by secreting soluble factors, such 
as TGF1 and hepatocyte growth factor (HGF) (16).

MESENCHYMAL STEM CELLS (MSCs) AND MSC 
SECRETOME

It has currently become apparent that MSCs induce therapeutic 
characteristics by a paracrine pathway by releasing bioactive 
substances known as secretomes (25). MSC-secretomes are made 
of soluble proteins, including cytokines, chemokines, growth 
factors, and extracellular vesicles (EVs), which include micro-
vesicles and exosomes (26). Stem cells release these secretomes 
by common secretory mechanisms. When the culture medium 
or secretome are injected into the patients, the neighboring 
cells assimilate the molecules by paracrine signalling (27). The 
exosomes themselves contain numerous bioactive molecules, 
which include microRNAs (miRNA), transfer RNAs (tRNA), 
long noncoding RNAs (lncRNA), growth factors, proteins, and 
lipids. The lipid content of the exosomes provide an added 
advantage by aiding in the infusion of the exosomes with the 
plasma membrane of the neighboring cells (28). The molecules 

involved in regulation of cell growth, proliferation, survival, 
and immune responses are released by exosomes, are elabo-
rately illustrated in Fig. 2. Upon internalization of the mole-
cules in the secretome, the neighboring cells modulate various 
downstream pathways, including immunomodulation, suppres-
sion of apoptosis, prevention of fibrosis, and remodelling of 
the injured tissues (25). 
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Fig. 3. MSC-Exos therapy for COVID-19. Isolated MSCs are condi-
tioned in specialized media that induce release of exosomes. The 
MSCs identify the external signal and start to pack regulatory factors 
in secretory vesicles that are released into the culture medium. The 
exosomes are identified and isolated using specific markers, and are 
then administered intravenously the i.v. injection. The exosomes inhi-
bit IL-1, IL-6, NK cells, CD4+, and CD8+. This results in suppres-
sion of the cytokine storm. Exosomes also activate IL-10, TGF-beta, 
M2 macrophages, and T and B regulatory cells to further suppress 
the immune system. This reduces the proinflammatory cytokines, alle-
viating symptoms and aiding in recovery of patients.

IMMUNOMODULATORY POTENTIAL OF MSC-EXOS

Exosomes are nanoparticles with a diameter of 40-150 nm. To 
generate and isolate the exosomes, MSCs can be conditioned 
to increase the release of exosomes by treatment with cyto-
kines or by serum starvation or hypoxia (29). The exosomes 
are then purified and can be subsequently introduced into the 
body. MSC-Exos can inhibit CD4+ and CD8+ T cells and NK 
cells (30). They inhibited T cells expressing IL-17 and induced 
IL-10-expressing regulatory cells that are involved with suppres-
sion of inflammation. MSC-Exos also aid in suppressing the 
differentiation of CD4+ and CD8+ T cells by releasing mole-
cules like TGF and prevent inflammation in vivo (31). Similarly, 
treatment with MSC-Exos reduced the proliferation and activa-
tion of NK cells (32). MSC-Exos could shift macrophages from 
the M1 to the M2 phenotype, further suppressing pro-inflam-
matory states (33). Moreover, sepsis is an important lethal 
factor in COVID-19 patients, and treatments with MSC-Exos 
have increased the rate of survival in mice with sepsis (34). 
Concomitantly, MSC-Exos also suppressed release of the pro-
inflammatory factors TNF-, IFN-, IL-6, IL-17, and IL-1 (35) 
and promoted release of anti-inflammatory factors, such as IL-4, 
IL-10 and TGF- (36). Additionally, MSC-Exos also reduced the 
number of chemokines in the serum when injected (37). These 
immunomodulatory effects of MSC-Exos have also been 
attributed to their anti-inflammatory cargo, such as IDO, 
HLA-G, PD-L1 and galectin-1 (38, 39). These mechanisms are 
illustrated in Fig. 3.

MSC-EXOS THERAPY FOR COVID-19

In COVID-19, multiorgan damage has been seen in many-
infected individuals. MSC-Exos is known to alleviate lung injury 
in asthmatic models and ARDS (40, 41). MSC-Exos may also 
be useful in the treatment of cardiovascular (42) and renal pro-
blems (43). Hence, they can be used to treat organ damage 
associated with COVID-19. Similarly, MSC-EVs have also exhi-
bited inhibitory activity on the hemagglutination of avian, 
swine, and human influenza viruses (44). Likewise, MSC-Exos 
lowered the death rate in H7N9 patients without any toxic 
effects during follow-up examinations (45). In addition, these 
exosomes consist of adhesion molecules that accurately guide 
them to the injured site. The usage of the exosomes may be 
preferred to the MSCs, since they can easily cross the blood- 
brain barrier, are inexpensive, and cannot undergo independent 
self-renewal, hence preventing adverse consequences, such as 
tumor formation. In this pandemic situation, MSC-Exos may be 
considered as a good treatment option to alleviate the effect of 
SARS-CoV-2 infection.

CURRENT CLINICAL TRIALS OF STEM CELL-BASED 
THERAPY IN COVID-19

Of late, stem-cell-based studies in the treatment of COVID-19 

have been gaining momentum. The efficiency and safety of 
usage of exosomes that had been obtained from BM-MSCs was 
recently tested on 24 SARS-CoV-2 patients (46). These patients 
exhibited moderate to severe ARDS. When the exosomes were 
introduced into the patients, there were no side effects, and 
patients improved in clinical status and oxygenation (46). In a 
similar study, patients treated with MSCs showed a remark-
able improvement in pulmonary function, higher levels of 
peripheral lymphocytes, and a reduction in the cells that trigger 
the cytokine storm. Interestingly, the MSCs did not exhibit 
ACE2 or TMPRSS2 expression, showing that they may not be 
infected with COVID-19 (47). Several clinical trials are in the 
pipeline for usage of stem cells for the treatment of COVID-19 
(Table 2). Wharton’s jelly-derived MSCs (WJ-MSCs), which 
have been used in various studies based on stem-cell therapy 
and trials, are in progress for their usage for COVID-19 
treatment (48). Moreover, adipose tissue-derived AD-MSCs 
have been used in a few studies in various doses and protocols 
for COVID-19 therapy (49). Likewise, a novel trial includes 
inhalation of MSC-Exos for alleviation of symptoms (50). In 
addition, MSCs from dental pulp (51) and olfactory mucosa 
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(52) were administered in various doses. MSCs in the clinical 
trials are predominantly administered intravenously; i.v. injection 
and, in some studies, MSCs have been given as adjuvant 
therapy in addition to drugs like oseltamivir, hormones, 
hydroxychloroquine, and azithromycin (53, 54). These trials 
reveal promising new routes for the battle against COVID-19 
(55-94).

FUTURE DIRECTIONS

Stem cells have been studied extensively for their ability to 
regenerate and for the treatment of various diseases. Recently, 
we devised an improved protocol for the isolation of urine- 
derived stem cells and their further differentiation into immune 
cells (95). Moreover, our research group promoted the hemato-
poietic differentiation of hiPSCs using a novel small molecule 
(96). At the advent of COVID-19, it has become mandatory to 
discover therapeutic strategies that are easily reproducible and 
cost effective. Drugs currently available for the treatment of 
COVID-19 include ones that target viral replication. These 
drugs include camo-stat mesylate, which is involved in the 
inhibition of viral fusion to the cell membrane, and favipiravir 
and remdesivir, which are anti-viral drugs. However, because 
the cytokine storm is found predominantly in COVID-19 
patients, it is essential to consider drugs that inhibit viral 
replication while treating the cytokine storm. Hence, MSC-Exos 
may be appropriate therapeutic agents for COVID-19 (97). 
MSCs can be more advantageous than other anti-inflammatory 
agents, because they can provide immunomodulatory effects 
based on the host cells. In addition to these effects, MSCs can 
prevent fibrosis of tissues, enable reversal of lung dysfunction, 
and aid in the regeneration of damaged tissue, which can be 
significantly beneficial for COVID-19-associated organ damage 
(98, 99). Because the healing properties of the MSCs can be 
primarily attributed to the secretomes or exosomes, using them 
may be more effective than using MSCs themselves. Exosomes 
can be mass-produced, administered systematically with minimal-
toxicity, and be able to reach the cell targets more efficiently. 
In addition to their inherent immunomodulatory potential, the 
MSC-Exos can also be used as a drug-delivery system (100). 
MSC-Exos can be modified in vivo to release exosomes that 
have a higher immunomodulatory potential (101) and can be 
cultured using various cytokines to exhibit an anti-inflammatory 
state (102). Although MSC-Exos appear to be promising thera-
peutic agents for COVID-19, more experimental research is 
necessary for them to be used clinically. Moreover, it is es-
sential to optimize the protocols for storage and isolation of 
MSC-Exos for the treatment of COVID-19. It is also imperative 
to do experiments to understand the underlying mechanisms 
of COVID-19 in order to optimize MSC-Exo therapy for treat-
ment (97). Further, it is also essential to find the optimum dosage, 
route of administration, and treatment schedule for MSC-Exos. 
Hence, since MSCs are more widely studied in these aspects 
than are MSC-Exos, they are predominantly preferred in clinical 

trials for COVID-19 (103).

CONCLUDING REMARKS

COVID-19 has invoked frenzy in individuals worldwide. The 
unceasing increase of infection and death has halted the lives 
of the citizens of countries everywhere. Hence, it is important 
to discover novel therapeutic platforms and productive measures 
without further delay (104). The therapies produced must be 
easily reproducible and available in large quantities so that 
enough bioactive molecules will be available for all indivi-
duals who have succumbed to COVID-19. MSCs and MSC- 
Exos can be used for their immunomodulatory effects in indi-
viduals with COVID-19.
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