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Abstract

Heat shock proteins (HSPs) play a pivotal role as molecular chaperones against unfavor-

able conditions. Although HSPs are of great importance, their computational identification

remains a significant challenge. Previous studies have two major limitations. First, they

relied heavily on amino acid composition features, which inevitably limited their prediction

performance. Second, their prediction performance was overestimated because of the inde-

pendent two-stage evaluations and train-test data redundancy. To overcome these limita-

tions, we introduce two novel deep learning algorithms: (1) time-efficient DeepHSP and (2)

high-performance DeeperHSP. We propose a convolutional neural network (CNN)-based

DeepHSP that classifies both non-HSPs and six HSP families simultaneously. It outper-

forms state-of-the-art algorithms, despite taking 14–15 times less time for both training and

inference. We further improve the performance of DeepHSP by taking advantage of protein

transfer learning. While DeepHSP is trained on raw protein sequences, DeeperHSP is

trained on top of pre-trained protein representations. Therefore, DeeperHSP remarkably

outperforms state-of-the-art algorithms increasing F1 scores in both cross-validation and

independent test experiments by 20% and 10%, respectively. We envision that the pro-

posed algorithms can provide a proteome-wide prediction of HSPs and help in various

downstream analyses for pathology and clinical research.

Introduction

Heat shock proteins (HSPs) are stress-induced proteins that are highly conserved across

organisms ranging from bacteria to humans [1]. HSPs participate in several cellular processes

such as intercellular transportation and signal pathway modulation. Most importantly, HSPs

play a pivotal role as molecular chaperones against unfavorable conditions, such as elevated

temperature and inflammation [2]. They prevent irreversible aggregation of denatured pro-

teins and assist protein folding for functional conformation. Because the dysfunction of HSPs

may lead to fatal illness (e.g., neurodegenerative disorders, cardiovascular diseases, and
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cancers), their identification has been an important problem in pathology and clinical research

[3].

According to core functions and molecular weights [4], HSPs can be categorized into six

major families: HSP20 (small HSPs), HSP40 (DnaJ proteins), HSP60 (GroEL proteins), HSP70

(DnaK proteins), HSP90 (HptG proteins), and HSP100 (Clp proteins). Traditional methods

rely on nuclear magnetic resonance spectroscopy to identify HSP families [5]. However, as an

exponential number of proteins are becoming available, time-consuming and resource-inten-

sive processes of experimental annotation have become a serious disadvantage.

Therefore, numerous computational methods have been developed to identify HSP families

(Table 1). They commonly used a support vector machine (SVM) classifier trained on a variety

of sequence composition features, e.g., pseudo amino acid composition (PAAC), dipeptide

composition (DPC), and spaced-DPC (SDPC). While early methods [6, 7] only focused on

classifying HSP sequences into one of the six HSP families, PredHSP [8] and ir-HSP [9] pro-

posed two-stage algorithms to cope with non-HSP input sequences as well. They are based on

sequence composition feature extraction, followed by two trained SVM classifiers. In the first

stage, they used an SVM model to discriminate HSP sequences from non-HSP sequences. In

the second stage, they used another SVM model to classify those predicted as HSPs into one of

the six families. The main difference between the algorithms lies in the type of extracted

features.

Previous studies have provided high-throughput methods for identifying HSP families.

However, they had two major limitations. First, they relied heavily on the sequence composi-

tion features, focusing only on dipeptide statistics. Because they cannot capture more complex

high-level information, it limited the performance of the previous algorithms. Second, their

prediction performance was overestimated owing to biased experiments. During cross-valida-

tion, the second SVM was evaluated independently without considering the first SVM. This

resulted in a higher number of true positives, although some of them already have been mis-

classified as non-HSPs in the first stage. Moreover, during additional tests, it was not ensured

that the additional datasets were independent. We found that there are numerous sequences

similar to those in the training dataset. The data redundancy also inevitably caused overrated

evaluations.

With the advancement of deep learning, several studies have proposed deep learning mod-

els for bioinformatics [10]. As conventional machine learning models heavily rely on extracted

features, machine learning researchers often focus on designing effective features for various

tasks [11–13]. In contrast, deep learning models eliminate the laborious feature engineering

and use deep neural networks to learn hierarchical representations from data. They showed

that deep learning models, trained with a substantial amount of labeled data, can achieve state-

of-the-art performance in various problems such as CRISPR activity and microRNA target

prediction. [14, 15].

Transfer learning is an important cornerstone of deep learning. For example, in natural lan-

guage processing, word representations are pre-trained using a huge amount of unlabeled text

[16, 17]. The learned information can be transferred to a wide range of tasks by training task-

Table 1. Summary of related works.

Method Feature Model Non-HSP HSP Families

iHSP-PseRAAC [6] PAAC SVM X O

Ahmad et al. [7] DPC SVM X O

PredHSP [8] DPC SVM O O

ir-HSP [9] SDPC SVM O O

https://doi.org/10.1371/journal.pone.0251865.t001
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specific models on top of the pre-trained word representations. The crux of transfer learning is

how to pre-train representations. Several studies have proposed language model (LM)-based

approaches that can exploit unlabeled data [16, 17]. Given a sentence, they train an LM such

that a randomly masked word is predicted from representations of other words.

Similarly, a variety of studies have proposed LM-based approaches for protein transfer

learning [18–22]. As evolutionary pressure constrains naturally occurring proteins to maintain

indispensable functions, they could obtain implicit information underlying protein sequences

even without any experimental annotations. Taking advantage of a large number of unlabeled

protein sequences, it was demonstrated that pre-trained protein representations convey bio-

chemical, structural, and evolutionary information. Therefore, pre-trained representations can

help improve model performance in various protein biology tasks [23].

The key differences among the previous studies originate from two factors: (1) LM architec-

ture and (2) the number of proteins used for pre-training (Table 2). In terms of the LM archi-

tecture, UniRep, PLUS-RNN, and SeqVec use recurrent neural networks (RNNs); ProtXLNet,

ProtBERT, and ESM use transformers (TFMs). RNN-based models require less resources for

both pre-training and producing representations. Although TFM-based models require signif-

icantly more resources, they are better at capturing long-term dependencies within proteins

and can provide more informative representations [24]. The number of unlabeled proteins

used in each study varied considerably. The LMs with more parameters were usually pre-

trained with a larger number of proteins. Exceptionally, while ESM used the largest protein

LM, it was pre-trained with a relatively small number of proteins. This can be attributed to its

high-diversity dataset, which contains only representative proteins from clusters based on

sequence identity [22].

In this work, we introduce two novel deep learning algorithms for the identification of HSP

families. First, we propose time-efficient DeepHSP based on a convolutional neural network

(CNN). It leverages (1) the representation learning capability of deep learning and (2) a one-

stage algorithm trained to classify both non-HSPs and the six HSP families simultaneously. It

outperforms state-of-the-art algorithms, despite taking 14–15 times less time for both training

and inference. We further improve DeepHSP by taking advantage of protein transfer learning.

We train the CNN model on top of pre-trained protein representations instead of the raw

sequences used for DeepHSP. We denote the resulting model as DeeperHSP considering that

the representations are obtained from a pre-trained deep neural network. We demonstrate

that high-performance DeeperHSP remarkably outperforms state-of-the-art algorithms in

both cross-validation and independent test experiments, increasing F1 score by 20% and 10%,

respectively.

In summary, the contributions of our paper are as follows:

• We introduce time-efficient DeepHSP and high-performance DeeperHSP for the computa-

tional identification of HSP families.

Table 2. Pre-trained protein language models.

Model Parameter (M) Dimensions Proteins (M)

UniRep RNN 18 1,900 24

PLUS-RNN RNN 59 2,048 15

SeqVec RNN 94 1,024 33

ProtXLNet TFM 409 1,024 216

ProtBERT TFM 421 1,024 2,122

ESM TFM 669 1,280 27

https://doi.org/10.1371/journal.pone.0251865.t002
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• DeepHSP outperforms state-of-the-art algorithms, despite taking 14–15 times less time for

both training and inference.

• Incorporating pre-trained protein representations and a CNN model, DeeperHSP remark-

ably outperforms state-of-the-art algorithms both in cross-validation and independent test

experiments, increasing the F1 scores by 20% and 10%, respectively.

• All the data, codes, and pre-trained models are available at https://github.com/mswzeus/

DeeperHSP.

Materials and methods

DeepHSP

We propose time-efficient DeepHSP which categorizes a protein sequence into seven classes:

non-HSP and the six major HSP families (Fig 1). Hereafter, we explain the CNN-based model

step-by-step with an input protein sequence of variable-length L denoted as

S ¼ ðs1; . . . ; sLÞ; si 2 f20 standard amino acidsg:

Given a protein sequence S, DeepHSP first uses one-hot encoding to convert it into

X 2 RL�20
, a sequence of 20-dimensional vectors:

X ¼ hx1; . . . ; xLi; xi ¼ OneHotðsiÞ;

such that all the elements in xi are set to zero, except the element corresponding to si, that is set

to one.

Subsequently, the convolution and max-pooling layers compute hidden representations,

H 2 R500, from the encoded input matrix:

H ¼ MaxPoolðConvðXÞÞ:

The convolution layer uses dc = 500 filters of length lc = 5 followed by a rectified linear unit

activation function. The filters can be regarded as position-weighted matrices similar to those

used in traditional analyses [10]. They are convolved along protein sequences and trained to

identify discriminative motifs. The global max-pooling layer computes the maximum value of

Fig 1. Overview of DeepHSP and DeeperHSP.

https://doi.org/10.1371/journal.pone.0251865.g001
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the output of each filter. This helps us to obtain a fixed-length representation vector from the

variable-length input sequence.

Finally, the fully-connected (FC) layer computes the outputs P from the representations:

P ¼ FCðHÞ; P ¼ ðp1; . . . ; p7Þ

where pc denotes the probability of each class c of the input sequence, and
P7

c¼1
pc ¼ 1. The

FC layer uses dropout regularization and a softmax activation function. The former randomly

zeroes some of the input vectors to help avoid overfitting. The latter normalizes the output vec-

tor so it can be interpreted as a probability distribution.

DeeperHSP

The main limitation of DeepHSP originates from the one-hot encoding. It can only identify

the amino acid in each position and cannot provide any other information. To tackle this

problem, we propose high-performance DeeperHSP, which takes advantage of protein transfer

learning. DeeperHSP embeds an input sequence using a pre-trained protein LM and a projec-

tion layer (Fig 1).

Given a protein sequence S, DeeperHSP uses a pre-trained protein LM to convert it into a

sequence of de-dimensional vectors, E 2 RL�de :

E ¼ he1; . . . ; eLi; E ¼ ProteinLMðSÞ:

In contrast to one-hot encoding, which independently converts each amino acid, the pro-

tein LM computes representations as a function of the entire sequence. By leveraging a large

number of unlabeled proteins through pre-training, they provide biochemical, structural, and

evolutionary information that can help us to identify HSP families. Among a variety of pre-

trained protein LMs, we used the largest ESM [22], which produces vectors of dimension de =

1280. The effects of different protein LMs are presented in the ablation studies.

The size of the representations, de, is more than a couple of thousand dimensions. This may

significantly increase the number of parameters in the following model. Therefore, DeeperHSP

uses a projection layer to further embed E into vectors Z 2 RL�dp , where dp = 20:

Z ¼ hz1; . . . ; zLi; zi ¼ ProjðeiÞ;

where it independently embeds ei into zi with shared weights across different positions. The

projection layer minimizes the additional number of parameters required for DeeperHSP.

Finally, DeeperHSP uses a CNN on top of the embedded input matrix. It utilizes the same

CNN architecture as DeepHSP except that (1) its input X is replaced with Z and (2) its convo-

lution layer uses dc = 200 filters. The latter is to make the number of parameters of DeeperHSP

(47K) similar to that of DeepHSP (54K). It helps us to clearly examine the effectiveness of the

pre-trained representations used for DeeperHSP.
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Training of DeepHSP and DeeperHSP

For the training of both DeepHSP and DeeperHSP, we use class-weighted cross-entropy objec-

tive function defined as

L ¼ �
X7

c¼1

wc � yclogðpcÞ;

fwc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxðnumber of samples in each classÞ

number of samples in class c

s

;

where yc 2 {0, 1} denotes the label of each class for the input. Because training datasets are

highly class-imbalanced, we use the class weights wc to manually scale the training loss for

each class.

We trained the models for 20 epochs using the Adam optimizer [25] with a mini-batch size

of 100, a learning rate of 0.0004, and a dropout probability of 0.4. Note that for DeeperHSP, we

left the pre-trained LM intact and only trained the projection layer and the CNN model. We

used PyTorch [26] and Bio_Embeddings [27] libraries for model implementations and to

obtain pre-trained representations, respectively.

Results

Datasets

Cross-validation dataset. For cross-validation experiments, we utilized the same dataset

used in previous studies [8, 9]. Non-HSP sequences were randomly selected without homolo-

gous proteins from SwissProt [28]. HSP sequences were derived from HSPIR [4]. Thereafter,

the proteins with� 40% pairwise sequence similarity within the same family were removed

using CD-HIT [29]. Finally, the non-HSP and HSP sequences containing non-standard amino

acids were filtered out to obtain a cross-validation dataset (Table 3).

Independent test dataset. Although previous studies used additional test datasets, they

did not ensure that those were independent from the cross-validation dataset [8, 9]. Therefore,

we curated a new independent test dataset to evaluate the generalization performance

(Table 3). We randomly sampled non-HSP sequences from Pfam [30] and collected manually

verified HSP sequences from three data sources, i.e., HGNC [31], RICE [32, 33], and InterPro

[34]. Most importantly, we used CD-HIT [29] to remove homogeneous proteins such that no

two proteins from the cross-validation and test datasets have 40% or more pairwise sequence

similarity within the same class. We filtered out about 80% of the 3,911 curated sequences and

obtained an independent test dataset of 680 sequences.

Table 3. Summary of cross-validation and independent test datasets.

Class Cross-Validation Dataset Independent Test Dataset

Non-HSP 9,965 500

HSP20 354 12

HSP40 1,257 52

HSP60 159 8

HSP70 278 53

HSP90 52 35

HSP100 81 20

https://doi.org/10.1371/journal.pone.0251865.t003
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Feature extraction-based baselines

We compared the performance of DeepHSP and DeeperHSP with those of two state-of-the-art

algorithms: PredHSP [8] and ir-HSP [9]. Because their codes are not publicly available, we re-

implemented them using the Scikit-learn library [35]. First, we extracted DPC and SDPC fea-

tures for PredHSP and ir-HSP, respectively. Then, we trained the radial basis function kernel

SVM models. We selected SVM hyperparameters with the best performance among 144 con-

figurations: 12 points of regularization penalty C and kernel coefficient γ that were evenly

spaced between 103 and 10−3.

To set competitive baselines, we made some modifications during the re-implementations.

While PredHSP and ir-HSP are two-stage algorithms, we converted them into one-stage algo-

rithms that classify both non-HSPs and the six HSP families simultaneously. We found that

the latter performs better by utilizing all class information in a single integrated model. In

addition, for ir-HSP, we removed random forest (RF)-based feature selection and used all

1600-dimensional SDPC features. We discovered that feature selection did not improve the

classification performance. We report the performance of the modified baselines for the fol-

lowing cross-validation and independent results. The performance comparisons between the

original and modified baselines are provided in the ablation studies.

Cross-validation results

We evaluated the classification performance of PredHSP, ir-HSP, DeepHSP, and DeeperHSP

using five-fold cross-validation. We used eight evaluation metrics: accuracy, F1 score, preci-

sion, recall, specificity, MCC, AUC-ROC, and AUC-PR. Because all the evaluation metrics,

except for accuracy, are defined for binary classification, we used unweighted averages of the

scores computed for each class.

First, we compared the overall classification performance (Table 4). The results show that

the proposed DeepHSP and DeeperHSP significantly outperformed the state-of-the-art algo-

rithms. The gap between ir-HSP and DeepHSP verifies the importance of deep learning.

DeepHSP was able to learn discriminative representations that could not be captured using the

sequence composition features. The performance improvement obtained by DeeperHSP dem-

onstrates the effectiveness of the pre-trained protein representations. They provide a wealth of

information learned from a large number of unlabeled protein sequences. By incorporating

the pre-trained representations and the CNN model, DeeperHSP outperformed the previous

algorithms in terms of all the evaluation metrics, notably increasing the F1 score by 20%.

Next, we compared their class-wise classification performance in terms of the F1 score

(Table 5). The results show similar performance improvement trends. DeepHSP outperformed

the previous algorithms for most classes. However, it did not perform well for the classification

of HSP90, where the least number of training samples are available. This indicates the difficulty

of training deep neural networks from scratch without sufficient data. In contrast, DeeperHSP

Table 4. Comparison of overall classification performance using 5-fold cross-validation.

Model Accuracy F1 Score Precision Recall Specificity MCC AUC-ROC AUC-PR

PredHSP † 0.9128 0.6839 0.9044 0.5856 0.9409 0.6686 0.9496 0.7725

ir-HSP † 0.9483 0.8276 0.9437 0.7611 0.9678 0.8147 0.9725 0.8651

DeepHSP 0.9682 0.8613 0.9617 0.7984 0.9778 0.8554 0.9779 0.8931

DeeperHSP 0.9927 0.9693 0.9745 0.9666 0.9957 0.9664 0.9947 0.9667

† Modified version for performance improvement.

https://doi.org/10.1371/journal.pone.0251865.t004
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provided the best classification performance for all classes. We can conclude that the pre-

trained protein representations could help stabilize the training of the CNN model, particu-

larly for classes with limited training data.

Finally, we examined the latent representations of DeepHSP and DeeperHSP. We used the

t-distributed stochastic neighbor embedding (t-SNE) visualizations [36] with representations

obtained from their penultimate layers (Fig 2). The latent representations of DeeperHSP are

more clearly clustered into different groups according to their classes. By comparing the

results, we confirmed the superiority of DeeperHSP over DeepHSP.

Independent test results

We used an independent test dataset to evaluate the different algorithms. The results show that

the proposed models consistently outperformed the previous algorithms (Table 6). In particu-

lar, compared to ir-HSP, DeeperHSP increased F1 score by 10%. Considering that DeeperHSP

has less parameters than DeepHSP, it is remarkable that the pre-trained representations could

improve the performance of the CNN model.

We also present the confusion matrices of the ir-HSP and DeeperHSP predictions for the

independent test dataset (Fig 3). We can observe that DeeperHSP provides better classification

performance. It correctly classified the majority of the HSP100 samples, where ir-HSP did not

perform satisfactorily. Meanwhile, the confusion matrices of ir-HSP and DeeperHSP exhibited

similar misclassification patterns. In particular, among the 21 samples misclassified by Dee-

perHSP, 18 samples were also misclassified into the same incorrect classes by ir-HSP. This

Table 5. Comparison of class-wise classification performance in terms of F1 score using 5-fold cross-validation.

Model Non-HSP HSP20 HSP40 HSP60 HSP70 HSP90 HSP100 Average

PredHSP † 0.9502 0.6353 0.7573 0.4181 0.6159 0.6558 0.7544 0.6839

ir-HSP † 0.9698 0.8190 0.8696 0.6175 0.8165 0.8315 0.8692 0.8276

DeepHSP 0.9812 0.8554 0.9540 0.7157 0.8149 0.8079 0.9001 0.8613

DeeperHSP 0.9956 0.9873 0.9847 0.9607 0.9648 0.9152 0.9768 0.9693

† Modified version for performance improvement.

https://doi.org/10.1371/journal.pone.0251865.t005

Fig 2. t-SNE plot of the latent representations of DeepHSP and DeeperHSP for the cross-validation dataset.

https://doi.org/10.1371/journal.pone.0251865.g002
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might imply that there are limitations to sequence-based identification of HSP families and

additional structural information is required for performance improvement.

Running time

We compared the running time required for each algorithm. We report training time for the

cross-validation dataset and inference time for the independent test dataset. Note that we used

single CPU for the SVM-based algorithms and single GPU for the deep learning-based

algorithms.

The results show that the proposed models have trade-off between performance and time-

efficiency (Table 7). DeepHSP showed small improvement in performance but a strong advan-

tage in time-efficiency. It was about 14–15 times faster than ir-HSP for both training and infer-

ence. On the other hand, while DeeperHSP demonstrated the best performance, it exhibited

the longest running time. This was largely due to the time required for obtaining pre-trained

representations. Based on these observations, we believe that the different strengths of

DeepHSP and DeeperHSP can provide different options based on users’ demands.

Ablation studies

Feature extraction-based baselines. For competitive baselines, we explored both one-

and two-stage algorithms based on different combinations of features and classifiers. We con-

sidered six types of features [37]: amino acid composition (AAC), DPC, SDPC, PAAC,

Table 6. Comparison of overall classification performance using independent test.

Model Accuracy F1 Score Precision Recall Specificity MCC AUC-ROC AUC-PR

PredHSP † 0.9324 0.8017 0.9330 0.7643 0.9698 0.7993 0.9515 0.8154

ir-HSP † 0.9456 0.8302 0.9005 0.8092 0.9780 0.8240 0.9677 0.8400

DeepHSP 0.9500 0.8340 0.8870 0.8303 0.9805 0.8292 0.9431 0.8079

DeeperHSP 0.9691 0.9126 0.9230 0.9077 0.9902 0.9043 0.9692 0.8747

† Modified version for performance improvement.

https://doi.org/10.1371/journal.pone.0251865.t006

Fig 3. Confusion matrices of the modified ir-HSP and DeeperHSP predictions for the independent test dataset.

https://doi.org/10.1371/journal.pone.0251865.g003
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composition transition distribution (CTD), and Moreau-Broto auto-correlation (MBAuto).

We also considered six types of classifiers [35]: XGBoost, RF, Lasso, Ridge, ElasticNet, and

SVM. For each classifier, we selected its hyperparameters with the best performance among

144 configurations.

Fig 4 presents heatmaps of the F1 scores obtained from the different algorithms using five-

fold cross-validation. We can observe that the one-stage algorithms performed better than the

two-stage algorithms. Comparing the different combinations of features and classifiers, two of

them clearly stand out. These are the modified versions of PredHSP and ir-HSP, which are

based on SVM classifiers trained using DPC and SDPC features, respectively.

We further examined whether techniques used in previous works could improve the classi-

fication performance [9, 38]. We used a one-stage SVM model trained on the SDPC features

as a baseline model. Then, we additionally adopted either (1) RF-based feature selection to

choose a smaller number of important features or (2) the syntactic minority oversampling

technique (SMOTE) [39] to deal with class imbalance. We discovered that both techniques led

to lower F1 scores of 0.71 and 0.63, respectively.

Pre-trained protein representations. We explored various pre-trained protein LMs to

obtain representations for DeeperHSP: UniRep, SeqVec, PLUS-RNN, ProtXLNet, ProtBERT,

and ESM.

We compared the performance of DeeperHSP with different LMs using five-fold cross-vali-

dation (Fig 5). Additionally, as a baseline, we include the performance of DeepHSP in the

Table 7. Comparison of running time required for each algorithm.

Model Training (seconds) Inference (seconds)

PredHSP † 315 5

ir-HSP † 1,265 14

DeepHSP 80 1

DeeperHSP 2,112 120

† Modified version for performance improvement.

https://doi.org/10.1371/journal.pone.0251865.t007

Fig 4. Heatmaps of the F1 scores obtained from baseline algorithms using 5-fold cross-validation. One-stage algorithms classify both non-HSPs

and the six HSP families simultaneously. Two-stage algorithms use two models to filter out non-HSPs and classify the remaining HSPs into the six

families.

https://doi.org/10.1371/journal.pone.0251865.g004
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leftmost column. Each box denotes the quartiles of F1 scores, and the star denotes their aver-

age. The boxplot shows that all LMs improve the average classification performance compared

to DeepHSP. Taking advantage of a large number of unlabeled proteins, the pre-trained pro-

tein representations provide a wealth of information that cannot be learned from one-hot

encoding.

While all the pre-trained protein LMs help in the identification of HSP families, their level

of performance improvement varies significantly. The small gap between OneHot (i.e.,
DeepHSP) and UniRep indicates that a sufficient number of parameters are required to obtain

a moderate increase (Table 2). LMs with more parameters generally provide more perfor-

mance improvement. For example, the larger TFM-based LMs outperformed the RNN-based

LMs, and the largest ESM showed the best performance. One exception is that although

PLUS-RNN has fewer parameters than SeqVec, it exhibits better performance. We conjecture

that this can be attributed to its additional protein-specific pre-training objective, which can

better capture structural information of protein sequences than those solely pre-trained with

an LM [19].

Conclusion

In this paper, we proposed two novel deep learning algorithms that classify both non-HSPs

and the six HSP families simultaneously. The time-efficient DeepHSP uses a CNN model that

identifies the HSP families faster and more accurately than the alternatives. Furthermore, the

high-performance DeeperHSP leverages protein transfer learning to improve performance. It

trains the CNN model on top of the pre-trained protein representations instead of the one-hot

encoded protein sequences. Our experimental results showed that DeeperHSP remarkably

outperformed the state-of-the-art algorithms. It increased F1 scores by 20% and 10% on the

cross-validation and independent test datasets, respectively. We envision that the proposed

algorithms can provide a proteome-wide prediction of HSPs and help various downstream

analyses for pathology and clinical research.

Fig 5. Boxplot of the F1 scores obtained from DeeperHSP with different pre-trained protein representations

using 5-fold cross-validation.

https://doi.org/10.1371/journal.pone.0251865.g005
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Although the proposed algorithms have a clear advantage over the previous approaches,

there are still some limitations and room for further improvement. First, there are trade-offs

between the running time and classification performance. We expect that a lightweight LM

would be able to greatly reduce the running time for obtaining pre-trained protein representa-

tions [40]. This will enable the development of both time-efficient and high-performance algo-

rithms for the identification of HSP families. Second, they only focused on classifying non-

HSPs and HSP families. It would be valuable to develop a more comprehensive model that can

provide additional information on other protein types and functions [41]. Finally, we believe it

would also be interesting to extend this work to recent research topics in machine learning

such as interpretability [42, 43] and security [44–47].
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5. Didenko T, Duarte AM, Karagöz GE, Rüdiger SG. Hsp90 structure and function studied by NMR spec-

troscopy. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 2012; 1823(3):636–647.

https://doi.org/10.1016/j.bbamcr.2011.11.009

6. Feng PM, Chen W, Lin H, Chou KC. iHSP-PseRAAAC: Identifying the heat shock protein families using

pseudo reduced amino acid alphabet composition. Analytical Biochemistry. 2013; 442(1):118–125.

https://doi.org/10.1016/j.ab.2013.05.024

7. Ahmad S, Kabir M, Hayat M. Identification of Heat Shock Protein families and J-protein types by incor-

porating Dipeptide Composition into Chou’s general PseAAC. Computer methods and programs in bio-

medicine. 2015; 122(2):165–174. https://doi.org/10.1016/j.cmpb.2015.07.005

PLOS ONE Protein transfer learning improves identification of heat shock protein families

PLOS ONE | https://doi.org/10.1371/journal.pone.0251865 May 18, 2021 12 / 14

https://doi.org/10.1007/BF02172188
https://doi.org/10.1093/jnci/92.19.1564
https://doi.org/10.1093/jnci/92.19.1564
https://doi.org/10.1093/bioinformatics/bts520
https://doi.org/10.1093/bioinformatics/bts520
https://doi.org/10.1016/j.bbamcr.2011.11.009
https://doi.org/10.1016/j.ab.2013.05.024
https://doi.org/10.1016/j.cmpb.2015.07.005
https://doi.org/10.1371/journal.pone.0251865


8. Kumar R, Kumari B, Kumar M. PredHSP: sequence based proteome-wide heat shock protein prediction

and classification tool to unlock the stress biology. PloS one. 2016; 11(5):e0155872. https://doi.org/10.

1371/journal.pone.0155872

9. Meher PK, Sahu TK, Gahoi S, Rao AR. ir-HSP: improved recognition of heat shock proteins, their fami-

lies and sub-types based on g-spaced di-peptide features and support vector machine. Frontiers in

genetics. 2018; 8:235. https://doi.org/10.3389/fgene.2017.00235

10. Min S, Lee B, Yoon S. Deep learning in bioinformatics. Briefings in bioinformatics. 2017; 18(5):851–

869.

11. RM SP, Maddikunta PKR, Parimala M, Koppu S, Gadekallu TR, Chowdhary CL, et al. An effective fea-

ture engineering for DNN using hybrid PCA-GWO for intrusion detection in IoMT architecture. Computer

Communications. 2020; 160:139–149. https://doi.org/10.1016/j.comcom.2020.05.048

12. Hakak S, Alazab M, Khan S, Gadekallu TR, Maddikunta PKR, Khan WZ. An ensemble machine learn-

ing approach through effective feature extraction to classify fake news. Future Generation Computer

Systems. 2021; 117:47–58. https://doi.org/10.1016/j.future.2020.11.022

13. Khan RU, Zhang X, Kumar R, Sharif A, Golilarz NA, Alazab M. An adaptive multi-layer botnet detection

technique using machine learning classifiers. Applied Sciences. 2019; 9(11):2375. https://doi.org/10.

3390/app9112375

14. Kim HK, Min S, Song M, Jung S, Choi JW, Kim Y, et al. Deep learning improves prediction of CRISPR–

Cpf1 guide RNA activity. Nature biotechnology. 2018; 36(3):239. https://doi.org/10.1038/nbt.4061

PMID: 29431740

15. Lee B, Baek J, Park S, Yoon S. deepTarget: end-to-end learning framework for microRNA target predic-

tion using deep recurrent neural networks. In: Proceedings of the 7th ACM International Conference on

Bioinformatics, Computational Biology, and Health Informatics; 2016. p. 434–442.

16. Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J. Distributed representations of words and phrases

and their compositionality. In: Advances in neural information processing systems; 2013. p. 3111–3119.

17. Devlin J, Chang MW, Lee K, Toutanova K. Bert: Pre-training of deep bidirectional transformers for lan-

guage understanding. arXiv preprint arXiv:181004805. 2018;.

18. Alley EC, Khimulya G, Biswas S, AlQuraishi M, Church GM. Unified rational protein engineering with

sequence-based deep representation learning. Nature methods. 2019; 16(12):1315–1322. https://doi.

org/10.1038/s41592-019-0598-1

19. Min S, Park S, Kim S, Choi HS, Yoon S. Pre-training of deep bidirectional protein sequence representa-

tions with structural information. arXiv preprint arXiv:191205625. 2019;.

20. Heinzinger M, Elnaggar A, Wang Y, Dallago C, Nechaev D, Matthes F, et al. Modeling aspects of the

language of life through transfer-learning protein sequences. BMC bioinformatics. 2019; 20(1):1–17.

https://doi.org/10.1186/s12859-019-3220-8 PMID: 31847804

21. Elnaggar A, Heinzinger M, Dallago C, Rihawi G, Wang Y, Jones L, et al. ProtTrans: Towards Cracking

the Language of Life’s Code Through Self-Supervised Deep Learning and High Performance Comput-

ing. arXiv preprint arXiv:200706225. 2020;.

22. Rives A, Goyal S, Meier J, Guo D, Ott M, Zitnick CL, et al. Biological structure and function emerge from

scaling unsupervised learning to 250 million protein sequences. bioRxiv. 2019; p. 622803.

23. Rao R, Bhattacharya N, Thomas N, Duan Y, Chen X, Canny J, et al. Evaluating protein transfer learning

with tape. Advances in Neural Information Processing Systems. 2019; 32:9689. PMID: 33390682

24. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al. Attention is all you need. In:

Advances in neural information processing systems; 2017. p. 5998–6008.

25. Kingma DP, Ba J. Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980. 2014;.

26. Paszke A, Gross S, Chintala S, et al. Automatic Differentiation in PyTorch. NIPS Autodiff

Workshop. 2017;.

27. Dallago C, Schütze K, Heinzinger M, Olenyi T, Littmann M, Lu A, et al. Learned embeddings from deep

learning to visualize and predict protein sets. Under review. 2021;.

28. Boeckmann B, Bairoch A, Apweiler R, Blatter MC, Estreicher A, Gasteiger E, et al. The SWISS-PROT

protein knowledgebase and its supplement TrEMBL in 2003. Nucleic acids research. 2003; 31(1):365–

370. https://doi.org/10.1093/nar/gkg095 PMID: 12520024

29. Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide

sequences. Bioinformatics. 2006; 22(13):1658–1659. https://doi.org/10.1093/bioinformatics/btl158

30. Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, et al. The Pfam protein families

database. Nucleic acids research. 2004; 32(suppl_1):D138–D141. https://doi.org/10.1093/nar/gkh121

PMID: 14681378

PLOS ONE Protein transfer learning improves identification of heat shock protein families

PLOS ONE | https://doi.org/10.1371/journal.pone.0251865 May 18, 2021 13 / 14

https://doi.org/10.1371/journal.pone.0155872
https://doi.org/10.1371/journal.pone.0155872
https://doi.org/10.3389/fgene.2017.00235
https://doi.org/10.1016/j.comcom.2020.05.048
https://doi.org/10.1016/j.future.2020.11.022
https://doi.org/10.3390/app9112375
https://doi.org/10.3390/app9112375
https://doi.org/10.1038/nbt.4061
http://www.ncbi.nlm.nih.gov/pubmed/29431740
https://doi.org/10.1038/s41592-019-0598-1
https://doi.org/10.1038/s41592-019-0598-1
https://doi.org/10.1186/s12859-019-3220-8
http://www.ncbi.nlm.nih.gov/pubmed/31847804
http://www.ncbi.nlm.nih.gov/pubmed/33390682
https://doi.org/10.1093/nar/gkg095
http://www.ncbi.nlm.nih.gov/pubmed/12520024
https://doi.org/10.1093/bioinformatics/btl158
https://doi.org/10.1093/nar/gkh121
http://www.ncbi.nlm.nih.gov/pubmed/14681378
https://doi.org/10.1371/journal.pone.0251865


31. Kampinga HH, Hageman J, Vos MJ, Kubota H, Tanguay RM, Bruford EA, et al. Guidelines for the

nomenclature of the human heat shock proteins. Cell Stress and Chaperones. 2009; 14(1):105–111.

https://doi.org/10.1007/s12192-008-0068-7 PMID: 18663603

32. Wang Y, Lin S, Song Q, Li K, Tao H, Huang J, et al. Genome-wide identification of heat shock proteins

(Hsps) and Hsp interactors in rice: Hsp70s as a case study. BMC genomics. 2014; 15(1):1–15. https://

doi.org/10.1186/1471-2164-15-344 PMID: 24884676

33. Sarkar NK, Kundnani P, Grover A. Functional analysis of Hsp70 superfamily proteins of rice (Oryza

sativa). Cell stress and Chaperones. 2013; 18(4):427–437. https://doi.org/10.1007/s12192-012-0395-6

34. Hunter S, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, et al. InterPro: the integrative pro-

tein signature database. Nucleic acids research. 2009; 37(suppl_1):D211–D215. https://doi.org/10.

1093/nar/gkn785 PMID: 18940856

35. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine

Learning in Python. Journal of Machine Learning Research. 2011; 12:2825–2830.

36. Van der Maaten L, Hinton G. Visualizing data using t-SNE. Journal of machine learning research. 2008;

9(11).

37. Cao DS, Xu QS, Liang YZ. propy: a tool to generate various modes of Chou’s PseAAC. Bioinformatics.

2013; 29(7):960–962. https://doi.org/10.1093/bioinformatics/btt072

38. Jing XY, Li FM. Identifying Heat Shock Protein Families from Imbalanced Data by Using Combined Fea-

tures. Computational and mathematical methods in medicine. 2020; 2020. https://doi.org/10.1155/

2020/8894478

39. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic minority over-sampling tech-

nique. Journal of artificial intelligence research. 2002; 16:321–357. https://doi.org/10.1613/jair.953

40. Lan Z, Chen M, Goodman S, Gimpel K, Sharma P, Soricut R. Albert: A lite bert for self-supervised learn-

ing of language representations. arXiv preprint arXiv:190911942. 2019;.

41. Rifaioglu AS, Doğan T, Martin MJ, Cetin-Atalay R, Atalay V. DEEPred: automated protein function pre-

diction with multi-task feed-forward deep neural networks. Scientific reports. 2019; 9(1):1–16.

42. Vig J, Madani A, Varshney LR, Xiong C, Socher R, Rajani NF. Bertology meets biology: Interpreting

attention in protein language models. arXiv preprint arXiv:200615222. 2020;.

43. Kim S, Yi J, Kim E, Yoon S. Interpretation of NLP Models through Input Marginalization. In: Proceedings

of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP); 2020.

p. 3154–3167.

44. Song J, Zhong Q, Wang W, Su C, Tan Z, Liu Y. FPDP: Flexible privacy-preserving data publishing

scheme for smart agriculture. IEEE Sensors Journal. 2020;.

45. Zhang L, Zhang Z, Wang W, Jin Z, Su Y, Chen H. Research on a Covert Communication Model Real-

ized by Using Smart Contracts in Blockchain Environment. IEEE Systems Journal. 2021;.

46. Wang W, Huang H, Zhang L, Su C. Secure and efficient mutual authentication protocol for smart grid

under blockchain. Peer-to-Peer Networking and Applications. 2020; p. 1–13.

47. Bae H, Jang J, Jung D, Jang H, Ha H, Yoon S. Security and privacy issues in deep learning. arXiv pre-

print arXiv:180711655. 2018;.

PLOS ONE Protein transfer learning improves identification of heat shock protein families

PLOS ONE | https://doi.org/10.1371/journal.pone.0251865 May 18, 2021 14 / 14

https://doi.org/10.1007/s12192-008-0068-7
http://www.ncbi.nlm.nih.gov/pubmed/18663603
https://doi.org/10.1186/1471-2164-15-344
https://doi.org/10.1186/1471-2164-15-344
http://www.ncbi.nlm.nih.gov/pubmed/24884676
https://doi.org/10.1007/s12192-012-0395-6
https://doi.org/10.1093/nar/gkn785
https://doi.org/10.1093/nar/gkn785
http://www.ncbi.nlm.nih.gov/pubmed/18940856
https://doi.org/10.1093/bioinformatics/btt072
https://doi.org/10.1155/2020/8894478
https://doi.org/10.1155/2020/8894478
https://doi.org/10.1613/jair.953
https://doi.org/10.1371/journal.pone.0251865

