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ABSTRACT

The AthaMap database generates a map of cis-
regulatory elements for the whole Arabidopsis
thaliana genome. This database has been extended
by new tools to identify common cis-regulatory
elements in specific regions of user-provided gene
sets. A resulting table displays all cis-regulatory
elements annotated in AthaMap including positional
information relative to the respective gene. Further
tables show overviews with the number of individual
transcription factor binding sites (TFBS) present and
TFBS common to the whole set of genes. Over
represented cis-elements are easily identified. These
features were used to detect specific enrichment of
drought-responsive elements in cold-induced genes.
For identification of co-regulated genes, the output
table of the colocalization function was extended to
show the closest genes and their relative distances
to the colocalizing TFBS. Gene sets determined by
this function can be used for a co-regulation analy-
sis in microarray gene expression databases such
as Genevestigator or PathoPlant. Additional impro-
vements of AthaMap include display of the gene
structure in the sequence window and a significant
data increase. AthaMap is freely available at http://
www.athamap.de/.

INTRODUCTION

Bioinformatic tools in molecular biology can easily establish
hypotheses for a directed design of experimental set-ups.
Bioinformatic gene expression analysis is supported by
increasing data on spatial and temporal gene expression and
transcription factors (TFs). Gene transcription is mainly regu-
lated by the binding of TFs to cis-regulatory sequences. The
occurrence of a cis-sequence is the prerequisite for direct
DNA binding that promotes or represses transcription of
the gene. Eukaryotic regulation of gene expression is com-
plex and involves synchronized binding of TFs to adjacent

cis-regulatory sequences (1). A colocalization analysis of
TF binding sites (TFBS) is useful to predict such combinato-
rial effects on gene expression. Furthermore, binding of TFs
can coordinately regulate whole sets of genes.

Bioinformatic methods have been established to predict
putative binding sites of TFs in DNA sequences. Web-
based resources for detecting TF binding sites or cis-regula-
tory sequences in plant genes not restricted to Arabidopsis
thaliana are Place, PlantCare, and TRANSFAC® (2-4).
Genome-wide detection of binding sites can be performed
online with the regulatory sequence analysis (RSA) tools
(5). A similar genomic sequence search in Arabidopsis can
be performed using Patmatch at TAIR (6,7). Pattern recogni-
tion programs such as MatInspector, Match or Patser utilize
alignment matrices which are derived for example from ran-
dom binding site selection experiments that determine a set of
DNA sequences that can be bound by the same factor (8—10).

Using Patser, the AthaMap database was established for
A.thaliana. This database generates a genome wide map of
putative TF binding sites determined from alignment matrices
(11). Web tools have been implemented for the detection of
colocalizing cis-regulatory elements in the genome (12).
Combinatorial elements based on known TF interactions
have been identified. In addition to positional weight matrix-
based detection of binding sites, experimentally verified
binding sites were annotated as well (13). The last version
of AthaMap contained the genomic positions of more than
8 x 10° putative TFBS for 88 TFs from 21 different families.
Another resource for cis-regulatory sequences in A.thaliana is
AGRIS (14,15). In contrast to AGRIS, AthaMap covers the
whole A.thaliana genome and is mainly based on binding
site detection by positional weight matrices.

Co-regulation of genes may be directed by similar combi-
nations of cis-regulatory elements. For A.thaliana, several
web-based services harbour gene expression data from micro-
array experiments and allow recovery of co-regulated genes.
Such web-based services are for example TAIR, NASC-
Arrays tools, Stanford Microarray Database, Botany Array
Resource, GEO, and Genevestigator (6,16-21). For the detec-
tion of gene clusters with similar expression patterns, ACT,
Botany Array Resource, CSB.DB, and Genevestigator can
be used (19,21-24).
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To enable discovery and analysis of common cis-regula-
tory elements annotated in AthaMap, a new Gene Analysis
feature has been developed to allow comparative analysis
of cis-elements in sets of co-transcribed genes. Similar expres-
sion patterns can also be determined by colocalizing TFBS.
For this, the colocalization function has been improved for
identification of gene sets harbouring similar combinations
of TFBS. Furthermore, the data content in AthaMap has incre-
ased significantly and the gene structure is shown in the
sequence display window.

INCREASED FUNCTIONALITY OF ATHAMAP
The Gene Analysis web tool

To identify and analyze co-regulated genes for common
TFBS, the Gene Analysis web tool has been implemented.
On the Gene Analysis page at AthaMap, a gene list can be
entered by providing the locus identifier (AGI) of each
gene separated by carriage returns. In addition to the gene
list, the region of the genes to be analyzed needs to be speci-
fied as well. Therefore, the upstream and downstream borders
of the analyzed regions relative to the annotated translation
start point have to be entered. Because all matrix-based TF
binding sites have a specific score between the threshold
and maximum score defined by Patser, a restriction to higher
conserved TFBS can be applied as well (12).

As an example for co-regulation, the Demo button displays
three genes in the input area. By default, the genomic region
for analysis ranges from —500 bp upstream to 50 bp down-
stream relative to the translation start point. No restriction
to higher conserved TFBS is set. A search result table lists
the TF binding sites in the analyzed genomic region in detail.
It displays the gene, the name and the family of the transcrip-
tion factor and the chromosomal position of its TFBS. In
addition, the distance of the binding site relative to the
translation start point and the orientation of the binding site
relative to the gene are specified. A plus means that the TF
binding site and the gene are in the same orientation. Further-
more, for matrix-based TFBS also the maximum score and
threshold score of the screening matrix as well as the individ-
ual score of the TFBS as a measure for sequence conservation
are given. All listed genes and positions of the TFBS are
linked to the sequence window for single gene display in
the genomic context of surrounding binding sites.

Because a gene may harbour more than one binding site
for a specific TF, an overview table can be selected by
using the ‘Show overview’ link. This results in a list of all
gene-factor combinations having at least one binding site.
The list shows the gene, the TF, the TF family, and the num-
ber of TFBS detected. The number of sites located upstream
and downstream as well as their relative orientation to the
start point of translation are given. This and all other tables
can easily be copied and exported to a spreadsheet program
for additional data processing.

Orchestrated regulation of genes involves binding of speci-
fic TFs to sets of genes. By selecting ‘Show factors that are
common in genes’, the occurrence of binding sites among
the whole set of genes from a Gene Analysis search is dis-
played. In this table, all TFs with identified TF binding sites
in the gene set are shown. The table is sorted hierarchically
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by the total number of genes per TF. Further information
given is the total number of sites detected among the set of
genes. To estimate TFBS frequencies, the theoretical number
of TF binding sites in the genomic regions analyzed is also
shown. This number is based on a theoretical random dis-
tribution of the total annotated TF binding sites of the respec-
tive TF. The ratio between real occurrence of TFBS and
theoretical occurrence shows whether particular TF binding
sites are over- or underrepresented. Further valuable informa-
tion can be extracted by selecting ‘Show all factors’. This
extends the table by showing also all TF with binding sites
that are absent in the analyzed gene regions.

A similar resource to inspect Arabidopsis promoter sets
for cis-regulatory sequences is Athena (25). Important differ-
ences between AthaMap and Athena are the fixed promoter
region of 3 kb in Athena and the flexible gene region
selection in AthaMap. Furthermore, the data content is dif-
ferent. Athena binding sites are based on 105 TF consensus
sequences from PLACE and AGRIS (2,14). In contrast,
AthaMap is mainly based on alignment matrices of TFBS
(11). This leads to a much higher TF binding site density in
AthaMap. Athena has ~30 TFBS in each promoter region of
3 kb (25). In comparison, AthaMap has a TF binding site
density of ~260 TFBS in a 3 kb region including the data
update presented here.

Specific enrichment of drought-responsive elements
in cold-induced genes

To demonstrate the functionality of the Gene Analysis web
tool, three cold-inducible genes (corlSa: At2g42540,
corl5b: At2g42530, and rd29A: At5g52310) were used as
an example (26). The genomic region analyzed was first
restricted to the upstream regions (—500 bp upstream, 0 bp
downstream). The output of this Gene Analysis search is dis-
played in a detailed result list. The distribution of binding
sites among the whole set of genes can be analyzed by select-
ing ‘Show factors that are common in genes’. Figure 1 shows
that all three genes harbour DREB1A (CBF3), DREBIB
(CBF1) and DREBI1C (CBF2) binding sites in the upstream
region. A P-value of 4.36 x 107> was determined for the
occurence of 11 and more DREBIA binding sites within
500 bp of the upstream region of the three selected genes.
This value was determined from the total number of
552 DREBI1A TFBS identified in the genome (AthaMap
documentation page), the total Arabidopsis genome sequence
length of 119 186 497 bp, and the total 1500 bp analysed for
DREBI1A binding sites. For the 6 DREB1B and C TFBS the
P-value is 6.21 x 1072°, It has been demonstrated, that these
TFs, which are members of the AP2/EREBP family, can
activate cold-induced genes by binding to the DRE/CRT
cis-acting elements present in their promoter regions
(27-29). The three sample genes are regulated by members
of the AP2/EREBP transcription factor family, namely
CBF/DREBs (26).

In a further analysis of these genes, the genomic region
was restricted to 0 bp upstream and 500 bp downstream to
determine whether AP2/EREBP binding site overrepresenta-
tion is specific to the upstream regions. In this analysis, no
DREBI1A (CBF3), DREB1B (CBF1) and DREBIC (CBF2)
binding sites were identified (data not shown). This indicates
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Gene Analysis
Genes (AGI): Search TFBS:
%At2g4254tl Upstream region:  |-500
|At2042530
|At5g52310 Downstream region; |0 _
! | % Restriction to highly conserved binding sites (0-100): |0
Sort By | Gene v || Factor V||P|:|siti|:|n V|
Total number of gene ids detected: 3
Hide factors tt )
Show all factors
Number of Sum of Theoretical|  Ratio
Factor genes Family TFBSs  MNumber of |(occurrence/
intotal TFBSs | theoretical)

bZIP_DOF 3|- 12 1.06 113
DOF2 3|C2C2(Zn) Dof 30 23.16 1.3
DREB1A 3| AP2/EREBP 11 0.01 15834
DREB1B 3|AP2/EREBP 6 0 3178.31
DREB1C 3| AP2/EREBP 6 0 317831
GAMYB 3| MYB 397 1.01
GT1 3| Trihelix 28 18.12 1.85
HwH21 3|HD-KNOTTED 7 6.63 1.06
ID1 3| C2H2(Zn) 6 1.97 3.04
NtERF2 3| AP2/EREBP 4 5.86 0.68
02 3|bZIP 10 218 4.57
TEL 3| AP2/EREBP 5 7.58 0.66
TGAla 31bZIP 11 1.79 6.15

Figure 1. Partial screenshot of a Gene Analysis result page. Only the first lines of the result table showing common binding sites in the gene set are displayed.

specific accumulation of these binding sites in the upstream
region of the three genes. This example demonstrates the
application of the Gene Analysis function for a set of
co-regulated genes.

Extended functionality of the Colocalization Analysis
web tool

The AthaMap colocalization web tool permits the positional
identification of putative combinatorial elements (12). In
the earlier version of AthaMap, only positional information
of a predicted combinatorial element on a chromosome was
shown. Now, the locus IDs of the closest genes of all colocal-
izing TF binding sites and the relative distances to the trans-
lation start sites are identified. For colocalization analysis,
either a TF from the complete list of TFs can be selected
by factor name or a factor family can be choosen and one
member of this family can be selected for colocalization
analysis. A denominator in front of the factor name indicates

Table 1. Matrix-based AthaMap data increase

Factor Family Species Number  Reference for
of sites alignment matrix
AGLI MADS A.thaliana 108 045 (35)
AGL2 MADS A.thaliana 55389 (35)
SPL3 SBP A.thaliana 74 680 (36)
SPL8 SBP A.thaliana 146721 (36)
HOX?2a(1) HD-HOX Zea mays 755289 (33)
HOX2a(2) HD-HOX Zea mays 495 484 33)
bHLH66 bHLH Oryza sativa 6811 37
CBT CAMTA Oryza sativa 887 (38)
LEC2 ABI3/VP1 A.thaliana 139340 (39)

Number of putative binding sites detected with nine new alignment matrices
for eight TFs in the A.thaliana genome.

how the TF binding sites were identified. A bar (-) precedes
all TFs that were annotated by matrix-based searches (11). A
double bar (=) is assigned to combinatorial elements (12).
TFs with binding sites derived from experimentally verified
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Table 2. Site-based AthaMap data increase

Family

Factor

Synonyms

AGI

Screening sequences

Number of sites

Reference

AP2/
EREBP

bHLH

CAMTA

MYB

ERF7

TINY2

MYC2

SR1

CCAl
LHY
WER

DREB3

JIN1, ZBF1,
bHLHG6, RAP1

MYB66

At3g20310

At5¢11590

At1g32640

At2g22300

At2g46830
Atl1g01060
At5g14750

GAGCCGCCA

GAGCCGCCAC
CTACCGACAT
CTGCCGACAT
CTTCCGACAT
CTATCGACAT
CTACCGTCAT
TATACGTGTC
GACACGTGGC
AAACGCGGAA
AAACGCGTAA
AAACGCGCAA
AACCGCGGAA
AACCGCGCAA
GCTAACTCG
GCTAACTCG
TCTCCAACTG

344

659

662

427

309
309
877

(40)

(4D

(42)

“43)

(44)
44
(45)

WRKY (Zn) WRKY40

At1g80840

TACAACCGCA

TCTATGCCTG

TACGCATGCA

ACTAACGGTA

ACTAACAGTA

CTTTGACCAA 641 (46)

A.thaliana TFs and screening sequences are listed with the corresponding core sequences being underlined. The number of sites annotated in AthaMap and the

respective references are given.

single sites based on consensus sequences are preceded by an
arrow (>) (13).

After a colocalization analysis, the resulting table specifies
the chromosomal positions of the colocalizing binding sites
and the locus ID of the nearest annotated gene. Furthermore,
the distance relative to the start point of translation is given.
Upstream positions are preceded by a minus. The locus IDs
in this table are linked to the sequence display window
showing the genomic context of the gene. Furthermore, an
entire result list can easily be submitted to Gene Analysis
for determination of further common cis-regulatory elements
by using the respective link. Another link directly exports the
gene list to the microarray gene expression analysis form
in PathoPlant for the identification of co-expression during
plant-pathogen interaction (30). Such a list of genes can
also be used with other programs for co-expression analysis
in microarray databases such as Genevestigator (21).

IMPROVED SEQUENCE DISPLAY AND
INCREASED DATA CONTENT

Since the last update of AthaMap, a significant change in data
display was implemented. In the earlier version, whole genes
were displayed as underlined sequence stretches (11). Now,
also gene structure elements, i.e. untranslated regions
(UTRs), exons and introns, are identified. The annotation of
gene structure is based on XML flatfiles downloaded from
the TIGR web site (release 5.0) (31). These flatfiles were
parsed using a Perl script and positional information for 5'-
and 3’-UTRs, exons and introns were annotated to AthaMap.
These regions are displayed in AthaMap with a colour code
similar to the one used by TAIR (6). The colour code is
explained on the sequence display window in AthaMap.
The orientation of each gene is indicated below the sequence

Table 3. Transcription factor families represented in AthaMap

Family Number of TFs

ABI3/VP1
AP2/EREBP
bHLH

bZIP

C2C2 (Zn) Dof
C2C2 (Zn) GATA
C2H2(Zn)
CAMTA

CBF

E2F/DP

GARP
GARP/ARR-B
GATA
HD-HOX
HD-KNOTTED
HD-PHD
HD-ZIP
MADS

MYB

NAC

SBP

TBP

TCP

Trihelix

WRKY (Zn)
Total

—_

—_

—_
LWRErRNOROOUNRERUNA === == A~ NN R —=—=WwWaAaWw

—
=

In case of the CAT and TATA box binding proteins (CBF, TBP), the alignment
matrices were extracted from the PlantProm database (47).

display window. Forward means that the gene is encoded on
the annotated and displayed DNA strand, reverse means that
the gene is encoded on the reverse complement strand. For
further information on the respective gene, a short description
is provided and direct links to TAIR, TIGR, and MIPS
records are given (6,31,32).



The data content of AthaMap was increased with nine new
alignment matrices derived from eight TFs, another eight TFs
with single site-based binding sites and one combinatorial
element. These putative binding sites were determined as
reported earlier (11-13). Table 1 lists the number of new
TF binding sites detected with each matrix and the reference
for the alignment matrix. In the case of SPL3 and SPLS, the
sequences for alignment matrix generation were obtained
directly from the authors of the respective publication
(Table 1). Sequences for new single site-based screenings
are shown in Table 2. One new combinatorial element was
annotated as well. Binding sites derived from both HOX2a
matrices were used for determination of combinatorial
HOX?2a elements (33). AthaMap now contains 9 872372 TF
binding sites detected with alignment matrices, 94963 TF
binding sites detected with experimentally verified TFBS,
and 359867 combinatorial elements based on known TF
interactions. The TFs annotated in AthaMap cover most
plant TF families (34). Table 3 summarizes the TF families
and the number of different TFs represented in AthaMap.
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