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Abstract

co-varies it with the queried dataset.

correlation with paired shotgun features across samples.

Background: Key aspects of microbiome research are the accurate identification of taxa and the profiling of their
functionality. Amplicon profiling based on the 16S ribosomal DNA sequence is a ubiquitous technique to identify
and profile the abundance of the various taxa. However, it does not provide information on their encoded
functionality. Predictive tools that can accurately extrapolate the functional information of a microbiome based on
taxonomic profile composition are essential. At present, the applicability of these tools is limited due to
requirement of reference genomes from known species. We present IPCO (Inference of Pathways from Co-variance
analysis), a new method of inferring functionality for 165-based microbiome profiles independent of reference
genomes. IPCO utilises the biological co-variance observed between paired taxonomic and functional profiles and

Results: IPCO outperforms other established methods both in terms of sample and feature profile prediction.
Validation results confirmed that IPCO can replicate observed biological associations between shotgun and
metabolite profiles. Comparative analysis of predicted functionality profiles with other popular 165-based functional
prediction tools showed significantly lower performances with predicted functionality showing little to no

Conclusions: IPCO can infer functionality from 16S datasets and significantly outperforms existing tools. IPCO is
implemented in R and available from https://github.com/IPCO-Rlibrary/IPCO.

Keywords: Microbiome, Prediction, Functionality, Co-variance, Novel method

Background

Microbiome research has expanded exponentially over the
last decade and has shown that microbiota communities
have significant roles in health maintenance, as well as being
key inputs into food and industrial processes [1, 2]. The
study of microbiome communities fundamentally falls under
two strategies: the taxonomic composition is determined by
either amplicon sequencing (16S marker gene) or metage-
nomic whole genome shotgun sequencing (mWGS) with the
latter providing additional information on the functional
capabilities which allows the identification of genes and path-
ways. Despite the availability of mWGS, amplicon sequen-
cing still remains popular due to its relatively low cost,
quicker computation time, lower disk space requirements,
and ability to detect a diverse set of taxa, including those
with a low abundance based only on the marker gene.
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Reviews of these two approaches have discussed both the ad-
vantages and disadvantages of these methods [3, 4].
Amplicon sequencing is limited to providing only taxo-
nomic information of the microbial communities. A number
of tools can be used to predict the functional potential of the
microbial communities obtained from 16S sequencing, the
most cited being PICRUSt which was published as early as
2013 [5]. Other widely used tools that were developed later
are Tax4Fun (2015) [6], and Piphillin (2016) [7]. All of these
tools rely on functionally annotated reference genomes. The
difference between them is the methodology used to map
the amplicon data to these references and the approach used
to assign functional annotation when suitable reference ge-
nomes are not available. PICRUSt works by considering the
phylogenetic tree and the distance to the closest functionally
annotated reference microbe [5]. It relies on the GreenGenes
database [8] for matching the references to the queried
amplicon data. The major limitation of PICRUSt comes forth
in the case of 16S sequences, which do not have sequenced/
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annotated genomes of phylogenetically close relatives in the
reference database. Tax4Fun and Piphillin implement
BLAST and global alignment respectively between the ampli-
con data and the reference genomes obtained from different
databases [6, 7]. All of these tools use KEGG orthologs
(KOs) [9] annotation from reference genomes which is com-
bined with amplicon abundance to predict the functionality.
The limitation of all these methods is the requirement of se-
quenced/annotated reference genomes.

To overcome constrains of limited reference taxa, an alter-
native approach would be to use pairs of 16S amplicon and
metagenomic datasets which show co-variance between the
samples based on taxonomic abundance and functionality
respectively. The identified co-variance trends can then be
combined with the taxonomic abundance of the queried
dataset for whom the functionality will be predicted. In this
paper, we present IPCO, a tool based on this novel approach
for inferring functionality of a 16S amplicon dataset. The pri-
mary advantage of our method is that it does not depend on
the presence of sequenced and annotated genomes directly.
IPCO is an application where values are assigned as the
functional profiles for the samples of a 16S amplicon dataset
based in a double co-inertia analysis involving the RLQ
method (R-mode; Q-mode; and L-link between R and Q)
[10, 11] between a paired taxonomic and functional dataset
and a queried 16S amplicon dataset for which functionality
will be inferred. Co-inertia analysis measures the concord-
ance between two datasets, and maximises the squared co-
variance projected by two datasets [12, 13]. In paired
taxonomic and functional profile datasets one would expect
that alterations in the taxonomic profiles naturally should
also reflect changes in its functional potential. Co-inertia can
be further extended by application of the RLQ method,
which integrates a third dataset (amplicon dataset in this
case) and therefore analyses the co-inertia of the three data-
sets simultaneously. This methodology can provide a set of
scores for the functional dataset and the amplicon dataset
weighted by the paired taxonomic dataset.

IPCO’s performance is compared with PICRUSt, Tax4-
Fun and Piphillin in terms of both sample and feature cor-
relation with KEGG pathways from experimental datasets.
IPCO also predicts MetaCyc pathway profiles and these
predictions are validated against a paired mWGS dataset.
Correlation of mWGS functional profiles against paired
bile acids and short chain fatty acids (SCFAs) metabolite
profiles confirmed the metabolomic associations with the
observed metagenomic pathways. IPCOs ability to repro-
duce these biological associations is validated against these
observed biological associations.

Results

Description of the study cohort

In the current study, Table 1 describes the cohort retained
after removing samples with low sequencing depths and
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Table 1 Number of mWGS features and samples retained in the
initial analysis

Samples KOs  KEGG pathways MetaCyc OTUs
HMP nasal 61 5971 129 659 7464
HMP oral 71 5829 133 625 13,696
HMP skin 8 4886 132 593 3492
HMP stool 87 6356 128 712 9966
Water (Brazil's river) 37 2724 114 497 1185

Total number of samples and features across the five reference datasets

stratified functional features for the initial analysis. The
samples retained were investigated using the IPCO,
PICRUSt [5], Piphillin [7] and Tax4Fun [6] to evaluate the
performance of the tools.

IPCO was initially implemented in the HMP [14] stool
cohort to investigate the effects of different data trans-
formation, taxonomic levels and sample size thresholds.

Overview of IPCO implementation

IPCO is dependent on paired reference datasets comprising
of taxonomic and functional abundances. To ensure that
the inferred functionality of a query dataset is not due to
overfitting or homogeneity among reference and query pro-
files, a bootstrap methodology was implemented to ensure
that the reference and query datasets do not contain the
same samples. The dataset at each site was randomly split
as described in the methods. This split ensures that samples
in the reference are not present in the query. This was
carried out with 100 iterations to ensure that the result is
unbiased for each analysis. The correlation values (sample-
to-sample and feature-to-feature) between inferred and
mWGS functional profiles was calculated at each iteration
and the average was taken across the 100 iterations.

Data transformation of the reference datasets affects
IPCO results

In IPCO, the covariance between the three datasets (R, L
and Q) was observed to vary depending on the transform-
ation and normalisation method used. Investigation with
the transformation/normalisation mentioned in the
methods is shown in supplementary Fig. 1, Additional file 1
and supplementary Table 1, Additional file 2. The Hellin-
ger transformation was observed to have a higher RV co-
efficient for both samples and features and similar
correlation values compared to other methods. Observed
RV coefficients were significant (p-value <0.05) for all
cases. The Hellinger transformation is implemented as de-
fault for all further analysis.

Lowest taxonomic levels and high samples size provides
best results with IPCO

Implementation of IPCO with 100 bootstraps for each
subsampling at different reference sample sizes on both
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KEGG and MetaCyc pathway abundance datasets
showed that the best sample and feature correlations
were observed with the lowest taxonomic levels and
highest sample size (Fig. la-b, supplementary Fig. 2A-B,
Additional file 1). No significant difference was observed
in the sample correlation for any reference dataset size
except for between 10% and other reference sizes at fam-
ily level in the MetaCyc dataset (supplementary Table 2,
Additional file 2). However, the feature correlation in-
creased with increased sample size and at the lowest tax-
onomy levels. No significant differences were observed
for feature correlation using a reference size of at least
30% or larger in the KEGG pathway analysis and 50% or
more for MetaCyc at the different taxonomic levels in-
vestigated (supplementary Table 2, Additional file 2).

The outlier observed in Fig. 1 and supplementary
figure is due to increased abundances of pathways in
that sample which are observed to be decreased in
other samples. Looking at the KEGG pathways for the
outlier samples, it was observed that the most abun-
dant pathways also had a low coverage (maximum
coverage = le-04).

The randomisation of mWGS samples through
shuffling during evaluation at each iteration resulted
in a complete lack of feature-to-feature correlation
(supplementary Fig. 3, Additional file 1). Although a
high sample-to-sample correlation was observed due
to the functional redundancy across samples, the pat-
tern associated with different thresholds and with the
unshuffled predictions seen in Fig. 1 and supplemen-
tary Fig. 2 were lost.
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IPCO outperforms PICRUSt, Tax4Fun and Piphillin in
terms of both sample and feature correlation
To evaluate the functional inference of IPCO, we applied
PICRUSt, Tax4Fun and Piphillin to the same datasets
(Table 1) and KEGG pathway profiles were inferred.
Spearman correlation was calculated for the inferred path-
way profiles against its mWGS abundance both in terms
of sample and feature correlation. IPCO outperformed
PICRUSt, Tax4Fun and Piphillin in terms of sample cor-
relation across all datasets (Fig. 2a, supplementary Table 3,
Additional file 2). IPCO showed highest sample correl-
ation with a narrow IQR range for stool and oral samples.
Skin and nasal dataset showed lower sample correlation
compared to stool and oral, however it was observed to be
higher than what was observed using the other tools. The
lowest sample correlation was observed using the Brazilian
river water dataset, but it was also higher than other tools
for that site (supplementary Table 3, Additional file 2).
Upon investigating the feature-to-feature correlations, it
was observed that IPCO outperforms PICRUSt and Tax4Fun
in stool and Brazilian river water datasets (Fig. 2b). Nasal, oral
and skin dataset revealed a lack of correlation using IPCO. It
was noted that across all datasets, the median feature correl-
ation for PICRUSt, Tax4Fun and Piphillin was close to zero.
Sample-to-sample and feature-to-feature correlations
based on KO abundances obtained from IPCO, PICRUS,
Tax4Fun and Piphillin were also calculated. IPCO was ob-
served to outperformed other methods in terms of correl-
ation values between both inferred sample and feature
profiles when compared against the observed mWGS
sample and feature profiles (Fig. 3, supplementary Table 4,
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Fig. 2 Sample and feature correlations between inferred KEGG pathways and mWGS KEGG pathways profiles at different sites and using different
methods. Boxplots showing the comparison of a) Sample to sample correlations and b) Feature to feature correlations obtained between the
inferred KEGG pathway abundance and the mWGS functional profiles at different sites using different methods

Additional file 2) for faecal and Brazilian river water data-
sets. Feature-to-feature correlations for the remaining sites
(nasal, oral and skin) were poor with the median correl-
ation being close to zero for all tools including IPCO.

The IPCO inferred KO profiles obtained from the HMP
stool dataset using the equal reference to test split (50:50) was
further processed to obtain the inferred-KO KEGG pathway
profiles at each iteration. Interestingly, these profiles at path-
ways level showed a higher feature-to-feature correlation (1st
quartile: 0.31, median: 0.49, 3rd quartile: 0.67, supplementary
Fig. 4) when compared to other published tools but lower
than the default IPCO methodology as observed in Fig. 2.

Lack of significant covariance between taxonomy and
functional datasets results in a lack of predicted feature
correlation in nasal, oral, skin, and Brazilian river water
datasets

To investigate the poor performance by IPCO on the
other sites excluding stool, the co-variance between the

taxonomic and functional dataset was calculated. Co-
inertia analysis of the taxonomic profiles with its paired
functional datasets across all sites revealed a lack of sig-
nificant covariance between taxonomy and functional pro-
files in the nasal, oral and skin datasets (supplementary
Table 5, Additional file 1). The Brazilian river water data-
set showed significant covariance when the mWGS de-
rived taxonomy was used (while the 16S dataset did not
co-vary significantly) (supplementary Table 5, Additional
file 1). This may in part explain the poor performance of
IPCO on these datasets. The taxonomic abundance of the
reference dataset is not reflected in its paired functional
dataset which resulted in a lack of significant covariance.
It was observed that the functional diversity determined
by the observed number of pathways had a narrow range
compared the paired taxonomic diversity which showed
more variation for all body sites excluding the stool data-
set. This functional redundancy and the lack of detection
of unique functionality suggests that the functional
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heterogeneity of species was not accurately reflected in
these datasets. Given the lack of covariance in these data-
sets, further analysis was carried out using the stool
dataset.

Higher pathway coverage improves functional inference

Investigation of the effect of pathway coverage on the
correlation values between the observed pathway abun-
dance and the inferred pathways obtained using IPCO
showed that coverage correlated well with functional
pathway prediction (Fig. 4a). Based on this, the KEGG
pathways were binned based on thresholds such that
pathways below the mean coverage of 0.01 were consid-
ered low correlation predictions and pathways with a
mean coverage over 0.1% were considered high correl-
ation predictions with the remaining pathways with a
mean coverage between 0.01 and 0.1 being considered
medium correlated predictions. These predictions
showed a correlation value between 0.25-0.6 whereas

the high correlated predictions had correlation values
between 0.6—0.7 (Fig. 4a). In case of MetaCyc pathways,
we observed similar results where pathways with cover-
age less than 0.41 (1st quartile of mean coverage across
samples) were low correlated predictions. Pathways
whose mean coverage was between the 1st quartile
(0.41) and the median value (0.99) showed improved fea-
ture correlation for the inferred pathways whereas the
best feature correlation (0.37-0.62) was observed for
those pathways whose average pathway coverage was
greater than its median value (Fig. 4b). For both KEGG
and MetaCyc, we were able to get high correlation
values for more than 50% of the pathways based on the
coverage filtering. The number of pathways binned into
each of the coverage thresholds for both KEGG and
MetaCyc are described in Table 2. All reported observa-
tions were carried out on HMP stool functional datasets.

The mean coverage for the predicted KEGG pathways
from PICRUSt, Tax4Fun and Piphillin modelled against
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its feature correlation values showed no positive associ-
ation between pathway coverage and feature correlation
(supplementary Fig. 5, Additional file 1). This indicates
that the coverage filter was not applicable for these tools as
opposed to IPCO. All subsequent analyses were carried out
using all the functionalities without filtering for coverage.

IPCO can accurately infer sample and feature profiles
using taxonomy from mWGS or 16S amplicon datasets
An alternative approach to using a reference 16S dataset and
paired mWGS functional is to derive the taxonomic informa-
tion from the reference mWGS dataset itself. Investigation of
using taxonomic information derived from mWGS showed a
comparable performance to using a 16S species or closed
OTU level dataset when inferring the functionality of an ex-
ternal 16S dataset (supplementary Fig. 6, Additional file 1).
Table 3 describes the sample characteristics considered for
this analysis. The reference dataset in this case consists of a
large cohort of healthy samples as detailed in the methods
(Ghosh et al. Submitted). The validation dataset used is the
ELDERMET dataset [15].

Table 2 Pathways retained at different coverage thresholds

KEGG coverage threshold Total <001  001-0.1 >0.1
Number of KEGG pathways 118 19 30 69
MetaCyc coverage threshold Total <043 043-099 >0.99
Number of MetaCyc pathways 693 173 166 354

Number of KEGG and MetaCyc pathways identified at different coverage
thresholds. Coverage thresholds are strongly correlated to the accuracy of the
inferred pathway profiles

It was observed that the use of species levels datasets
obtained from the same mWGS data that was used to
compute metagenomic functional profiles was sufficient
to infer functionality for 16S datasets (supplementary
Fig. 6, Additional file 1). Further validation involving the
replication of biological pathway to metabolite associa-
tions was carried out using the reference healthy func-
tional and paired mWGS species profiles as reference in
IPCO to infer the functionality of the ELDERMET 16S
dataset.

Healthy references implemented with IPCO shows better
inferences for diseased samples

IPCO was implemented with both in-cohort and external
healthy references on the CRC samples (16S genus level
profiles) from the Zeller et al. The predicted pathway fea-
ture from the CRC dataset highlighted that the healthy
references can be used to predict the diseased samples as
determined by the high sample and feature correlation ob-
served (Fig. 5, supplementary Fig. 7, Additional file 1, sup-
plementary Table 6, Additional file 2). The healthy IPCO
reference and in-cohort healthy reference samples resulted
in higher predicted feature correlation (KEGG predicted
CRC vs mWGS CRC) compared to using CRC dataset as
reference itself. Repeating the analysis using MetaCyc, the
healthy reference (in-cohort 16S genus profiles) showed
higher feature correlation compared to using CRC as ref-
erence but there were no significant differences in the
sample profile predictions.
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Table 3 Number of samples, pathways, and species in the validation datasets

Samples KEGG pathways MetaCyc mWGS Species 16S Species Closed OTU
Validation 79 123 776 NA 201 842
Reference healthy 1180 143 833 772 NA NA
HMP 87 128 712 353 282 1341

The number of samples and features present in the reference healthy and validation (ELDERMET) datasets, which were used when inferring functional profiles and
comparing with observed functional profiles of the validation dataset. NA; Not applicable

Inferred profiles from IPCO replicate mWGS functional Investigation of the bile acid profiles showed that
pathway to metabolite profile associations KEGG pathway “ko00121: Secondary bile acid biosyn-
Correlation of the mWGS derived functionality (KEGG  thesis” pathways significantly negatively correlated with
and MetaCyc) from ELDERMET samples to paired bile  primary bile acids (cholic acid and chenodeoxycholic
acid and SCFA profiles identified associations between acid) while “ko00790: Folate biosynthesis” known to pro-
key pathways and biologically relevant metabolites. mote bile acid levels [16] is observed to be significantly
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to-feature correlation observed with the use of different references as described for Fig. 5a
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positively correlated with primary bile acids in ELDER-
MET mWGS data.

With the secondary bile acids (lithocholic acid, dehydro-
cholic acid, 12-ketolithocholic acid, dehydrolithocholic
acid, hyodeoxycholic acid and isolithocholic acid), it was
observed that “ko00121: Secondary bile acid biosynthesis”,
“ko00430: Taurine and hypotaurine metabolism”,
“ko03070: Bacterial secretion system”, “ko05100: Bacterial
invasion of epithelial cells” were all significantly positively
correlated with secondary bile acid levels. This validates
the bile acid profiles and the ELDERMET mWGS func-
tional dataset profiles in accordance to actual biochemical
mechanism observed in a bacterial system.

The results of the inferred functional profiles obtained
from all the tools showed that IPCO provides the best es-
timation of the observed associations between the mWGS
dataset and bile acid profiles (Fig. 6, supplementary
Table 7, Additional file 2). It was observed that for pri-
mary bile acids only PICRUSt showed significant correl-
ation with “ko00121: Secondary bile acid biosynthesis”,
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however the directionality was reversed. Neither Tax4Fun
nor Piphillin showed significant associations for “ko00121:
Secondary bile acid biosynthesis” abundance and primary
bile acids. Looking at the secondary bile acids, we ob-
served that 12-ketolithocholic acid did not show any sig-
nificance with the inferred profiles obtained from all tools.
Lithocholic acid and KEGG pathways obtained from IPCO
agreed with mWGS results. Tax4Fun was significant but
showed the opposite directionality to the observed associ-
ation. Dehydrolithocholic acid was significantly associated
with KEGG pathways in PICRUSt and Piphillin. All asso-
ciations, directionality and significance from all tools com-
pared to mWGS results are highlighted in Fig. 6. Overall,
while correlating measured bile acids levels to predicted
KEGG pathway profiles, IPCO was successful 62% of time
considering the directionality and statistical significance.
PICRUSt, Tax4Fun and Piphillin were correct only 12, 31
and 38% of time respectively.

Similar results were observed when the MetaCyc pathway
abundance dataset was used as reference. Correlation of the

ko00121: Secondary bile acid biosynthesis NS NS
Cholic acid
ko00790: Folate biosynthesis - NS NS
ko00121: Secondary bile acid biosynthesis NS NS
Chenodeoxycholic acid
ko00790: Folate biosynthesis NS NS
ko00430: Taurine and hypotaurine metabolism NS NS
Lithocholic acid
ko03070: Bacterial secretion system NS NS NS
Dehydrocholic acid ko05100: Bacterial invasion of epithelial cells NS - Cor values
= 05
ko00121: S dary bile acid biosy NS NS NS NS 0.3
12-Ketolithocholic acid .
ko00430: Taurine and hypotaurine metabolism NS NS NS NS 0.1
-0.1
ko00121: Secondary bile acid biosynthesis NS NS NS _.0 3
Dehydrolithocholic acid |
) ) _ - -0.5
ko00430: Taurine and hypotaurine metabolism NS NS NS
Bile acids
7-ketolithocholic acid ko00790: Folate biosynthesis NS NS .
. Primary
Hyodeoxycholic acid  ko00430: Taurine and hypotaurine metabolism NS NS NS . Secondary
Ursodeoxycholic acid ko00790: Folate biosynthesis - NS
Dioxolithocholic acid ko00790: Folate biosynthesis NS NS
Isolithocholic acid ko00430: Taurine and hypotaurine metabolism NS NS NS
Shotgun IPCO PICRUSt Tax4Fun Piphillin
(HUMANN2)
Fig. 6 Correlation of the bile acids metabolite profiles with inferred KEGG pathway abundances from various methods. Correlation of the inferred
bile acid metabolite profile to paired mWGS KEGG pathways shows significant association (p-adjusted <0.1) with known pathways as shown in
1st column. Directionality of association is shown by correlation values colour intensity. Pathways inferred from IPCO shows same directionality
and significance (p-value <0.1) as observed with mWGS profiles for most cases. “NS”" inside the cell represent non-significant (p-value
> 0.1) associations




Das et al. BMC Bioinformatics (2020) 21:62

ELDERMET mWGS MetaCyc pathways with bile acid
profiles show significant correlation with “PWY-6518: glyco-
cholate metabolism (bacteria)” and “1CMET2-PWY: N10-
formyl-tetrahydrofolate biosynthesis”. These results were
replicated with the inferred MetaCyc pathway profiles ob-
tained from IPCO (supplementary Table 8, Additional file 2).

The correlation between ELDERMET KEGG pathway
abundance and SCFA (butyrate and propionate) profiles
were observed to be not significant which included buta-
noate and propanoate metabolism, protein and amino acid
metabolism (Lysine, Glumatine) pathways. This lack of as-
sociation is consistent with the literature [17] and was rep-
licated in the inferred profiles obtained from IPCO and
PICRUSt (supplementary Table 9, Additional file 2). How-
ever, Tax4Fun and Piphillin showed significant associa-
tions for the inferred KEGG pathways obtained using
those two tools for both butyrate and propionate levels.
These significant associations are considered false posi-
tives, as they were not observed with the mWGS data.
Piphillin reported the highest number of false positive
pathways for butanoate. In the case of propionate, IPCO
also predicted two false positive pathways.

Investigation of the SCFAs (butyrate and propionate) levels
with ELDERMET mWGS MetaCyc pathways replicated the
KEGG analysis and again showed that butyrate shows no sig-
nificant association with key butyrate MetaCyc pathways
after adjustment as is consistent with the literature [17]. This
observation was replicated in the IPCO inferred functional
profiles (supplementary Table 10, Additional file 2). Propion-
ate also showed no significant association with mWGS path-
ways and this observation was replicated with IPCO inferred
pathways (supplementary Table 10, Additional file 2). As
other tools do not report MetaCyc pathway profiles, this in-
vestigation could not be carried out with other tools.

Discussion
We have developed IPCO, a novel tool which predicts func-
tionality for 16S amplicon datasets but is not dependent on
the direct mapping of 16S sequences to known reference
genomes. Instead, it utilises paired mWGS functional and
taxonomic datasets as references that are built from anno-
tated genomes but do not assume that the functional po-
tential of the taxa is the same as the reference genome.
Alterations at taxonomic level will affect the overall
functional potential at community level [18]. The robust-
ness of the association between functionality and tax-
onomy is dependent on both the abundance of the various
taxa and the distribution of function across these taxa.
Using this concept, IPCO, is able to utilise the biologically
and statistically significant covariance observed between
the reference taxonomic and functional datasets and infer
the functional capabilities of an external 16S amplicon
dataset. The IPCO implementation is also unique in that
it provides a distinction between high quality predictions
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and lower quality predictions based on pathway coverage
for both KEGG and MetaCyc pathways.

IPCO is reliant on the availability of reference datasets
from the environment being studied. This raises the ques-
tion of the appropriateness of using a set of defined samples
(e.g. healthy reference) to infer samples that are dissimilar
in some aspect (e.g. diseased) even within the same envir-
onment. By using different types of reference samples, it is
observed that the healthy samples may be used to predict
diseased samples as long as they are obtained from the
same environment. In fact, in this analysis, the functional
inference capability of IPCO for both KEGG and MetaCyc
was better with the use of healthy samples from the same
site (Fig. 5, Supplementary Fig. 7).

One weakness of available functional prediction tools is
that using a reference set of known functions from only a
set of known taxa limits the prediction of functionality for
the amplicon dataset. This limitation results in a lack of
feature-to-feature correlation ie. KEGG pathway abun-
dance calculated from 16S datasets do not correlate well
across samples that are obtained from similar environments
when compared with a paired mWGS dataset for the same
samples. This is of concern as this potentially creates false
positive results and/or reversed directionality when investi-
gating functional profiles inferred from 16S datasets. By
studying the IPCO inferred functionality and associations
with biologically relevant metabolites, we have shown that
the inferred functional capabilities obtained using IPCO,
mimics the results of the mWGS functional profiles and
outperform other predictive tools.

The filtering criteria in IPCO allows the users to select a
set of functional pathways with sufficient coverage to be
inferred. This removes functional pathways which may
have been spuriously assigned due to the presence of only
a small subset of genes/reactions. It is noteworthy that
despite using a uniform method to tabulate the pathway
level information for all the tools, the pathway coverage
information could not be used to improve predictions by
filtering out low-coverage pathways for any tools except
IPCO. The lack of association between feature coverage
and correlation observed in other tools may be due to the
assumptions made when mapping to functionally anno-
tated reference genomes by the published tools. The re-
producibility of results observed from both KEGG and
MetaCyc shows that our method is independent of the
functional annotation used and so may be implemented
with custom datasets built from user’s internal data. Cur-
rently, IPCO can be implemented with any taxonomic
level information and the taxonomic assignment can be
done with any reference database as long as the taxa are
present in the reference which acts as a mediator to co-
vary the functional profiles with the 16S dataset. This may
allow alternative implementations of the IPCO method-
ology such as extrapolation of functional information for a
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set of samples obtained from shallow sequencing by using
a subset of samples with deeper sequencing depth.

Overall, IPCO had a superior performance compared to
other tools using both KOs and KEGG pathways, even
when inferred KO-KEGG pathways was used. The feature
correlation observed across all tools including IPCO were
lower using KEGG pathway level predictions. This could
be potentially due to increased sparseness at KO level
compared to pathway levels. The processing time also in-
creases drastically due to the increased size of functional
reference dataset (Number of KEGG pathways in HMP
stool (1 =87) dataset is 128 whereas the number of KOs
for the same dataset is 6356) which would be a limitation
when using on a personal laptops or system with low
computational and memory capacity. Similarly, the use of
UniRef gene profile datasets is not feasible currently as
nearly 2 million UniRef genefamilies are detected for the
HMP stool samples alone which would require long pro-
cessing times and would require a high performance com-
putation system to process such a large dataset.

IPCO performs better than the other established tools
but it is not without its limitations. IPCO is reliant on a
paired mWGS functional and taxonomic reference data-
sets which rely on functionally annotated genomes. As
with other tools, sample profile predictions will appear
to be highly correlated to the actual sample profiles due
to functional redundancy at the pathway level where
highly abundant pathways are shared across multiple
taxa. Therefore, care should be taken when interpreting
the predicted sample profiles. IPCO assigns a small
pseudo value to each functionality due to the way the
R'LQ algorithm calculates double co-inertia, which
makes the resulting inferred functionality a non-zero
abundance. To overcome this limitation, the low abun-
dant functionality can easily be filtered by removing
those functions whose average inferred abundance
across samples is below a certain quantile determined by
the user. Although, other tools predicted the features
poorly across all sites, IPCO also performed poorly on
the non-gut samples. Our analysis showed that this was
due to a lack of suitable reference datasets (lacking sig-
nificant co-variance between reference taxa and func-
tions), but IPCO can be easily tuned to work at other
body sites or environments as suitable mWGS data from
these different environments become available. This is
noteworthy as inferring functionality using amplicon-
based approaches rely on its concordance with the func-
tional profile, which is not possible if the functional-level
distribution is discordant with the taxonomy. Why this
would be the case is beyond the scope of this manu-
script. The use of IPCO is also limited to potentially only
those environments, for which a reliable reference (i.e.
significant covariance between taxonomic and functional
profiles) is available. Samples from environments (e.g.
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low biomass) that may lack mWGS dataset limits the
use of IPCO.

Conclusion

IPCO provides a novel approach for functional infer-
ence, which is not directly dependent on the availability
of functionally annotated reference genomes. The IPCO
inferred functionality profiles reflect the true observed
biological functionality. IPCO can be easily implemented
with the default datasets or with in-house reference
datasets without relying on the external reference data-
sets. Overall, IPCO provides a reliable inference of func-
tional potential and can be easily implemented in the R
statistical software.

Methods
IPCO algorithm
IPCO is an implementation of the RLQ analysis which is
also known as fourth corner analysis. It requires a refer-
ence taxonomic and functional paired dataset along with a
third dataset, which is the 16S dataset for which the func-
tional potential will be inferred. RLQ analysis is a double
co-inertia method which explores two datasets (R and Q)
through a mediator dataset (L). IPCO implements RLQ to
associate the functional profiles (R) with a 16S profile
dataset (Q) which is the 16S dataset for which functions
need to be inferred through a mediator taxonomic profile
dataset (L). R and L datasets are related as they have the
same samples (paired) and are used as reference datasets.
Q and L datasets are related as they have the same taxa
identifiers. Functional profiles of R and taxonomic profiles
of Q are standardised and scaled through the weighted
average where the weights of the samples and taxa are ob-
tained from L dataset. Through RLQ methodology, we ob-
tain a R'LQ product table, which an association matrix of
R and Q mediated through L abundance. In IPCO, we re-
standardise the R'LQ products by adding the weighted
average of the functional potential back to the association
matrix to obtain inferred functional profiles for the sam-
ples of Q dataset.

In summary, IPCO implements the following steps:

L = Matrix from correspondence analysis of reference
taxa Table (L table).

R = Matrix from PCA of reference functional Table (R
table) weighted by samples from L.

Q = Matrix from PCA of query taxa Table (Q table)
weighted by taxa from L.

RLQ product = RLQ analysis (R, L, Q) (as described in
the original paper).

rw = row weights from correspondence analysis of L.

waR = Weighted average of R table given by (XR[, j] *
rw) / Xrw (note: removed from RLQ product in RLQ
calculation).

where j represents 1 to n'™ sample.
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Inferred profiles = RLQ product [i,] + waR.
where i represents 1 to n™ feature.

Data collection

In the current study, human microbiome taxonomic and
functional profile datasets were obtained from the HMP
project [14, 19] using the curatedMetagenomicData R li-
brary (v.1.10.0) [20]. mWGS functional (UniRef genefami-
lies) and taxonomic profiles datasets were obtained using
the R library curatedMetagenomicData and paired V3-V5
16S rRNA OTU table was obtained from 16SHMPData R
library (v.1.2.1) [21]. Paired datasets were obtained for
nasal, oral (buccal cavity), skin and stool samples. Repre-
sentative OTUs of V3-V5 regions were downloaded from
the HMP website [14, 19].

A larger reference dataset consisting of functional and
taxonomic profiles generated from only mWGS data were
also obtained from the curatadMetagenomicData. This set
is comprised of 1180 healthy samples from various cohort
as described in Ghosh et al. (manuscript submitted).

Paired 16S and mWGS of an environmental dataset
(Brazilian river water) used in this study are described in
Tessler et al. [22] and downloaded from the NCBI SRA
(PRJNA389803, PRJNA310230). This cohort comprised
of paired 16S rRNA and mWGS data obtained from four
major rivers in Brazil: Amazon, Araguaia, Parand, and
Pantanal. The 16S rRNA and mWGS sequences was
quality filtered using Trimmomatic (v.0.38) [23]. Using
USEARCH (v8.1), the quality filtered 16S rRNA se-
quences were dereplicated, clustered at 97% identity and
chimera filtered (de-novo and using ChimeraSlayer) to
obtain representative OTU sequences. Quality filtered
reads were mapped to these OTUs to obtain the OTU
table. The quality filtered mWGS data was processed
using HUMAnNN2 (v. 0.7.1) [24] to obtain mWGS de-
rived taxonomic and functional profiles.

MetaCyc and KEGG pathway mapping files as pro-
vided with HUMAnN2 and HUMAnNI1 were filtered to
remove all known eukaryotic pathways. All samples from
all datasets (UniRef gene profiles) were processed against
the filtered MetaCyc mapping file to obtain the MetaCyc
pathway abundance and coverage datasets.

The UniRef genefamilies dataset for all the samples
were regrouped to KEGG Orthologs (KOs) IDs using
humann2_regroup_table.py script and the KEGG to Uni-
Ref mapping provided in HUMAnN2 utilities. The
regrouped KOs were processed using HUMAnN2 using
the filtered HUMANnN1 KEGG pathways legacy database
to obtain KEGG pathway profiles for the mWGS dataset.

All OTU datasets were filtered to remove samples with
a sequencing depth of less than 1000 reads. Samples re-
moved from OTU datasets were omitted from their
paired mWGS datasets also. Normalised unstratified
functional information was used in the implementation
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after the removal of UNMAPPED, UNGROUPED and
UNINTEGRATED variables.

Data normalisation and transformations

Taxonomic and functional abundance datasets were
transformed using the following transformations: Z-
scaling, proportion normalisation, logl0 on rarefied and
logl0 on proportional data with 1e10™° added as mini-
mum count value, Hellinger transformation [25] and
centred log ratio (clr) transformation [26]. These trans-
formations were investigated to identify the transform-
ation best suited for IPCO.

Validation of IPCO predictions

IPCO is dependent on reference paired functional and
taxonomic datasets. To validate the methodology, a
bootstrap strategy was implemented to evaluate its pre-
dictions (Fig. 7). A subset of the samples from the 16S
table were randomly selected and considered as Table
Q. The samples omitted in Q formed the taxonomic
Table L and were matched with its pathway abundance
dataset to obtain a paired functional (R) and taxonomy
(L) datasets thus removing pathway information for the
samples present in Table Q. Using IPCO on R, L and Q
table, pathway profiles were obtained for the samples
from Q. Both inferred sample and feature (pathways)
values were correlated using Spearman correlation with
the actual mWGS pathway dataset for those samples
present in Q. The bootstrapping analysis was repeated
with 100 iterations to randomly subsample the reference
datasets. An average was taken for both inferred sample
to actual sample and inferred pathway to actual pathway
correlation values from the 100 iterations.

Effect of reference dataset size and taxonomic dataset
IPCO is based on covariance between the datasets. The
size of the reference dataset and the taxonomy used will
both affect the covariance between the taxonomic and
functional datasets. [IPCO was implemented at various
taxonomic levels and various reference dataset sizes by
subsampling the reference (10%, 30, 50, 70 and 80%).

Taxonomy was assigned to the representative se-
quences using the RDP database (v.11.4) [27] imple-
mented in mothur (v.1.34.4) [28]. In addition, SPINGO
[29] was used for species assignment using the RDP
database (v.11.2). All levels of taxonomic classification
were classified to a threshold of >80% confidence. At
any level, if the classified threshold was below 80%, it
was set as unclassified.

To ensure that the predictions are not due to the pres-
ence of homogenous samples and/or overfitting, the pre-
dicted profiles at each bootstrap were compared against
shuffled wMGS sample profiles also (Labels on the R
and L reference datasets were shuffled). This was carried
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Bootstrapping to subset query dataset samples: S1, S3, S6, S8, S9
Reference dataset samples: S2, S4, S35, S7, S10

Reference datasets

Example: Total samples S1, S2, S3, S4, S5, S6, S7, S8, S9, S10 have both 16S and mWGS datasets.
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Fig. 7 Implementation of IPCO and bootstrap iterations. The datasets were randomly subsampled into query and reference dataset. Reference
dataset consist of taxonomic and functional profiles for the same samples. Reference taxonomic and queried dataset consist of different samples
but are mapped to same taxa. The inferred profiles are correlated against the mWGS functional profiles for the query dataset to obtain the
degree of associations. One hundred bootstrap iteration were carried out to randomly generate different subsamples and measure the degree of

out using the HMP stool KEGG and MetaCyc pathways
and its paired OTU level taxonomic dataset at all refer-
ence/test split described above.

Functional prediction with published methodology

For PICRUS, the representative 16S rRNA sequences were
mapped to Greengenes v13.5 to obtain closed representative
OTU tables and processed through the PICRUSt pipeline to
obtain KO profiles.

For Tax4Fun, the taxonomic information were assigned
to the representative sequences provided in SILVA123
downloaded from Tax4Fun website. The OTU table with
taxonomic profiles were processed through Tax4Fun R li-
brary to obtain KO profiles. All processing was carried out
with default settings.

For Piphillin, OTU dataset and the representative OTU
sequences were formatted as per requirement for Piphillin
and all files were uploaded to the Piphillin website. An
identity threshold of 90% was used and the KEGG data-
base October 2018 version was used. The threshold of
90% was used as the default of 97% returned insufficient
hits to reference genomes.

The KEGG pathway abundances were obtained using
HUMAnNN2 by processing the predicted KO profiles
using the filtered HUMANnN1 KEGG legacy database.
This allowed consistency in pathway calculation across
different methods.

Sample-to-sample and feature-to-feature (KOs and
KEGG pathways) abundance correlations were calcu-
lated by comparing the predicted values obtained from
the various tools against the mWGS generated profiles
using Spearman correlation. KOs and KEGG pathways
present in both predicted and its paired mWGS datasets
were considered.

Comparison between IPCO at KO and KEGG level with
published tools

The Sample-to-sample and feature-to-feature correlations
observed using the published tools for all the sites were
compared against the correlation observed for IPCO in-
ferred KO and KEGG pathways using reference:test split
of 50:50 at all sites. Further, the IPCO inferred KO profiles
(faecal site, reference:test 50:50) at each bootstrap were
processed using HUMANN?2 to obtain inferred-KO KEGG
pathways which were correlated against its paired mWGS
KEGG pathway profiles. This was done to investigate the
accuracy of using the IPCO inferred KO profiles to deter-
mine functional abundance at KEGG pathway level.

Comparison of inference capability from mWGS species
and 16S species level as reference taxonomy on an
external query dataset

It was investigated whether using mWGS species level
dataset is sufficient as a reference set (Table L) to gener-
ate inferred functionality for the independent dataset.
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The independent dataset used is the ELDERMET com-
munity dataset [15]. If this generates comparable results
as 16S taxonomic reference, then it would allow gener-
ation of a larger reference R and L table by adding more
samples from curatedMetagenomicData hub which would
incorporate more functionality else would have to use
HMP or similar 16S dataset as Table L limiting the refer-
ence dataset size. Species level dataset were obtained for
the 16S ELDERMET and HMP 16S as described earlier.
IPCO was implemented with the R table as HMP path-
ways dataset, L table as HMP closed OTU or 16S species
or HMP mWGS species dataset and Q table as ELDER-
MET 16S closed OTU or species dataset. Samples and
common features from inferred table were correlated with
the paired elder mWGS functional dataset.

The species and functional dataset for the 1180 healthy
samples were obtained from curatedMetagenomicData.
The selection of healthy samples is described in Ghosh
et al. (submitted). This dataset is referred as reference
healthy in the results. IPCO was implemented with R table
as reference pathways, L table as species mWGS dataset
and Q table as ELDERMET species 16S dataset. The in-
ferred functionality dataset for the ELDERMET dataset
was correlated with mWGS functionality dataset to obtain
sample and feature correlations. Correlations obtained
from using this healthy reference were compared with the
correlation values from using HMP as reference.

Validation with independent datasets

Validations of the IPCO’s prediction was carried out with
the following assumptions: The healthy functional and taxo-
nomic references from a particular site can be used to pre-
dict diseased samples also obtained from the same site
without requiring diseased sample profiles as reference. This
would confirm the appropriateness of using provided refer-
ences. The second assumption is that the biological agree-
ment between measured metabolite levels and mWGS
functional profiles is reflected in the inferred functional pro-
files. To validate the results on external independent datasets,
analyses were carried out on two cohorts: a colorectal cancer
(CRC) publicly available data [30] and an in-house elderly
community data [15]. The CRC dataset was used to validate
the first assumption. The CRC cohort contains paired 16S
and mWGS sequences obtained from faecal samples of
healthy and CRC individuals. The mWGS taxonomic and
functional profiles were obtained from curatedMetagenomic-
Data for the healthy (n=50) and CRC samples (n=41)
based on the disease stratification provided. The forward
reads from the 16S dataset were quality filtered using Trim-
momatic. The quality filtered reads were processed using
USEARCH and taxonomically annotated as described earlier.
Predicted functional profiles (KEGG pathways) of the 16S
CRC samples were also obtained for PICRUSt, Tax4Fun and
Piphillin as described earlier.
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At first, it was assessed whether IPCO can be applied
to infer the functional potential from the 16S microbiota
profiles of diseased samples or not using the CRC co-
hort. The 16S genus level and mWGS pathways (KEGG
and MetaCyc) profiles of the CRC samples were used as
reference in IPCO for inferring functionality of the quer-
ied 16S CRC samples. This was carried out using the
bootstrap approach (100 iterations) described earlier to
ensure the reference and test datasets (reference/test
split 50:50) do not contain the same CRC samples. This
would serve as the baseline for all other comparisons
where the applicability of the healthy samples as refer-
ence would be determined. Next, using the taxonomic
and paired functional datasets of the healthy samples
from the same cohort as reference for IPCO, functional-
ities were inferred for the 16S genus profiles of the CRC
samples. Genus level reference dataset was used as a me-
diator as most 16S datasets are usually classified down
to genus level. Both 16S and mWGS genus dataset from
the in-cohort healthy were used as reference. Finally, the
external healthy taxonomic and functional profiles pro-
vided in IPCO were used as reference to infer the func-
tionality of the 16S CRC samples. The healthy samples
from the CRC samples were also present in the IPCO
healthy reference and were removed before implement-
ing IPCO. Using multiple reference datasets with IPCO
methodology allowed comparing the differences in pre-
dictive capacity observed with using different reference
datasets (that includes in-cohort and external data). Fur-
ther, functionalities predicted for 16S CRC samples
using PICRUSt, Tax4Fun and Piphillin were also in-
cluded to compare the differences in prediction observed
in different tools. Correlation observed (Sample-to-sam-
ple and feature-to-feature) using the CRC samples as
reference vs healthy samples as reference were compared
for IPCO to determine the appropriateness of IPCO’s
reference. Correlation observed (Sample-to-sample and
feature-to-feature) between predicted functional profiles
obtained using 16S CRC samples and mWGS CRC sam-
ples using published tools were also compared with
IPCO to evaluate the performance of all the tools.

The elderly cohort contains mWGS, 16S, and metabo-
lome datasets for the same samples. This was used to
validate the second assumption: biological agreement be-
tween metabolite profile and mWGS functional potential
(KEGG and MetaCyc pathways) is replicated in inferred
functional profiles also. To investigate the biological sig-
nal in the predicted functionalities, functional profiles
were obtained from all tools.

For IPCO, paired functionality (KEGG pathway and
MetaCyc) and taxonomy at species level from the refer-
ence healthy datasets provided in IPCO was used to in-
ferred functionalities for the 16S elderly samples.
Functional profiles (KEGG pathways) were obtained using
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PICRUSt, Tax4Fun and Piphillin using the same approach
as described earlier for the elderly community 16S dataset.
Two types of metabolites: bile acids and short chain fatty
acids (SCFAs) which are widely studied in microbiome re-
search were considered for investigation. The metabolite
dataset was logl0 transformed on the measured metabol-
ite level after adding 1e-05 as minimum count value. The
mWGS functional profiles were correlated with the me-
tabolite profiles and the directionality, degree of associ-
ation and significance was noted. Significance of mWGS
profile correlation was determined by p-adjusted <0.05
unless stated otherwise. The inferred functions obtained
from all the tools including IPCO were then correlated
with the same metabolites and the results were compared
with mWGS results to investigate the direction, correl-
ation, and significance (p-value <0.1). Only key pathways
responsible for these metabolites were considered and
agreement with mWGS results in terms of directionality
and significance were considered to be correct, with a
change in directionality or non-significance being consid-
ered as false positives.

Statistical analysis

All analysis was carried out in R (v.3.5.1) [31]. All correla-
tions measured were carried out using Spearman correlation.
Kruskal-Wallis test was used as applicable. Dunn’s test using
dunn.test library (v.1.3.5) [32] was used for pairwise compari-
son at different taxa and sample threshold levels. P-value ad-
justment was carried out using Benjamini-Hochberg
procedure. Covariance between paired taxonomic and func-
tional dataset was investigated with co-inertia analysis using
ade4 (v.1.7.13) library [33]. Significance of co-inertia was de-
termined with the ade4 randtest function. Plots were created
using ggplot2 (v.3.1.0) [34], RColorBrewer (v.1.1.2) [35] and
gridExtra (v.2.2.1) [36] R libraries.
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