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ABSTRACT: Quinones represent a class of toxicological intermediates,
which can create a variety of hazardous effects in vivo including, acute
cytotoxicity, immunotoxicity, and carcinogenesis. In contrast, quinones can
induce cytoprotection through the induction of detoxification enzymes, anti-
inflammatory activities, and modification of redox status. The mechanisms
by which quinones cause these effects can be quite complex. The various
biological targets of quinones depend on their rate and site of formation and
their reactivity. Quinones are formed through a variety of mechanisms from
simple oxidation of catechols/hydroquinones catalyzed by a variety of
oxidative enzymes and metal ions to more complex mechanisms involving
initial P450-catalyzed hydroxylation reactions followed by two-electron oxidation. Quinones are Michael acceptors, and
modification of cellular processes could occur through alkylation of crucial cellular proteins and/or DNA. Alternatively, quinones
are highly redox active molecules which can redox cycle with their semiquinone radical anions leading to the formation of reactive
oxygen species (ROS) including superoxide, hydrogen peroxide, and ultimately the hydroxyl radical. Production of ROS can alter
redox balance within cells through the formation of oxidized cellular macromolecules including lipids, proteins, and DNA. This
perspective explores the varied biological targets of quinones including GSH, NADPH, protein sulfhydryls [heat shock proteins,
P450s, cyclooxygenase-2 (COX-2), glutathione S-transferase (GST), NAD(P)H:quinone oxidoreductase 1, (NQO1), kelch-like
ECH-associated protein 1 (Keap1), IκB kinase (IKK), and arylhydrocarbon receptor (AhR)], and DNA. The evidence strongly
suggests that the numerous mechanisms of quinone modulations (i.e., alkylation versus oxidative stress) can be correlated with
the known pathology/cytoprotection of the parent compound(s) that is best described by an inverse U-shaped dose−response
curve.
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1. INTRODUCTION

Quinones are a subset of the quinoid family which also contains
the quinone imines and the quinone methides (Figure 1).1−3
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Quinones, which contain the cyclohexadienedione structure,
are the most numerous of the quinoids and are commonly
found in several natural products, endogenous biochemicals,
drugs, and environmental chemicals and/or are generated
through the metabolism of aromatic compounds (Figure 2). In

general, the biological properties of quinone precursors (good,
bad, or equivocal) are often mediated by their oxidative
metabolism to quinones. However, the importance of quinone
formation to the off-target effects of drugs, natural products,
environmental chemicals, and xenobiotic/endogenous com-
pounds in general is often underestimated. For example, two
recent reviews on biological reactive intermediates give varying
estimates on the importance of quinone formation. For
carcinogenic processes, quinone formation was estimated at
7% of all mutagenic reactive intermediates,4 whereas for all
toxic reactions (7% of total metabolism), quinone formation
represents closer to 41%.5 Both numbers are likely low since
quinones are reactive intermediates and usually cannot be

observed directly. In biological systems, as quickly as quinones
are formed they react with cellular nucleophiles (GSH, protein
sulfhydryls) and/or they redox cycle forming ROS (Figure 3).
This perspective will focus on our limited knowledge of the
varied biological targets of quinones, resulting in numerous
biological effects, which could be beneficial, toxic, equivocal,
and/or unknown. Quinone methides and quinone imines have
been reviewed recently and are beyond the scope of this
perspective.1,2,6−9

2. MECHANISM OF QUINONE FORMATION

2.1. Stable Quinones (Table 1). For the purpose of this
perspective, quinones that exist in nature as the quinone form
were defined as stable. In general, p-quinones are considerably
more stable compared to o-quinones due to the strained 1,2-
diketone functionality of the latter. Some p-quinones can be
crystallized (t-butylquinone, menadione), and there are
examples of natural products with stable p-quinone structures
(e.g., juglone, ansamycin antibiotics) as well as endogenous
compounds (vitamin K, ubiquinone) (Table 1).10−14 Ubiq-
uinone is an antioxidant in the mitochondria, and its analogues
could be useful for the treatment of both Alzheimer’s and
Parkinson’s disease since mitochondrial failure, often due to
ROS, is involved in the progression of both neurodegenerative
diseases.15−17 Mitoquinone is a ubiquinone analogue in clinical
trials for the treatment of Parkinson’s disease.15−17 This novel
quinone drug is designed to target the mitochondria through its
triphenylphosphine cationic moiety that facilitates drug
accumulation because of the negative mitochondrial membrane
potential. Idebenone is another ubiquinone analogue which
may have promise in the treatment of Alzheimer’s disease
(Table 1).18 Several potent chemotherapeutic agents [daunor-
ubicin, diaziquone, doxorubicin (adriamycin), emodin, mito-
mycin C, mitoxantrone, and streptonigrin; Table 1] have highly
substituted stable p-quinone functionalities, which likely
contribute to their ability to kill cancer cells through redox
mechanisms (discussed below) as well as cause reactive oxygen
species (ROS)-induced toxicity to normal cells.19−22 The
naphthalene o-quinones miltirone isolated from danshen and β-
lapachone from the pink trumpet tree are examples of stable o-
quinones (Table 1).23,24

Figure 1. Examples of simple quinoids.

Figure 2. Quinone formation from aromatic compounds represents a
common bioactivation scheme.

Figure 3. Mechanisms of quinone toxicity.
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2.2. Two-Electron Oxidation of Hydroquinones/Cat-
echols (Table 2). Hydroquinones and catechols are very easily
converted to quinones by oxidation catalyzed by virtually any
oxidative enzyme including P450s, COX-2, peroxidase,
tyrosinase, xanthine oxidase and monoamine oxidase, and
metal ions and in some cases molecular oxygen (Table

2).3,25−28 p-Quinones are formed from oxidation of t-
butylhydroquinone, hydroquinone, naphthohydroquinone,
and thymohydroquinone.25,29−32 Oxidation of catechols in
natural products [caffeic acid, carnosic acid, catechin, ellagic
acid, epigallocatechin (ECGC), hydroxychavicol, luteolin,
procyanidin, quercetin, taxifolin, and urushiols] gives o-

Table 1. Examples of Stable Quinonesa

aAlphabetical list (16 total, partial list). bOnly one representative reference is listed for each example.
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Table 2. Two-Electron Oxidation of Hydroquinones/Catechols to Quinonesa
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quinones with a variety of biological effects (Table 2).33−43

Most of these o-quinones are short-lived, and their contribution
to the overall biological profiles of the parent compounds is not
clear.44,45 The endogenous catechol amines (5,6-dihydroxy-
tryptamine and dopamine) are also oxidized to o-quinones
which may play a role in the etiology of Parkinson’s
disease.3,46−50 Dopamine oxidation to dopamine o-quinone as
well as other quinones is believed to contribute to neuro-
degeneration through induction of mitochondria and protein
dysfunction and oxidative stress (Table 2).51 The selective
estrogen receptor modulators (SERMs) acolbifene and
raloxifene form extended quinones in in vitro experiments,
although both have very short lifetimes and may not have any
beneficial/toxic effects (Table 2).52−57 Extended quinone
formation from the estrogen diethylstilbestrol (DES) may
contribute to the teratogenic effects of DES in women exposed
to this drug to prevent miscarriages and premature births in
utero up until its withdrawal in 1971 (Table 2).58−60

2.3. Aromatic Hydroxylation(s)/Two-Electron Oxida-
tion (Table 3). Aromatic rings represent the most common
functional group in drugs which suggests that the general
bioactivation scheme generating quinones should readily occur
as shown for benzene in Figure 2.3,9,61−64 For example, the
anticonvulsant phenytoin causes skin toxicity in 5−10% of
patients, and P450-catalyzed o-quinone formation has been
implicated as the culprit (Table 3).65 The hepatotoxic effects of
the epilepsy drug, carbamazepine, has been shown to proceed
through a similar mechanism (Table 3).66,67 The teratogen
thalidomide is metabolized to a phenol, catechol, and o-quinone
catalyzed by P450 which could contribute to the teratogenic
mechanism through o-quinone-induced oxidative stress and/or
protein binding (Table 3).68 The environmental contaminants
naphthalene, bisphenol A, and some polychlorinated biphenyls
(PCBs) readily form o- and p-quinones through this
mechanism (Table 3).32,69−72 The SERMs (droloxifene,
lasofoxifene, LY2066948, raloxifene, tamoxifen, and toremi-
fene) all undergo one or two P-450 catalyzed aromatic
hydroxylation reactions followed by two-electron oxidation to
o-quinones (Table 3).53,57,73−77 Generally, o-quinone formation
from SERMs is a minor bioactivation pathway, and the
contribution of quinone metabolites to the overall chemo-
preventive/toxic properties of the parent SERMs are not
known. The synthetic estrogen hexestrol, which is the saturated
derivative of DES, is converted to the catechol by P450
followed by two-electron oxidation to the o-quinone (Table
3).59,78 Two o-quinones are formed from the endogenous
estrogens (estrone and estradiol, Table 3); the 2-hydroxyes-
trogen o-quinone pathway is likely a detoxification pathway
since the o-quinone formed is very unstable and readily
isomerizes to a quinone methide.3,79−81 In contrast, the 4-

hydroxyestrogen o-quinone is sufficiently long-lived to produce
a variety of mutagenic/carcinogenic effects including DNA
oxidation and adduct formation as described below.82,83

Estrogens in hormone therapy (equilin, equilenin, and 8,9-
dehydroequilin), all form o-quinones through initial P450-
catalyzed aromatic hydroxylation followed by two-electron
oxidation (Table 3).79,84−86 Quinone formation from these
estrogens could contribute to the increased incidence of
hormone-dependent cancer associated with hormone therapy
for menopausal symptoms.87−89 17α-Ethinyl estradiol, which is
the most common estrogen in birth control pills, is also
converted to o-quinones which may contribute to liver toxicity
observed at high doses in animal models.90 However, the doses
of ethinyl estradiol are significantly lower than HT drugs, and
quinone formation is unlikely to contribute to clinical toxicity
for birth control pills.90 Finally, the natural products resveratrol
and genistein both form catechols and o-quinones by this
mechanism which may contribute to their chemopreventive
properties in vivo.91,92

2.4. P450-Catalyzed O-Dealkylation/Two-Electron Ox-
idation (Table 4). Another mechanism of quinone formation
involves P-450-catalyzed unmasking of phenols/catechols
through O-dealkylation reactions followed by two-electron
oxidation.9 For example, the methoxy substituent in etoposide
is O-dealkylated generating a catechol which is readily oxidized
to an o-quinone (Table 4).93 o-Quinone formation from
etoposide likely contributes to redox toxicity in cells through
the generation of ROS contributing to side effects associated
with this chemotherapeutic drug.94,95 A similar mechanism is
involved in the generation of the extended quinone from
arzoxifene; initial O-dealkylation of arzoxifene generates
desmethylarzoxifene followed by two-electron oxidation to
the extended quinone (Table 4).96 Like the raloxifene extended
quinone described above, the arzoxifene quinone has a very
short half-life and may not make a significant contribution to
the overall biological effects of arzoxifene.57 Eugenol (cloves)
can also be metabolized by this pathway initially generating
hydroxychavicol followed by two-electron oxidation to the o-
quinone (Table 4).9,97,98 o-Quinone formation from eugenol
represents a minor bioactivation pathway since direct two
electron oxidation to the p-quinone methide is a more facile
metabolic process.1,99 In an analogous mechanism, curcumin
can be O-demethylated giving the catechol, which is further
oxidized to an o-quinone which was implicated in curcumin
induced oxidative DNA damage (Table 4).100 The synthetic
phenolic antioxidant t-butylhydroxyanisole (BHA) also is O-
demethylated by P450 to t-butylhydroquinone and further
oxidized to the t-butyl-p-benzoquinone (Table 4).101 P450-
catalyzed cleavage of the methylenedioxy groups in isosafrole,
3,4-methylenedioxyamphetamine (MDA), 3,4-methylenediox-

Table 2. continued

aAlphabetical list (20 total, partial list). [O] refers to any oxidative enzyme or metal ions and in some cases molecular oxygen. bOnly one
representative reference is listed for each example.
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ymethamphetamine (MDMA, ecstasy), methysticin, myristicin,
paroxetine, safrole, and sitaxentan generate catechols which are
readily oxidized to o-quinones by virtually any oxidative enzyme
or metal ions (Table 4).102−108 These data suggest that quinone
formation from compounds containing a methylenedioxy
substituent might be a general mechanism for o-quinone
formation.9

2.5. Complex Quinone Formation (Table 5). Polycyclic
aromatic hydrocarbons (PAHs) are metabolized to o-quinones
through a complex mechanism involving initial P450-catalyzed
arene oxide formation, ring opening catalyzed by epoxide
hydrolase, aldo-keto reductase (AKR) mediated formation of
the catechol, and two-electron oxidation to o-quinone (Table
5).109 Many AKRs can also catalyze redox cycling (see below)
by reducing the PAH o-quinones to the catechol which
autoxidize in air back to the o-quinones consuming NADPH.109

This pathway was found to be equally important with the more
commonly known diol-epoxide pathway to the activation of
benzo[a]pyrene to a human lung carcinogen.109 o-Quinone
from PAHs present in industrial pollutants and tobacco smoke
could make a major contribution to a variety of human
cancers.109

A more complex mechanism is also involved in quinone
formation from diabetic/anti-inflammatory drug troglitazone
and the tocopherols (vitamin E) (Table 5).110−112 The
troglitazone quinone likely contributes to the idiosyncratic
liver toxicity which led to the withdrawal of troglitazone from
the U.S. market in 2000.113 The highly substituted tocopherol
p-quinone likely contributes to the antioxidant effects and
signaling mechanisms attributed to the parent vitamin (Table

5).114,115 The quinone formed from γ-tocopherol has one less
methyl group compared to that from α-tocopherol which could
influence its biological effects in vivo. Even though humans
consume considerably more γ-tocopherol in the diet compared
to α-tocopherol, α-tocopherol is selectively retained likely due
to the enhanced reactivity/toxicity of the less substituted γ-
tocopherol quinone.114,116

3. CHEMISTRY OF QUINONES

3.1. Covalent Modification. Quinones are Michael
acceptors and readily react with soft nucleophiles like sulfhydryl
residues on cysteine in GSH and proteins (Figure 4). p-
Quinones react via 1,4-reductive addition reactions regenerat-
ing the hydroquinone with covalent attachment to the cysteine
residue. Unsubstituted o-quinones generally undergo 1,6-
reductive addition reactions with thiol nucleophiles due to
extended conjugation, although 1,4-reductive addition is often
observed as a minor product (Figure 4).38,117 There is some
evidence to suggest that the conjugation reaction with cysteine
residues is reversible, which could regenerate the quinone and
free cysteine and could play a role in quinone signaling
mechanisms.118−121 The hydroquinone/catechol thioethers are
more readily oxidized compared to unsubstituted parent
compounds, and quinone thioethers with multiple cysteine
substituents are often reported.122,123 Reaction with nitrogen
nucleophiles such as lysine, histidine, N-terminal amino acids,
and purine and pyrimidine bases on DNA are much slower
compared to that of sulfur nucleophilic additions, although they
do occur.71,124 Generally, reductive 1,4-Michael additions
predominate over Schiff base formation.36 Very unstable o-

Table 3. continued

aAlphabetical list (20 total, partial list). [O] refers to any oxidative enzyme or metal ions and in some cases molecular oxygen. bOnly one
representative reference is listed for each example.
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quinones (t1/2 < 1 s) like those formed from genistein (Table
3), luteolin, and quercetin o-quinones (Table 2) which have a
C2−C3 double bond in the C ring are rapidly hydrated and
unlikely to damage important biological molecules.45,92,125

Instead, quinone formation from these natural products might
be a chemopreventive mechanism through the Keap1/Nrf2
pathway as discussed below.125

3.2. Redox Chemistry. Quinones are also potent redox
active compounds.3,126 They are readily reduced by one
electron catalyzed by P450/NADPH oxidoreductase generating
semiquinone radical anions (Figure 3). These intermediates are
very unstable and are easily oxidized back up to quinones by
molecular oxygen. The reduction of molecular oxygen
generates the first of the ROS, the superoxide anion radical.
The superoxide anion radical is dismutated by superoxide
dismutase generating hydrogen peroxide. Hydrogen peroxide
can be reduced by Fenton chemistry through oxidation of iron
and/or copper generating the highly reactive hydroxyl radical.
This futile redox cycling is responsible for oxidative stress
within cells and is a major contributor to overall quinone
toxicity.3 Most quinones can also be reduced by two electrons
back to the hydroquinone or catechol catalyzed by NADPH/
quinone oxidoreductase (NQO1), which represents a major
detoxification mechanism.127,128 In some cases as with the PAH
o-quinones, AKRs can catalyze the two-electron reduction
reaction.109 The relative ability of quinones to redox cycle is
highly dependent on the ring substituents. Electron rich
substituents, extended ring systems, and extensive substitution
promote redox cycling since they stabilize the semiquinone

radical anion.126 This often leads to a paradox where GSH
conjugation does not result in detoxification since the quinone-
thioether quinone is more redox active than the unsubstituted
quinone due to the electron donating sulfur substituent.2

In normal cells, a strict balance is maintained between
oxidation and reduction, and anything that changes this delicate
redox balance is thought to contribute to a number of
diseases.129 Quinones cause oxidative stress through the
consumption of reducing equivalents including GSH (alkyla-
tion and oxidation) and NAD(P)H (oxidation).130 Production
of ROS can alter redox balance within cells through the
formation of oxidized cellular macromolecules including lipids,
proteins, and DNA. Formation of oxidatively damaged bases
such as 8-oxodeoxyguanosine (8-oxo-dG) has been associated
with aging and carcinogenesis.131,132 Furthermore, ROS can
activate a number of signaling pathways including protein
kinase C and RAS.133 The redox potential between the quinone
and hydroquinone/catechol pair has a major effect on their
prooxidant and/or antioxidant effects and ultimately their
cytotoxic versus cytoprotective biological properties.134 For
example, it has recently been shown that the more easily p-
hydroquinones are oxidized, the more potent their antiprolifer-
ative effects are in MC38 cells.135 It is likely that the equine
catechol estrogens (4-hydroxyequilin, 4-hydroxyequilenin) and
PAH quinones, which only require oxygen to autoxidize to their
respective highly redox active o-quinones, cause considerably
more oxidative stress as compared to those formed from the
endogenous catechol estrogens from estradiol and es-
trone.79,109,136 These differences in redox activities may explain

Table 4. continued

aAlphabetical list (11 total, partial list). [O] refers to any oxidative enzyme or metal ions and in some cases molecular oxygen. bOnly one
representative reference is listed for each example.
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variations in epidemiology studies on the link between different
types of hormone therapies and risk of breast cancer.137,138

4. QUINONE TARGETS (FIGURES 5 AND 6)

4.1. GSH (Figure 5). The most important nonprotein
sulfhydryl in cells is glutathione (GSH) whose major purpose is
to protect cells from reactive electrophiles and free radicals.139

As soft electrophiles, quinones are particularly susceptible to
GSH conjugation reactions, and usually, the reaction is so facile
that enzymatic catalysis by glutathione S-transferase (GSTs) is
not required. Model oxidation reactions with microsomes,
peroxidase/hydrogen peroxide, and tyrosinase, in the presence
of GSH, are all effective methods for generating and trapping
quinones.9,108,122,123,140 Under circumstances where quinone

Table 5. Complex Quinone Formationa

aAlphabetical list (3 total, partial list). [O] refers to any oxidative enzyme or metal ions and in some cases molecular oxygen. bOnly one
representative reference is listed for each example.

Figure 4. Michael addition of GSH to quinones.

Figure 5. Quinone toxicity targets.
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formation is low and GSH levels are high (i.e., healthy liver
cells, 5−10 mM GSH), nonenzymatic reaction with GSH
generates reduced GSH hydroquinone/catechol conjugates,
which are readily excreted through the mercapturic acid
pathway (Figures 3 and 4). Along with two-electron reduction
catalyzed by NQO1 and or AKR, GSH conjugation represents a
common detoxification pathway for most quinones. GSH can
also be oxidized to GSSG by hydroxyl radicals generated during
redox cycling of quinones.130 Several drugs, environmental
chemicals, natural products, and endogenous compounds form
quinone GSH conjugates and/or cause GSH deple-
tion.3,10,70,79,92,103,105,106,109,121,141−149

4.2. Protein Modification. 4.2.1. General Protein
Modification (Figure 5). As GSH concentrations are depleted,
other sulfhydryl nucleophiles such as cysteine residues on
proteins become quinone biological targets. For highly reactive
quinones, the major proteins alkylated are those present in the
highest concentration containing the largest number of cysteine
residues. For example, heat shock proteins [Hsp60, Hsp70,
Hsp90, and protein disulfide isomerases (PDIs)] are produced
in cells in response to stressful conditions including the
generation of electrophilic/redox active quinones.114,150 These
stress proteins are cysteine-rich and thus ideal protein targets of
quinones both for alkylation and oxidation (Figure 5).151−156

For example, using covert oxidatively activated tag (COATag)
methodology the extended quinone formed from two-electron
oxidation of raloxifene was shown to mainly modify the stress
protein GrP78/BiP, three PDIs, and a microsomal GST in rat
liver microsomes.152 PCB p-quinones also modify GrP78/BiP
and induce the unfolded protein response.157 The arylating
quinone from γ-tocopherol but not the more substituted α-
tocopherol quinone induced endoplasmic reticulum stress.114

The ansamycin quinones have potent antitumor activity
through mechanisms involving inactivation, destabilization,
and degrading Hsp90 proteins.11,158 Some dopamine o-
quinones cause mitochondrial protein damage which has
been implicated in Parkinson’s disease.159 The dopamine
quinones were found to inhibit the 20/26S proteasome,
which is a cytosol protein with numerous cysteines.156 There
are a variety of protein targets of quinones, and identifying
reversible unstable protein adducts is challenging for proteomic
research, as well as determining the relative importance of the
identified biological targets to the overall cytotoxic/cytopro-
tective effects.160 Some specific quinone protein targets are
enzymes that catalyze their formation and detoxification as well
as proteins involved in cell signaling (GST/MAPK, Keap1/
Nrf2, IKK/NF-κB) and nuclear receptor proteins [arylhydro-
carbon receptor (AhR), estrogen receptor (ER)] as outlined
below.
4.2.2. P450 Inhibition (Figure 5). Since P450 is the most

likely enzyme catalyzing quinone formation, it is to be expected
that particularly reactive quinone metabolites have been
reported to be inhibitors of P450s.103,161−163 For example, 4-
hydroxytamoxifen and raloxifene were found to be potent
mechanism-based inactivators of P450 as a result of quinone-
mediated alkylation of the apoprotein.164−166 With raloxifene,
analysis of the P450 3A4 peptide showed that Cys239 was the
site of the raloxifene extended quinone reaction.167 Sitaxentan
contains a methylenedioxy ring, which is metabolized by P450
to the catechol and oxidized to the o-quinone, which could be
responsible for the reported inhibition of P450 3A4 (Table
4).106 o-Quinone formation by sitaxentan could be responsible
for the reports of idiosyncratic drug toxicity, which led to its

worldwide withdrawal in December, 2010. Similarly, the
methyenedioxy group in myristicin is oxidized to an o-quinone
leading to mechanism-based inhibition of P4501A2.103 GSH
was shown to block the inhibition which suggests that the o-
quinone was the inhibitor and not the carbene formed from the
methylenedioxy moiety.103 The SSRI paroxetine was shown to
be an inhibitor of P450 2D6, and the o-quinone metabolite was
implicated as the reactive intermediate responsible for the
inhibitory effect which ultimately leads to clinical drug−drug
interactions with other P450 2D6 substrates.168,169 Finally, the
methoxyestrogens are feedback inhibitors of P450 1A1 and
P450 1B1 likely through the formation of the catechol estrogen
o-quinones.170

4.2.3. COX-2 Inhibition (Figure 5). Several synthetic and
natural stable quinones have been reported to have anti-
inflammatory activity through a COX-2 inhibitory mechanism
with a potency similar to indomethacin.171 For example,
nanomolar IC50s have been reported for jugalone and
thymoquinone against human recombinant COX-2 activity
(Table 1).171,172 The catechol metabolite of resveratrol,
piceatannol (Table 3), was found to be a selective COX-2
inhibitor with potency similar to that of celecoxib which may
contribute to the chemopreventive properties of both
compounds.91,173,174 The diethylester prodrug, diacerein
(rhubarb), which is hydrolyzed to the stable p-quinone rhein
(Table 1), has been shown to be effective for treatment of
osteoarthritis.175,176 Like P450, the peroxidase activity of COX-
2 catalyzes the oxidation of catechols and hydroquinones
during prostaglandin biosynthesis, and these quinones can
inhibit the enzyme.27 For example, the peroxidase activity of
COX-2 catalyzes the formation of the dopamine quinone,
which is implicated in the pathogenesis of Parkinson’s disease
(Table 2).177 It has been suggested that COX-2 inhibitors may
be valuable therapies aimed at slowing the progression of this
neurodegenerative disease.178 Similarly, COX-2 catalyzed
formation of the methamphetamine o-quinone as well as
endogenous neurotransmitter o-quinones causing oxidative
stress and mitochondrial protein damage has been implicated
in neurotoxicity and aging.179,180 Finally, COX-2 has been
shown to oxidize diethylstilbestrol and catechol estrogens to
the extended quinone and o-quinones, respectively (Table
3).181−183

4.2.4. COMT Inhibition (Figure 5). In addition to inhibiting
enzymes which catalyze their formation, quinones can also
inhibit enzymes which detoxify them or their hydroquinone/
catechol precursors. For example, catechol O-methyl transferase
(COMT) catalyzes the conversion of catechols to methox-
yethers which cannot be further oxidized to quinones and
therefore represents a catechol detoxification mechanism. The
equine estrogen metabolites 4-hydroxyequilenin and 4-hydrox-
yequilin have been shown to be potent inhibitors of COMT
likely because they can autoxidize to o-quinones (Table
3).184,185 Inhibition of COMT-mediated catechol estrogen
clearance may play a role in the toxicity of endogenous
estrogens and estrogens in HT.186 The catecholamine quinones
are also potent irreversible inhibitors of COMT which could
contribute to the neurotoxicity mechanism (Table 3).187,188

4.2.5. NQO1 Inhibition (Figure 5). Two-electron reduction
of quinones to catechols and hydroquinones is a major
detoxification mechanism for most quinones.128 However,
some quinones have been shown to be mechanism-based
inhibitors of NQO1. For example, the p-quinone ES936 (Table
1) is a nanomolar inhibitor of NQO1 in cell-based assays.189
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Similarly, the antitumor agent mitomycin C (Table 1)
undergoes bioreductive activation catalyzed by NQO1, but it
is also a mechanism-based inhibitor of the enzyme both in vitro
and in vivo.190 Since NQO1 activity is much higher in cancer
cells compared to that in normal cells, quinone-mediated
inhibition of NQO1 could be an effective anticancer strategy.191

For example, the natural product deoxynyboquinone is a potent
NQO1 substrate and inhibitor through an NQO1-catalyzed
redox cycling mechanism and deoxynyboquinone could have
considerable potential as a chemotherapeutic agent (Table
2).191

4.2.6. GST Inhibition (Figure 6). GSTs are often covalently
modified and/or oxidized by quinones likely in an attempt by
GSTs to catalyze detoxification of quinones.192−198 This usually
results in the inhibition of GSTs, and the effect on GST P1−1
in particular could play a role in regulating the c-Jun N-terminal
kinase (JNK) cell signaling pathway. JNK is a MAPK which
effects cell growth, differentiation, stress response, and cellular
transformation.192,199−201 GST P1−1 forms an inhibitory
complex with JNK−c-Jun that inhibits the phosphorylation of
c-Jun by JNK. Quinone mediated oxidative or covalent
modification of GST P1−1 leads to activation of JNK
phosphorylation of c-Jun resulting in the induction of stress
response, differentiation, and proliferation. Some specific
examples include metabolites of the equine estrogens 4-
hydroxyequilenin o-quinone and 4-hydroxyequilin o-quinone,
which were found to be potent irreversible inhibitors of GST

P1−1 (Table 3).79,192,198 In contrast, the o-quinones of the
endogenous catechol estrogen 4-hydroxyestrone o-quinone did
not significantly inhibit GST P1−1 activity in human breast
cancer cells perhaps due to differences in the reactivity of these
estrogen quinones.193 Plant polyphenols including quercetin,
ellagic acid, juglone, luteolin, and caffeic acid have been
reported as GST inhibitors likely through quinone forma-
tion.196,202,203

4.2.7. Keap1/Nrf2/ARE Pathway (Figure 6). para and o-
quinones were among the first characterized small molecule
inducers of the Keap1/Nrf2/ARE pathway.204 This pathway
controls gene expression of an elaborate network of protective
proteins including heme oxygenase, NQO1, AKT, and GST
that defend cells from electrophiles and free radicals.205,206

Under normal conditions, the levels of these protective
enzymes is low due to the repressor function of Keap1,
which sets up Nrf2 for ubiquitination and proteosomal
degradation (Figure 6). Modification of Keap1 by either
alkylation or oxidation of crucial cysteine residues (CYS23, 151,
273, and 288) leads to the loss of the repressor function of
Keap1, increased stability of Nrf2, translocation of Nrf2 to the
nucleus, and activation of ARE-mediated target genes.204,207,208

For example, BHA and its metabolite t-butylhydroquinone are
classical activators of Nrf2 genes resulting in potent induction
of heme oxygenase and NQO1 (Table 4).209 It has been shown
that catechol estrogen o-quinones (Table 3) can covalently
modify Keap1 leading to Nrf2 activation and induction of heme

Figure 6. Quinone signaling targets.
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oxygenase.210 Similarly, catechols from green tea including
EGCG and its epimer gallocatechin gallate and flavonoids such
as quercetin form o-quinones can activate the Keap1/Nrf2/
ARE pathway leading to cytoprotection (Table 2).125,211−214 In
addition, the quercetin quinone methide formed by isomer-
ization of the quercetin o-quinone could also contribute to
Keap1/Nrf2/ARE activation.43 Interestingly, the level of
induction could be enhanced by pretreatment with the GSH
synthesis inhibitor buthionine sulfoximine and diminished in
the presence of the electrophile scavenger N-acetylcys-
teine.125,214 Other natural product catechols including carnosic
acid and caffeic acid had analogous Keap1 modulatory effects
through their corresponding o-quinone mediated mechanisms
(Table 2).129,215,216

Activators of the Keap1-Nrf2 pathway are generally
considered as chemopreventive agents since they enhance the
levels of detoxification enzymes. However, it is important to
realize that Nrf2 is very much involved in the initiation,
promotion, and metastasis of cancer.207,208,217−219 In fact,
cancer cells hijack Nrf2 to support their malignant growth, and
activators of Nrf2 could have unwanted effects including the
development of resistance to chemotherapeutic agents. For
example, t-butylhydroquinone upregulated Nrf2 and enhanced
the resistance of cancer cells to cisplatin, doxorubicin, and
etoposide in neuroblastoma cells.217 Similarly, the electrophilic
and prooxidant signals produced from PAH o-quinones can
lead to the induction of ARE-regulated genes which could
influence the initiation and promotion stages of PAH
carcinogenesis (Table 4).206,220 Quinone Nrf2 activators
could be an effective strategy for cancer chemoprevention;
however, the effect of quinone exposure on long-term Nrf2
levels are not known, and they may not be safe for cancer
patients. Finally, based on the crucial role of Nrf2 in redox
homeostasis in cells, it is likely that the dose−response curve
for quinone Nrf2 activators is U-shaped and that cytopro-
tection/chemoresistance depends on the amount of quinone
formed as well as its electrophilic/redox activity (Figure 7).206

4.2.8. NF-κB Pathway (Figure 6). NF-κB proteins are a
family of transcription factors that play a major role in
inflammation and carcinogenesis.221,222 NF-κB activity is
regulated by the IκB proteins, which are controlled through
phosphorylation by upstream IκB kinases (IKK). These kinases
are attractive targets for electrophilic quinones, which can
covalently modify IKK leading to the inhibition of IKK and NF-
κB-mediated gene transcription resulting in anti-inflammatory
activities. For example, it has been shown that 1,2-
naphthoquinone and β-lapachone (Table 1) inhibited phos-

phorylation of IκB by IKK and disrupted NF-κB signal-
ing.223,224 Similarly, the catechol metabolite of resveratrol,
piceatannol (Table 3), is oxidized to an o-quinone, which
targets Cys179 of IKK leading to inhibition of phorbol ester
induced NF-κB activation.225,226 The antitumor anthroquinone
denbinobin also inhibits NF-κB through the modulation of IKK
in human leukemic cells, and the inhibitory effects could be
prevented by N-acetylcysteine.227 The ansamycin antibiotic
herbimycin A (Table 1) preferentially inhibits IKK likely
through interaction with Cys59, resulting in the prevention of
expression of NF-κB-dependent genes and anti-inflammatory
activity.228 In contrast, the carcinogenic metabolite of estradiol,
4-hydroxyestradiol (Table 3), is oxidized to an o-quinone which
generates ROS causing the activation of IKK and NF-κB
leading to the transformation of MCF-10A breast cells into a
malignant phenotype.229

4.2.9. Nuclear Receptor Modification (Figure 5). It has been
shown that PAH o-quinones and 1,2-naphthoquinone can
covalently modify AhR leading to the activation of the AhR/
XRE pathway and induction of P450 1A1.230,231 Similar results
have been reported for 1,4-benzoquinone, t-butyl-1,4-benzo-
quinone, and PCB quinones suggesting that some quinones
could be bifunctional inducers of both phase I and phase II
enzymes.230−232 Interaction of these genotoxic quinones with
AhR targets them into the nucleus where they can redox cycle
generating ROS and cause oxidative damage to DNA in a
manner similar to the Trojan horse estrogen receptor
mechanism and 4-hydroxyequilenin (see below).136 In support
of this mechanism, the levels of DNA strand breaks and 8-oxo-
dG levels were lower in AhR-deficient Hepa and AhR
knockdown H358 cells treated with the PAH o-quinone,
benzo[a]pyrene-7,8-dione.233

A similar Trojan horse DNA damage mechanism was
observed with the estrogen receptor (ER) and the equine
catechol estrogen, 4-OHEN.136 The rate of 4-OHEN-induced
oxidative DNA damage was significantly enhanced in ERα
positive cells. The mechanism likely involves ERα acting as a
Trojan horse, which is covalently modified by 4-OHEN o-
quinone, concentrating the ER-quinone complex in the nucleus,
accelerating the rate of ROS formation, and enhancing DNA
oxidation.79 The Trojan horse mechanism of estrogen carcino-
genesis could explain why there is a positive association
between 8-oxo-dG excretion levels and risk for ER positive
breast cancer.234

4.3. DNA. Several quinones are known to cause a variety of
DNA lesions, including depurinating bases resulting from N7-
guanine or N3-adenine adduction, stable adducts at the
exocyclic amino groups of guanine and adenine, as well as
oxidized bases (Figure 5).3 Depurinating N7-guanine and N3-
adenine adducts have been reported from dopamine o-quinones
as well as from 4-hydroxyestrone/estradiol o-quinones.82,235,236

The estrogen depurinating DNA adducts have been detected in
much higher levels in prostate and breast cancer patients
compared to that in samples from disease-free individu-
als.237−239 There is speculation and some in vitro studies
suggesting that similar depurinating adducts could be formed
by a number of quinones including those from diethylstilbes-
trol, bisphenol A, PAHs, and benzene.69,240−242 In contrast to
these unstable depurinating adducts which would be repaired
by base excision repair enzymes, the equine estrogens 4-
hydroxyequilin and 4-hydroxyequilenin o-quinones also form
stable cyclic adducts similar to those reported for the PAH o-
quinones.3,243−251 Highly mutagenic cyclic DNA adducts have

Figure 7. Inverse U-shaped modulation of toxicity as a function of
dose and reactivity of quinone. Reactivity is defined as d[P]/dt = k
[quinone]. The timeline refers to the likely order of events occurring
within the cell.
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also been reported for p-benzoquinone which could contribute
to the carcinogenic effects of benzene.252−254 DNA adducts
have been reported from quercetin, although these adducts
likely result from covalent modification by the quinone methide
tautomer of the quercetin o-quinone.255 In addition, these
quercetin DNA adducts were found to be transient and are
unlikely to contribute to mutagenicity in vivo. Although
quercetin has tested positive in the Ames test in the presence
of S9 activation,256 the transient nature of the DNA adducts
likely explains why no genotoxic effects have been observed in
animal models.257

Oxidative damage to DNA is also a common cytotoxic
mechanism for quinones. Biomarkers for oxidative damage to
DNA include the formation of 8-oxo-dG which is considered to
be an important biomarker in carcinogenesis.258,259 PAH o-
quinones and PCB quinones have been reported to cause
oxidative DNA damage.109,260,261 PAH o-quinones generated
oxidized pyrimidines and 8-oxo-dG through redox cycling
resulting in G → T transversions which may contribute to lung
cancer risk.109,262,263 8-oxo-dG formation has been correlated
with p53 mutations observed in human lung cancer which
strongly implicates the PAH o-quinones as ultimate carcino-
gens.264,265

The excessive production of ROS in breast cancer tissue has
been linked to metastasis of tumors in women with breast
cancer.266 The source of ROS has been suggested to be the
result of redox cycling between the estrogen o-quinones and
their semiquinone radicals generating superoxide, hydrogen
peroxide, and ultimately reactive hydroxyl radicals (Figure 3)
which cause oxidative cleavage of the phosphate-sugar back-
bone as well as oxidation of the purine/pyrimidine residues of
DNA.267 In support of this mechanism, a variety of ROS
mediated damage has been reported in hamsters treated with
17β-estradiol including DNA single-strand breaks, 8-oxo-dG
formation, and chromosomal abnormalities.267−271 The equine
catechol estrogens, 4-hydroxyequilin, and 4-hydroxyequilenin
are much more redox active since they autoxidize to o-quinones
generating extensive oxidative DNA damage.79,272,273 For
example, 4-OHEN induced DNA single-strand breaks as well
as the formation of 8-oxo-dA and 8-oxo-dG.274−276 These and
other data are evidence for a mechanism of estrogen-induced
tumor initiation by redox cycling of estrogen quinones
generating ROS which damage DNA. Finally, a variety of
redox active halogenated quinones have been shown to induce
epigenetic modulation of DNA demethylation affecting the
expression of thousands of genes involved in a broad range of
cellular processes.277

5. TOXICITY VERSUS CYTOPROTECTION.
IMPORTANCE OF DOSE, TIME, AND REACTIVITY

It is now becoming generally accepted that quinones and
compounds that form them likely have inverse U-shaped dose−
response curves (Figure 7).129,206,208,278,279 This is because they
have opposing effects in biological systems which depending on
the dose, cellular targets, and time of exposure could result in
toxicity or cytoprotection. At low doses and for relatively
stable/selective quinones, cytoprotection comes from the
electrophilic counterattack resulting in the induction of
detoxification enzymes through the Keap1/Nrf2 pathway. At
higher doses and for less selective/more reactive quinones,
GSH depletion, NAD(P)H oxidation, and protein degradation
led to the endoplasmic reticulum stress response and altered
signal transduction. DNA adducts especially from estrogen and

PAH quinones which are not repaired efficiently over long-term
exposure can initiate and promote the carcinogenic process.
Very reactive quinones likely only target the enzymes that
sythesize them (P450, COX-2, etc.) or react with water and
have little toxic/cytoprotective effects.
In general, the higher the potency of the drug, the lower is

the dose and the decreased risk of toxicity.9 For example,
paroxetine does form an o-quinone which can decrease GSH
and inhibit P450 2D6; however, the dose of the drug is low, and
o-quinone formation is unlikely to contribute to significant
clinical problems.168 Similarly, o-quinones are the major
metabolites of endogenous estrogens and estrogens in estrogen
replacement formulations. As with paroxetine, the dose is very
low for these drugs especially for oral contraceptives, and o-
quinone formation may not be an issue. However, in addition
to the generally accepted hormonal carcinogenesis mechanism,
long-term exposure to low doses of estrogen o-quinones in
estrogen replacement formulations could contribute to
enhanced risk of breast cancer especially in older women.

6. CONCLUSIONS AND FUTURE DIRECTIONS

The above are several examples of both structurally simple and
complex aromatic compounds for which data strongly implicate
quinone intermediates as mediators of toxicity and/or
cytoprotection for a variety of drugs, natural products,
environmental contaminants, and endogenous chemicals.
These reactive metabolites could be considerably more
important to the metabolism and biological properties of
synthetic and naturally occurring aromatic compounds than is
currently recognized. Quinones are formed both enzymatically
and nonenzymatically, but the details of these processes and
relationships to the structures of aromatic compounds are just
beginning to emerge. Variations in the contributions of
electrophilicity/redox activity modulate quinone reactivity
over a wide range, suggesting substantial differences in the
biological targets and intracellular effects of quinones. It is clear
that covalent modification of both proteins and DNA competes
with detoxification mechanisms such as reaction with GSH and
that quinones are capable of inducing cytotoxic and
cytoprotective responses. Future studies will seek to clarify
relationships between reactivities and biological actions of these
electrophiles and to gain insight into the mechanisms involved
in cellular damage/cytoprotection. These data obtained will
assist in clarifying the complex biological properties of a
number of aromatic drugs and natural products and provide
new information on intracellular targets as a function of
electrophile/redox reactivity, which may be applicable to other
types of electrophilic intermediates. Developing a better
understanding of factors affecting phase II conjugation and
rapid elimination of the parent aromatic compounds versus
formation of quinones, their reactivities, and biological targets
will allow advances in the drug discovery process to either
enhance or prevent this pathway in vivo. Given the high cost of
drug withdrawal especially for idiosyncratic drug toxicity, it is
important to screen for potential quinone formation early in the
drug discovery process.
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