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Surface-groundwater interactions play an important role in microbial community
compositions of river bank filtrates. Surface water contaminations deriving from
environmental influences are attenuated by biogeochemical processes in the hyporheic
zone, which are essential for providing clean and high-quality drinking water in
abstraction wells. Characterizing the flow regime of surface water into the groundwater
body can provide substantial information on water quality, but complex hydraulic
dynamics make predictions difficult. Thus, a bottom up approach using microbial
community shifting patterns as an overall outcome of dynamic water characteristics
could provide more detailed information on the influences that affect groundwater
quality. The combination of high-throughput sequencing data together with flow
cytometric measurements of total cell counts reveals absolute abundances among
taxa, thus enhancing interpretation of bacterial dynamics. 16S rRNA high-throughput
sequencing of 55 samples among six wells in a well field in Austria that is influenced
by river bank filtrate within a time period of 3 months has revealed both, clear
differences as well as strong similarity in microbiome compositions between wells
and dates. A significant community shift from April to May occurred in four of six
wells, suggesting that surface water flow regimes do affect these wells stronger than
others. Triplicate sampling and subsequent sequencing of wells at different dates proved
the method to be reproducible. Flow cytometric measurements of total cells indicate
microbial shifts due to increased cell counts and emphasize the rise of allochthonous
microorganisms. Typical freshwater bacterial lineages (Verrucomicrobia, Bacteroidetes,
Actinobacteria, Cyanobacteria, Armatimonadetes) were identified as most increasing
phyla during community shifts. The changes are most likely a result of increased water
abstraction in the wells together with constant river water levels rather than rain events.
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The results provide important knowledge for future implementations of well utilization in
dependency of the nearby Danube River water levels and can help drawing conclusions
about the influence of surface water in the groundwater such that hygienically save and
clean drinking water with a stable microbial community can be provided.

Keywords: high-throughput sequencing, next generation sequencing (NGS), microbial community composition,
drinking water quality, bank filtration, groundwater, absolute abundance, flow cytometry

INTRODUCTION

Groundwater provides a vast reservoir for drinking water
and contributes to the drinking water supply of 1.5 – 3
billion people worldwide (Katsanou and Karapanagioti, 2017).
Its functioning is dependent on a versatile ecosystem that
maintains clean and hygienically safe water via self-purification
processes, implemented by diverse autochthonous microbial
communities (Danielopol et al., 2003; Griebler et al., 2014).
In order to protect this irreplaceable ecosystem, national
as well as international strategies are developed to prevent
pristine aquifers from vast anthropogenic impacts, possibly
leading to permanent microbial turnover and thus resulting in
degradation of water quality (Getches, 1989; Bredenhann and
Braune, 2000; European Commission, 2000). Nevertheless, the
definition of good groundwater quality only depends on physico-
chemical parameters, but excludes microbiological characteristics
(European Commission, 2000).

Groundwater ecosystems are characterized by oligotrophic
environments containing highly adapted microorganisms
due to low nutrient availability and further abiotic factors
(Karczewski et al., 2017). As a consequence, the total number
of microorganisms in groundwater is 10 – 100 times lower
as compared to surface water (Pedersen, 2000; Griebler and
Lueders, 2009) with a large proportion belonging to the viable
but non-culturable (VBNC) organisms (Roszak and Colwell,
1987). The vast majority of bacteria contributing to pristine
water communities has not been cultured yet, thus bacterial
physiology among them and metabolic community functioning
remain widely unknown (Rappé and Giovannoni, 2003; Raes
and Bork, 2008). Therefore, the investigation of changes among
communities rather than the characterization of single samples
can provide insights into adaptations of microbial communities
to biotic as well as abiotic factors, such as temperature, turbidity,
pH, dissolved oxygen, total and dissolved organic carbon and
ammonia (Kaevska et al., 2016; Hou et al., 2018; Liao et al., 2018).

The influences that contaminations can have on microbial
communities have been thoroughly studied (Li et al., 2017; Zhang
Y. et al., 2017; Romera-Castillo et al., 2018; Wang et al., 2018),
but knowledge on commonly occurring impacts investigated by
microbial community analyses remain scarce (Pronk et al., 2009;
Schwab et al., 2017).

Wells serving as drinking water resources in the vicinity
of rivers are influenced by river bank filtration. Especially the
hyporheic zone between surface water and groundwater provides
living space for a variety of microorganisms and biological
activity within this zone contributes to the natural attenuation
of contaminants from surface water infiltrating into the aquifer,

usually resulting in minor changes in the biogeochemical
processes of the reservoirs (Boulton et al., 1998; Hiscock
and Grischek, 2002). Although persistence of allochthonous
microorganisms in the groundwater bodies is unlikely (Pronk
et al., 2009), river bank filtration systems are considered to be
vulnerable to extreme weather conditions such as floods and
droughts (Sprenger et al., 2011; Besmer et al., 2017). Increased
water level differences between river and wells due to season
and rain events as well as increased pumping rates at well sites
shorten interstitial residence time of water and reduce bank
filtration processes, resulting in increased entry of allochthonous
microorganisms in the groundwater body (Sprenger et al., 2011).

Investigating microbial differences between wells can indicate
the degree of surface water influence among them (Lin et al.,
2012). With such information at hand, conclusions can be drawn
on distribution patterns of surface water within the well field as
well as the period of the autochthonous microbial community
to recover from allochthonous impacts. Furthermore, the
detection of certain microbial groups can indicate both hygienic
contamination as well as technical issues that may arise within the
subsequent water treatment and distribution processes (Ascott
et al., 2016).

So far, both, models and on-site investigations have been
made to draw conclusions about impacts of surface water on
the groundwater body and biological as well as physico-chemical
parameters have been investigated within them (Ray et al., 2002;
Wett et al., 2002; Ascott et al., 2016). Nevertheless, how entire
microbial communities actually respond to events influencing
bank filtration processes and how the distribution patterns of
surface water in a well field can influence them, still needs to be
investigated.

Within the last two decades, the development of high-
throughput sequencing techniques has substantially increased
our understanding of microbial population diversities in the
environment and allows for the accurate identification of
microbial taxa (van Dijk et al., 2014). However, the massively
parallel sequencing techniques of hypervariable regions of
16S rRNA genes are associated with several biases that are
partially overcome by optimized extraction methods, increased
sequencing depth, improved bioinformatic tools, choice of
primers as well as the use of replicates (Robasky et al., 2014;
Hugerth and Andersson, 2017). So far, replicates have been used
for DNA extraction and PCR amplification, respectively (Vivien
et al., 2016; Ge and Yu, 2017), but samples were almost exclusively
pooled prior to sequencing, thus making comprehensive
evaluations of replicates impossible (Staley et al., 2015).

The application of flow cytometry for cell counting in water
provides a useful tool to quantify entire bacterial communities
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(Van Nevel et al., 2017). Due to high sampling frequencies
and rapid processing, short-term microbial dynamics, e.g., after
precipitation events can be detected. The combined use of total
cell counts together with sequencing data provides sample-
specific estimated absolute taxon abundances (EAA). Due to
the identification of real abundance changes, EAAs tend to be
more informative regarding community population dynamics
rather than relative abundances without absolute quantification
(Zhang Z. et al., 2017). The goal of this study was to compare
microbial communities within six wells that are characterized
by river bank filtration. The investigation period included two
seasons, winter and spring and covers water level differences
between surface water and groundwater as well as a flood
event. Using high-throughput 16S rRNA sequencing methods,
microbial community compositions were investigated. Triplicate
sampling was performed in order to assess reproducibility
of the method. Spatial and temporal variation in microbial
communities provide a basis for predicting both hygienically
relevant as well as technical aspects of drinking water catchment.

MATERIALS AND METHODS

Study Site and Sample Collection
The well field of sampling is located next to an intermittently
donated backwater (alluvial part of the river with little current),
at approximately 300 m distance from the Danube River, situated
in the Donau-Auen National Park, Austria (Figure 1). Wells 1 –
4 and 6 are about equidistant from water (30–37 m), well 5 is
65 m away from water. A total of 55 samples from 6 different
wells were taken. Samples were taken five times within 4 months,
from February to May 2017. 15 samples at three different dates
were taken as triplicates, as well as 10 single samples (depending
on available resources). A sample volume of 5 L was taken in
glass bottles covered with aluminum foil and muffled at 550◦C for
5 h. For cell counting, 50 ml were additionally sampled in sterile
centrifuge tubes (VWR, United States). Additional parameters
were measured on-site (temperature, electrical conductivity,
redox potential, water levels and abstraction rates in the wells).
Sampling taps were thoroughly flamed and water was flushed for
10 min before sampling. Samples were transported and stored at
4◦C and processed within 24 h.

Filtration
Samples were filtered through sterile 0.2 µm PES membrane
filters (47 mm Supor 200, Pall, MI, United States) using a
water jet pump, rolled up using sterile forceps and transferred
into collection tubes from the subsequently used extraction kit.
Membrane filters were stored at−80◦C until DNA extraction.

Total Cell Count
The count of total cells was measured by fluorometric staining
of nucleic acids and subsequent detection of cells with a flow
cytometer based on the Austrian protocol (Zunabovic-Pichler
et al., 2018). 297 µl of well mixed sample were stained with 3 µl
SYBR R©Green I (Life Technologies, Eugene, OR, United States),
previously diluted 1:100 with DMSO (Fluka, Switzerland) and

subsequently incubated in the dark for 13 min. Flow cytometric
measurements were performed using a BD Accuri C6 flow
cytometer (BD Life Sciences, CA, United States) containing a
50 mW laser emitting at a wavelength of 488 nm. The contained
volumetric counting hardware was set to measure the number of
particles in 50 µl, which is subsequently calculated to a volume
of 1 ml. Measurements were implemented three times at a
flow rate of 35 µl/min. Obtained data were processed using
the R package flowCore. The bacterial signal was differentiated
from background noise by electronic gating (Supplementary
Figure 1).

DNA Extraction
DNA was extracted from the filters using the DNeasy
PowerWater Kit (Qiagen, Germany) following the protocol, with
some modifications: Bead beating was extended to 10 min,
followed by 4 min centrifugation at 4,000 g. The incubation time
at 4◦C after addition of inhibitor removal solution (IRS) was
extended to 10 min. DNA was eluted in 50 µl elution buffer.
Subsequently, DNA concentration was measured on a Qubit 2.0
fluorometer using a Qubit R©dsDNA HS Assay Kit (Invitrogen, OR,
United States) following manufacturer instructions. 1 µl DNA
was added to 199 µl working solution for measurement. Genomic
DNA as well as all further DNA products were stored at −20◦C
until processing.

PCR Amplification and Sequencing
A two-step PCR barcoding approach was used as suggested by
Herbold et al. (2015). For the first PCR reaction, generating the
16S amplicon products, the universal primers S-D-Bact-0341-b-
S-17 (5′-CCT ACG GGN GGC WGC AG-3′) and S-D-Bact-0785-
a-A-21 (5′-GAC TAC HVG GGT ATC TAA TCC-3′), targeting
the hypervariable V3/V4 region of the 16S rRNA gene were
used as described by Klindworth et al. (2013). PCR reactions
were implemented using a reaction volume of 26 µl containing
12.5 µl Mastermix (KAPA HiFi Hotstart ready mix, peqlab,
Germany), 5 µl forward and reverse primer (2 µM) each and
3.5 µl template DNA. The following PCR conditions were used:
initial denaturation at 95◦C for 5 min, followed by 32 – 37 cycles
of denaturation at 95◦C for 30 s, annealing at 66◦C for 30 s
and extension at 72◦C for 30 s and a final extension step at
72◦C for 5 min. The amount of cycles was adjusted to the initial
DNA concentrations, ranging from 3.4 to 66.8 ng/µl. With each
PCR reaction a negative control containing pure water (Sigma-
Aldrich, Switzerland) as template was included to check for
contaminations. PCR products were purified using the peqGOLD
cycle-pure kit (Safety line, peqlab, Germany) according to
manufacturer instructions with the following modifications: The
drying step of the column after washing was extended to 5 min,
40 µl elution buffer were incubated for 5 min, followed by a 2 min
centrifugation step. After amplification, a gel electrophoresis with
a 100 bp ladder was performed on a 2% agarose gel to verify the
size quality of purified PCR products. DNA was quantified using
Qubit R©. Concentrations ranged from 0.71 to 11.0 ng/µl.

The second PCR (Index PCR) converts amplicon products
into library products for sequencing. It was implemented using
Illumina primers from Nextera R©XT index kit v2 (Illumina, CA,
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FIGURE 1 | Outline map of the investigated well field. Arrows indicate the flow path. W1–W6, wells 1–6; MW, monitoring well of backwater.

United States) and KAPA HiFi Hotstart ready mix. 5 µl of
one N7xx and one S5xx primer (unique combination for each
sample), 25 µl mastermix and 15 µl amplicon PCR product
(normalized to 20 ng using purified water) were processed
using the same PCR conditions as before, except of using
only seven amplification cycles. Purification, gel electrophoresis
and quantification of DNA was implemented as before. DNA
concentrations ranged from 8.18 to 33.2 ng/µl. All samples
were normalized to 12 ng/µl (for concentrations < 12 ng/µl
undiluted PCR products were used) using 10 mM TRIS buffer
(Sigma-Aldrich, Switzerland) and an aliquot of 5 µl was pipetted
into the final pool. From this, a gel electrophoresis and a
DNA quantification were implemented as a final quality control
and the library was sequenced at Microsynth, Switzerland
on an Illumina MiSeq platform, using the v3 reaction kit,
2 × 300 bp for paired-end sequencing. Demultiplexing and
trimming of Illumina adaptor residuals, trimming of locus
specific adaptors (cutadapt v 1.8.1) and merging of forward
and reverse reads (Usearch v 8.1.1861) was carried out by
Microsynth. Sequence data was received as.fastq files. The dataset
can be found in the European Nucleotide Archive (ENA)
PRJEB28172.

Data Analysis
All data processing was performed using the Quantitative
Insights into Microbial Ecology 2 (QIIME 2) 2018.4.0
microbiome analysis pipeline1 and R Statistical Software
Version 3.44. The R package phyloseq was used to generate
bar charts depicting relative and absolute abundance of taxa
(McMurdie and Holmes, 2013). Using the DADA2 pipeline

1https://qiime2.org [access 12/06/2018]

(Callahan et al., 2016), quality filtering, denoizing, merging
and removal of chimeric sequences was applied on the data
set. Taxonomies were assigned to the feature table using the
naïve Bayes classifier implemented in QIIME 2 together with
the SILVA 132 database (99% clustering, 7 levels, majority vote).
Reads from triplicate samples were pooled for analyses of merged
triplicates.

Generated total cell counts from flow cytometric data were
multiplied by the relative abundances of taxa to reveal EAA
among them as suggested by Props et al. (2017).

Alpha-diversity was investigated using Shannon-diversity
index, Pielou’s evenness and observed richness parameters.
Rarefaction was implemented for alpha-diversity measures.
Principle Coordinate Analysis (PCoA) plots were generated from
Bray-Curtis distances based on sequence variants to visualize
beta diversity. Permutational Multivariate Analysis of Variance
(PERMANOVA) based on Bray-Curtis dissimilarities (relative
abundances) was performed to test for differences in beta-
diversity among groups (Anderson, 2008). As implementation of
PERMANOVA the function adonis of R-package vegan (Oksanen
et al., 2018) was used, the number of permutations was set to
10,000.

Using the package DAtest (Russel et al., 2018) an optimal
procedure for differential abundance testing was identified for
both, relative abundances as well as EAAs. In short, DAtest
finds well suited methods for the specific dataset at hand by
repeated calculation of quality scores based on shuffling predictor
variables, random spiking of features corresponding to the
shuffled predictor variables and the application of a wide range
of available testing methods aiming at identifying the spiked
features. After application of DAtest the best scoring testing
methods were used to find differentially abundant phyla.
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RESULTS

Bacterial Diversity
A total of 13,584,552 past filter reads (sum of forward and reverse
reads) with a mean read length of 299 bp and a mean quality
score of 31 were retrieved from 55 samples. After processing with
QIIME2, library size ranged from 20,658 to 107,485 reads with
a mean of 53,068 merged reads per sample (43% reads passing
quality filtering). Since the number of reads per sample was
considered sufficient for downstream analyses, no relaxation of
quality filtering criteria was performed. 34,980 sequence variants
were observed and used for downstream taxonomic analyses.

The Shannon alpha-diversity index ranged from 5.08 to 7.35.
Observed richness and Pielou’s evenness ranged from 1344
to 4537 and 0.65 to 0.92, respectively. Well 4 represents the
highest range between samples for all parameters (6.34 ± 0.77;
2,444± 728 and 0.82± 0.1, respectively) (Table 1).

Triplicate Similarity
According to the suggestion of Staley et al. (2015), 15 of the
investigated probes were sampled and processed in triplicates
in order to compare diversity parameters. Principal coordinate
analysis (PCoA) of triplicates showed similarity among triplicates
compared to distinctiveness of samples (Figure 2). Shannon-
diversity and Pielou’s evenness show a variation coefficient
of 0.028 ± 0.021 and 0.010 ± 0.014, respectively within
triplicates, whereas observed richness shows a higher variation
of 0.171 ± 0.115 as well as variability in library size (variation
coefficient 0.241± 0.163).

Spatial and Temporal Variability
Well 5 shows to be most stable throughout the investigation
period regarding both alpha-diversity (Shannon alpha-diversity
index 6.88 – 7.31) as well as total cell counts (1.5× 105 – 1.8× 105

cells/ml), whereas well 4 is very variable in both parameters
(5.08 – 7.03 and 1.3 × 105 – 4.7 × 105 cells/ml, respectively).
Alpha-diversity among wells appears similar from February to
April. Between April 4 and April 7, respectively and May 3
differences in diversity become more pronounced.

Based on Bray-Curtis dissimilarity, the dynamics in
community compositions of wells 1 – 3 behave in a similar
way during the investigated period: A major shift occurs from
April 7 to May 3, but wells shift in the same direction (Figure 2).

Wells 4 – 6 also behave similar to each other with the exception
that wells 5 and 6 do not show major shifts from April to May
3, but rather on May 10, although to a much lesser extent
than well 4 (Figure 2). This is in general accordance with the
geographical adjacency of wells 1 – 3 and 4 – 6, respectively
(Figure 1), although spatial differences contribute less to the
dissimilarity than temporal shift does [y-axis of PCoA accounts
for only 11.0%, x-axis for 28.1% of dissimilarity (Figure 2)].
Microbial community changes correlate with the change in
total cell counts: From May 3, cell counts increase in wells 1 –
4, well 6 shows that increase on May 10, but again to a lesser
extent, well 5 remains similar (Figure 3). Considering that the
most noticeable changes happen from April 7 to May 3 and
that triplicate results from all wells exist among those dates,
taxonomical identification will mainly focus on the dynamics
between the two dates.

Microbial Community Distribution
56 different phyla were identified, of which the most
abundant phyla included Planctomycetes (12.2 – 48.2%),
Omnitrophicaeota (2.6 – 34.1%), Patescibacteria (4.5 –
37.5%), Acidobacteria (1.3 – 17.9%) and Proteobacteria
(2.2 – 16.2%) contributing to more than 75% relative
abundance among all samples. Temporal dynamics in microbial
communities contribute greatly to the variability of relative
abundances: The most increasing phyla from April 7 to May
3 are Verrucomicrobia, Actinobacteria, Cyanobacteria, and
Bacteroidetes, whereas Nitrospirae decrease simultaneously
(Supplementary Figure 2). Considering total cell counts,
microbial community distribution can be compared in EAA,
whereby increasing phyla show a much larger impact due
to increase in cell counts on May 3 and decrease of phyla
diminishes, respectively (Figure 4).

Based on the outcomes of DAtest (Supplementary Figures 3,
4) a differential abundance testing of phyla between April 7 and
May 3 in wells 1 – 3 (paired testing using wells) was conducted.
The comparison of relative abundances based on LIMMA log
(Ritchie et al., 2015) shows to be the most conservative with a
total of 9 phyla being significantly different (p < 0.05). EdgeR
quasi likelihood2 (Robinson et al., 2010) and LIMMA voom
(Law et al., 2014; Ritchie et al., 2015), which score slightly
better in the DAtest analysis, find more significant differences
(12 and 11 phyla, respectively). Since the outcomes of DAtest

TABLE 1 | Alpha-diversity parameters and library size among wells.

Shannon Observed richness Pielou’s evenness Library size

Well Mean ± SD Min Max Mean ± SD Min Max Mean ± SD Min Max Mean ± SD Min Max

1 6.70 ± 0.14 6.84 7.10 3,329 ± 1,017 2,277 4,306 0.87 ± 0.05 0.82 0.92 125,761 ± 71,506 53,917 196,925

2 6.99 ± 0.43 6.51 7.34 3,460 ± 938 2,405 4,198 0.86 ± 0.06 0.79 0.92 119,378 ± 55,911 54,848 153,358

3 6.85 ± 0.50 6.20 7.35 3,065 ± 1,255 1,649 4,537 0.86 ± 0.07 0.76 0.91 112,774 ± 77,875 37,341 198,58

4 6.34 ± 0.77 5.08 7.03 2,444 ± 728 1,344 3,34 0.82 ± 0.1 0.65 0.90 124,608 ± 80,534 34,21 241,095

5 7.19 ± 0.18 6.88 7.31 3,361 ± 1,017 1,895 4,239 0.89 ± 0.02 0.87 0.91 115,397 ± 50,687 46,724 163,021

6 6.76 ± 0.22 6.57 7.11 2,717 ± 801 1,874 3,672 0.86 ± 0.03 0.82 0.89 106,446 ± 38,955 60,551 142,871

SD, standard deviation; Min, minimum; Max, maximum.
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FIGURE 2 | Principle coordinate analysis based on Bray–Curtis dissimilarity of all samples. Triplicates are shown as smaller symbols.

show a considerable increase of false discovery rates (FDR)
and false positive rates (FPR) for all the mentioned methods,
especially in the case of a high number of spiked features
(Supplementary Figure 3), the results must be considered
cautiously.

The comparison of EAAs with the best scoring method
LIMMA log shows significant differences (p < 0.05) for the phyla
Actinobacteria, Armatimonadetes, Bacteroidetes, Cyanobacteria,
Nitrospinae, Nitrospirae, Planctomycetes and Verrucomicrobia.
In contrast to the testing of relative abundances, DAtest does
not indicate an increase of FDR and FPR for all settings tested
(Supplementary Figure 4).

The significant difference in Armatimonadetes is due to
absence of the phylum in April, nevertheless abundances are
low in May. The phyla Omnitrophicaeota and Acidobacteria
(exception for well 4) seem to decrease when looking at relative
abundances. In fact, they proofed to be stable, with little decrease
or increase in EAA (Figure 4).

Diversity Patterns Among Families
The families Verrucomicrobiaceae and Terrimicrobiaceae
contribute most to the increase in Verrucomicrobia from April
to May, Methylacidiphilaceae is the most abundant family

before May and counts remain similar throughout all dates
(Figure 5A).

Among Actinobacteria, Sporichthyaceae is the most abundant
family before and after the shift, however, overall counts are close
to zero in April, suggesting that abundance of the entire phylum
develops from surface water entry (Figure 5B).

Proteobacteria show diverse families as well as cell counts in
April, which are predominantly replaced by Burkholderiaceae,
accounting for most Proteobacteria in May (Figure 5C).

Among the Bacteroidetes, the families Crocinitomicaceae,
Flavobacteriaceae and Saprospiraceae contribute exclusively to
the phylum, of which Saprosphiraceae rises in May, the
others are already abundant before, but to a lesser extent
(Figure 5D).

Phylum Based Sample Clustering
As suggested before, the alignment of samples depending on
both dates and wells based on EAA seems obvious (Figure 3). In
dependency on relative abundances among all samples, certain
groups can also be revealed, which are shown in Figure 6.
Between samples, two groups are formed, of which one contains
the samples from May 3, wells 1 – 4 as well as May 10, well
4. Regarding Phyla, three groups are formed, of which the
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FIGURE 3 | Estimated absolute abundances of phyla at the respective dates (cut-off value 1%). Reads from triplicate samples were pooled to one sample each.

first contains the four most abundant Phyla (Planctomycetes,
Acidobacteria, Omnitrophica, and Patescibacteria), the second
contains five Phyla (Proteobacteria, Chloroflexi, Nitrospirae,
Rokubacteria, and an unknown bacterium phylum) and
the third group contains the four most increasing phyla in
May (Verrucomicrobia, Cyanobacteria, Bacteroidetes, and
Actinobacteria). Within the second group, Proteobacteria
represents the only phylum that remains rather stable between
sample groups, whereas all other phyla strongly decrease
in May as opposite to group 3, in which phyla increase
(Figure 6).

Water Level Differences
Danube River water levels (measured approx. 3 km upstream)
range from 141 to 145 m above sealevel. Water levels among
wells show high similarity regarding both, overall water levels
as well as shifting patterns throughout the investigation period
(Figure 7). Two monitoring wells in the backwater show water
levels similar to the wells, but are characterized by slightly higher
values during intensive abstraction in the wells, when well water
levels decrease. In general, Danube, backwater and wells behave
similar regarding water level shifts. A major difference between
wells and Danube River develops during constant surface water
levels over a stable period from end of March until end of April
and simultaneous high water abstraction in the wells (Figure 7).
Microbial community shifts indicate this period to be decisive
for changing water compositions in wells 1 – 4. The investigated
flood event on May 10 did not affect microbial communities
immediately. Comparison of beta diversity between May 3 and
May 10 in wells 4 – 6 was not significant (PERMANOVA
p > 0.05).

Abiotic Factors
It situ parameters have been measured during sampling
(Supplementary Figures 5, 6). Noticeable is the electrical
conductivity that is higher in well 5 as compared to other wells
(846.8 ± 96.7 µS/cm in well 5 and 572.8 ± 57.3 µS/cm in all
other wells, received from sampling dates April 7 and May 3).
Conductivity in the Danube River and the backwater are lower
with 445.5± 23.6 µS/cm and 430.8± 8.6 µS/cm, respectively.

DISCUSSION

The Donau-Auen National Park is characterized by small-scale
natural heterogeneity due to former floods and rearrangements.
Great differences in permeability, organic matter content and
composition of the soil can influence subsequent groundwater
characteristics. To investigate small-scale spatial as well as
temporal changes, the microbial community patterns of 6 wells in
a well field characterized by groundwater influenced by river bank
filtration were investigated to reveal information about changes
in microbial communities among wells. With such information
at hand, conclusions can be drawn on the different impact of
surface water on the well water and how this might contribute
to optimized subsequent drinking water treatment.

Triplicate Sampling
Cao et al. (2002) suggests the use of autosimilarity (average
similarity among replicates) as a standardization method rather
than sample size, as total taxon richness can vary across
sampling sites. Therefore, standardized sample size is biased
for compositional comparisons and ignores how complete
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FIGURE 4 | Fold-change plot of phyla from April 7 to May 3 based on estimated absolute abundances (EAA).

communities are represented. The application of replicate
samples instead can be used as a measure of sample community
representativeness and provides an accurate predictor of richness.
Furthermore, Wen et al. (2017) showed that community variation
is larger for biological triplicates (i.e., triplicate sampling and
subsequent separate preparation) than for technical triplicates
(one sample, triplicate amplification). Both increase sampling
effort and enhance reproducibility. Additionally, triplicate
sampling provides a comparison of variety measurements of
different, but still similar samples, thus allowing to discriminate
between them.

The similarity within triplicates based on both, Bray-Curtis
dissimilarity as well as low variation coefficients (alpha-diversity)
shows that the sampling method reveals reliable results. Due
to varying read counts among triplicates, which are shown

in library size variations, observed richness parameters vary
stronger than Shannon-diversity and Pielou’s evenness indices.
Overall high read counts add confidence to reliable, high
quality results, although high rejection rates of reads (57%)
as a consequence of high stringency quality filtering decrease
library size. Pooling of multiple libraries increases sequencing
depth and consequently generates profound information on
microbial communities (Zaheer et al., 2018), thus suggesting
that triplicate sampling increases overall richness due to increase
in library size and provides an important tool as proof of
reproducibility. Furthermore, high sample volumes of 5 L
account for less sequence variation (Staley et al., 2013). With
decreasing costs in massive parallel sequencing technologies, we
suggest replicate sampling (duplicates or triplicates) to become a
basic requirement in future investigations.
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FIGURE 5 | Estimated absolute abundance on family levels (cut-off value 0.5%) for the Phyla Verrucomicrobia (A), Actinobacteria (B), Proteobacteria (C), and
Bacteroidetes (D). Due to lower abundance, y-axis scaling is smaller for D than for A–C.

Spatial and Temporal Variability
The microbial community composition of well 5 shows to be
stable throughout the investigation period. A steady diversity
index together with constant cell counts indicates little influence
of surface water microorganisms. Contamination is likely to
decrease species richness, thus high diversity parameters can
indicate environmental quality (Covich et al., 2004). As this
well is located further away from the alluvial surface water than
others, it is most likely that increased distance prolongs filtration
processes of surface water, leading to decreased influence of
allochthonous organisms in well water (Hiscock and Grischek,
2002). These results are in accordance with the findings from
Lee et al. (2018) who showed microbial community shifts in
groundwater closer to the adjacent stream rather than in those
parts with some distance from stream water. Furthermore,
due to hydrological conditions, local groundwater recharge
might contribute more strongly to the microbial and chemical
composition of this well (Hoehn and Scholtis, 2011), thus
minimizing inflow of surface water at this point. The latter is
supported by an elevated electrical conductivity as compared to
other wells, as in many cases groundwater is characterized by a
higher mineral content than surface water (Sheets et al., 2002).

In contrast to that, well 4 shows a strong influence
induced by temporal variation, leading to major shifts in
diversity parameters from April 7 to May 3. Increased cell
counts suggest that allochthonous microorganisms strongly
affect microbial community compositions in abstraction

wells due to reduced interstitial residence time of surface
water, which is known to be a critical factor in terms
of allochthonous microbial loads (Hiscock and Grischek,
2002).

Estimated Absolute Abundance (EAA)
Absolute quantification of relative abundances gives a surplus
value on the generated information on microbial dynamics such
that conclusions can be drawn on actual shifts in microbial
populations (Props et al., 2017). In general, mixing surface
water with groundwater does increase cell counts due to cell
introduction from surface water, the stimulation of heterotrophic
respiration, as well as altered organic carbon compositions
and is therefore used to monitor microbial dynamics (Stegen
et al., 2016; Epting et al., 2018; van Driezum et al., 2018).
The impression of suppressing microbial phyla due to the
increase of others suggests that allochthonous microorganisms
inhabit ecological niches instead of autochthonous ones
(Props et al., 2017). Our results emphasize that with the
infiltration of surface water rather new niches are created
giving rise to changing microbial groups. This assumption is
encouraged by the fact that microbial metabolic limitations
are overcome by mixing of waters (Stegen et al., 2016)
leading to elevated abundances of microbial taxa and that
allochthonous contaminations occur temporarily and are
unlikely to persist (Pronk et al., 2009). However, on family
level diverse shifting patterns within phyla are observed:
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FIGURE 6 | Heatmap of relative abundances of 13 phyla among all samples (cut-off value 2%). Vertical grouping based on sample similarity, horizontal grouping in
dependency of Phylum abundance similarity.
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FIGURE 7 | Water levels of wells and the Danube River. Differences in wells are due to pumping activities. Dotted vertical lines indicate sampling dates.

(i) consistent families and rise of new ones (Verrucomicrobia),
(ii) increase of existing families (Bacteroidetes), (iii) suppression
of families in favor of others (Proteobacteria), and (iv) new
development with no or very little previous abundance of
the overall phylum (Actinobacteria and Armatimonadetes).
The differences in phylum and family shifting patterns
indicate that phylogenetic similarity among bacterial groups
can lead to replacement of organisms in certain niches,
possibly due to functional similarities (Petchey and Gaston,
2006).

Microbial Shifting Patterns
Our investigations suggest that impacts on microbial
communities after a flood event or increased water abstraction
in wells do not occur immediately, but after a certain period
of time. The combination of increased surface water levels and
decreased well water levels results in a higher probability of
shifting microbial communities. Most likely, not so much the
increase of water level differences, but rather the changes in
differences due to abstraction regimes contribute to different
water compositions. These findings are in accordance with

results from Ascott et al. (2016), who observed rapid recovery
of water quality with increased abstraction rates and slower
recoveries due to temporary reductions in abstraction rates after
extreme flooding. Nevertheless, the delay in microbial shifts may
be a result of residence time of water in the subsurface area.
Therefore, major shifts in microbial community compositions
from April to May during this study may derive from diverse
abstraction regimes together with previous rainfalls, but
dynamic hydraulic conditions in the river bed make predictions
on time shifts difficult (Hiscock and Grischek, 2002). The
immediate investigation of a flood event in May did not show
major shifts in community compositions, although well 6
shows slight changes toward community compositions of
wells 1 – 4, giving rise to expect similar dynamics in this well
as a consequence of proceeding rain events and hydraulic
differences.

Taxonomy
The overall findings of taxonomic groups are in accordance
with other data: Graham et al. (2017) compared microbial
communities of Inland, Nearshore and River water. All of
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the ten most abundant phyla of each sample group were also
identified in our investigation, additionally we found the phyla
Rokubacteria and Patescibacteria. The shifts from our results
are roughly in accordance with their findings in River water
as compared to Inland and Nearshore samples, respectively:
Bacteroidetes, Actinobacteria and Verrucomicrobia are together
with Proteobacteria among the most abundant phyla in River
water samples, Armatimonadetes only occur in River samples
and Cyanobacteria that are not abundant in Inland samples
and little abundant in Nearshore samples show abundancies
of 4.66% in River samples. Findings from Lee et al. (2018)
show similar results. In our study, the four strongest increasing
phyla, i.e., Verrucomicrobia, Actinobacteria, Cyanobacteria, and
Bacteroidetes, are all considered typical freshwater bacteria
(Newton et al., 2011) and have also been found previously
in freshwater by Iliev et al. (2017) and Kim et al. (2018)
and others. Patescibacteria were first reported in groundwater
and sediments of anoxic environments (Elshahed et al., 2005;
Youssef et al., 2011; Wrighton et al., 2012), but showed to
be widespread in most semiaquatic habitats (Sánchez-Osuna
et al., 2017). Rokubacteria, also found in groundwater samples,
are most closely related to the phylum Nitrospira. They are
characterized by a high level of genetic heterogeneity and show
potential for a versatile, mixotrophic metabolism. Nevertheless,
they are rather low in abundance at different sites, possibly
explaining the lack of identification in other studies (Becraft et al.,
2017).

Actinobacteria are abundant in rivers (Zwart et al., 2002),
although the family Sporichthyaceae, which contributes
most to the increase in Actinobacteria has been found in
soils (Tamura, 2014), suggesting that entry occurs via the
subsurface area rather than surface water itself. Typically,
Actinobacteria are very small (<0.1 µm3), free living
cells (Hahn et al., 2003). In contrast, Bacteroidetes are
mainly particle associated and strongly dependent on the
availability of organic matter (Newton et al., 2011). They
are able to digest large organic polymers (Gómez-Pereira
et al., 2010; McBride, 2014) and the most abundant family
among freshwaters representing Flavobacteriaceae (Gómez-
Pereira et al., 2010) was also found in our investigations.
Cyanobacteria are associated with algal blooms in surface
water (Berry et al., 2017) and may produce toxins that affect
drinking water quality (Walter et al., 2018). Due to their
dependency on a light source, increase happens due to intrusion
rather than growth and persistence is very unlikely. The
abundance of Verrucomicrobia has been underestimated
in the past due to poor primer coverage (Bergmann et al.,
2011). However, they are present in soil and freshwater
habitats accounting for up to 42% in lake samples (Chiang
et al., 2018). All Verrucomicrobia families found during
this investigation were also abundant elsewhere in river
water (Balmonte et al., 2016). They show diverse metabolic
capabilities among clades (Chiang et al., 2018), suggesting a high
versatility and capability of persisting different environmental
conditions.

Heatmap grouping results underline the existence of well
adapted autochthonous microbial populations and typical

shifts from one composition to another as a consequence
of allochthonous microbial influences, as it was previously
suggested by Danielopol et al. (2003) and Griebler and Lueders
(2009) and others. The similarity among samples at the beginning
of the investigation and subsequent divergence of well microbial
characteristics point to the cumulative outcome of diverse
biotic and abiotic impacts leading to differences in well water
characteristics.

Practical Implications
The occurrence of surface-groundwater mixes is subject to
temporally dynamic and spatially complex processes, making
predictions among them difficult (Stegen et al., 2016). The
concept of detecting mixtures of surface water and groundwater
via microorganism shifts rather than studying distribution
patterns of water types within the passage through the subsurface
area can provide adequate statements about mixing patterns
in the alluvial groundwater. Up to now, no consensus exists
about typical pristine groundwater bacteria (Pernthaler, 2013)
and legislations lack microbial parameters as indicators of
groundwater quality (European Commission, 2000), thus no
definition of “good” microbial groundwater quality exists. Our
results give a comprehensive insight into microbial communities
from a river bank filtrate used for drinking water and allow
for conclusions on the spatial distribution of bank filtrated
surface water among wells. Identified microbial dynamics in
dependency of water levels resulting from both rain events as
well as varying pumping rates can be indicative regarding the
improvement of a constant overall microbial water composition
in the subsequent drinking water distribution system. Additional
microbial investigations of river water could determine the origin
of allochthonous microorganisms as it was performed by Kim
et al. (2018) and Lee et al. (2018). Furthermore, abiotic factors
are required to better understand the mechanisms of changing
water qualities. Adapting operational regimes based on the
revealed information about microbial shifts together with abiotic
parameters, such as electrical conductivity, oxygen content and
temperature, shows potential to maintain a microbiologically
stable raw water and thus minimizes the risks of unexpected
technical as well as hygienic disturbances. It is known that
allochthonous contaminations as a consequence of increased
water levels and shortened residence time in the river bank
are unlikely to persist in the groundwater (Pronk et al., 2009).
Nevertheless, a large proportion of VBNC microorganisms
give rise for monitoring microbial community compositions
in abstraction wells (Ramamurthy et al., 2014). In order to
determine how long communities will need to return to their
initial conditions and what factors influence the recovery (Ascott
et al., 2016), investigations implemented on a longer time-span
are required. Furthermore, online monitoring of cell counts in
wells can indicate adequate timing of sampling for sequencing
analyses, as suggested by Besmer et al. (2016). Although the
dynamics in microbial community compositions outline water
mixture patterns, the consequences introduced microorganisms
might have on water regarding downstream drinking water
treatment and distribution are widely unknown and need to be
further investigated.
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