
Automatic 3D Surface Reconstruction
of the Left Atrium From Clinically
Mapped Point Clouds Using
Convolutional Neural Networks
Zhaohan Xiong1, Martin K. Stiles2, Yan Yao3, Rui Shi 3, Aaqel Nalar1, Josh Hawson4,
Geoffrey Lee4 and Jichao Zhao1*

1Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand, 2Waikato Clinical School, Faculty of
Medical and Health Sciences, The University of Auckland, Auckland, New Zealand, 3Fuwai Hospital, Beijing, China, 4Royal
Melbourne Hospital, Melbourne, VIC, Australia

Point clouds are a widely used format for storing information in a memory-efficient and
easily manipulatable representation. However, research in the application of point cloud
mapping and subsequent organ reconstruction with deep learning, is limited. In particular,
current methods for left atrium (LA) visualization using point clouds recorded from clinical
mapping during cardiac ablation are proprietary and remain difficult to validate. Many
clinics rely on additional imaging such as MRIs/CTs to improve the accuracy of LA
mapping. In this study, for the first time, we proposed a novel deep learning
framework for the automatic 3D surface reconstruction of the LA directly from point
clouds acquired viawidely used clinical mapping systems. The backbone of our framework
consists of a 30-layer 3D fully convolutional neural network (CNN). The architecture
contains skip connections that perform multi-resolution processing to maximize
information extraction from the point clouds and ensure a high-resolution prediction by
combining features at different receptive levels. We used large kernels with increased
receptive fields to address the sparsity of the point clouds. Residual blocks and activation
normalization were further implemented to improve the feature learning on sparse inputs.
By utilizing a light-weight design with low-depth layers, our CNN took approximately 10 s
per patient. Independent testing on two cross-modality clinical datasets showed excellent
dice scores of 93% and surface-to-surface distances below 1 pixel. Overall, our study may
provide a more efficient, cost-effective 3D LA reconstruction approach during ablation
procedures, and potentially lead to improved treatment of cardiac diseases.
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1 INTRODUCTION

Point clouds are a widely used method of storing information acquired in the ever-growing world of
data (Rusu et al., 2008; Guo et al., 2020). Current advancements in 3D acquisition technology in the
form of sensors, scanners, and imaging capture high-quality data to allow for more refined research
of their components and properties (Pomerleau et al., 2015). In particular, the acquisition of 3D data
in the medical field is an increasingly important area of study in terms of visualizing organ structures,
recording real-time anatomical information during surgery, and physiological mapping (Ptaszek
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et al., 2018; Kim et al., 2020). Compared to 3D imaging, point
clouds are significantly more memory-efficient by storing
information in a compact and vectorized form. This data
format also enables efficient manipulation using simple
mathematical operations with low computational costs.

In recent years, medical recording technology, particularly
devices in cardiology, has integrated point clouds into the systems
for various applications. Catheter ablation is one of the most
common clinical procedures for treating complex cardiac diseases
such as arrhythmia. During the procedure, an estimated geometry
of the cardiac chamber is initially constructed using point-by-
point catheter recordings on the endocardial surface (Rolf et al.,
2014). The geometry formed from the point cloud is then used to
guide and target specific regions containing diseased heart tissue
for ablation (Hansen et al., 2015). Therefore, accurate
reconstruction of cardiac chambers from point clouds is vitally
important for the effectiveness of the procedure. This is especially
the case for atrial chamber reconstruction during catheter
ablation of atrial fibrillation, the most common cardiac
arrhythmia (Xiong et al., 2018; Xiong et al., 2021).

Current methods of point cloud to atrial chamber
reconstruction, particularly left atrium (LA), are heavily
commercialized and not openly accessible. The two most
widely used commercial anatomical mapping systems are the
EnsiteNavX (St Jude Medical, Minnesota, United States) and
CARTO 3 (Biosense Webster, California, United States). To
ensure accurate LA models are produced, clinicians further
merge the point cloud with anatomical LA segmentations
obtained from magnetic resonance imaging (MRI) or
computed tomography (CT) in advance of the procedure.
There is limited research aiming to improve the efficiency and
accuracy of LA reconstruction algorithms. The only notable study
is Baram et al. who proposed an auto-encoder to perform LA
reconstruction from simulated catheter points and LA geometries
(Baram et al., 2018). The methods proposed were not tested
directly on real data and lacked rigorous validation. Therefore,
there is a need for a more accurate and robust algorithm capable
of fully automatic LA reconstruction directly from point clouds.

Convolutional neural networks (CNNs) are currently the main
driver of modern analytical methods for structured data (Zhang
et al., 2019). The major differences when implementing CNNs for
point clouds as opposed to traditional pixels or voxels are the
variable lengths and unordered structure of point cloud vectors.
This has led many studies to design specialized approaches that
adapt CNNs to their respective task, as they have already been
proven to be extremely robust in imaging analysis (Ronneberger
et al., 2015; Milletari et al., 2016). As the point cloud data is
required to be standardized into a consistent shape for the CNN,
approaches mainly focus on normalizing the data with pre-
processing. Projection-based methods involve mapping 3D
point clouds onto 2D surfaces at different angles (Yu et al.,
2018), or onto standardized spherical representations (Lawin
et al., 2017), which can be then analyzed directly. These
studies have focused on selecting the best projection approach,
such as using CNNs to analyze multiple projections of the same
set of points and aggregating the results to obtain a more robust
prediction (Audebert et al., 2016). Some studies also use CNNs to

perform predictions on projections of local points due to the
more consistent geometry in a regional area, followed by
aggregation of the local outputs into a global prediction
(Tatarchenko et al., 2018). Spherical projections have been
more commonly used as more information can be retained in
a single 2D representation, although this results in a loss of local
details (Milioto et al., 2019). A more straightforward method is
discretization, in which the 3D point clouds are converted into
volumetric images which can be directly analyzed by CNN
(Tchapmi et al., 2017). Studies have investigated ways to
optimize methods of discretization due to the computationally
expensive nature of this type of volume-based analysis. Some
approaches have partitioned point clouds into a lattice of voxels,
in which each voxel is processed differently depending on the
number of points present (Meng et al., 2019). To improve
accuracy, studies have used adaptive voxel sizes to target
regions of high point density and ignore low-density regions
(Graham et al., 2018). This increases the resolution of the
discretized representation of the point set in the regions
containing interest without increasing the computational burden.

The recent advancements in CNNs for point cloud analysis
have provided a solid baseline for developing a LA point cloud
analysis approach. Despite these studies, there still lacks research
progress for converting sparse point clouds to volumetric
geometries, especially in the medical field. Potential solutions
for this complex task could involve state-of-the-art CNNs for 3D
medical image segmentation, which specialize in the image
reconstruction of extremely fine structures (Ronneberger et al.,
2015; Milletari et al., 2016). The popular 3D U-Net architecture
(Ronneberger et al., 2015) has been implemented for a wide range
of tasks including heart segmentation (Zhuang et al., 2019), and
its enhanced version, V-Net (Milletari et al., 2016), achieves
further performance improvements. A recent global
benchmarking study has also experimentally deduced the most
optimal U-Net CNN configuration for LA segmentation from 3D
MRIs (Xiong et al., 2021), surpassing traditional and other CNN
methods. A 2019 benchmarking study for ventricular
segmentation also demonstrated the highest-scoring team
utilizing an enhanced U-Net approach (Wu et al., 2021).
Furthermore, a recent review by Wu et al. outlined the
advantages of CNNs, particularly those with U-Net backbones,
over conventional atlas and registration-based methods for LA
and scar segmentation (Yang et al., 2020). A Multi-view attention
CNN was further developed to improve accuracies over standard
CNNs (Kingma and Ba, 2014). Thus, we believe an approach
which leverages both leading point cloud analytical techniques
and medical imaging CNNs is the best strategy for tackling the
task in this study.

In this study, we proposed the first deep learning pipeline for
fully automatic surface reconstruction of the LA from point cloud
data. Our method achieved anatomically accurate LA predictions
directly from point clouds without the need for additional
imaging. We tested the framework on independent clinical
datasets acquired using the two most widely used commercial
mapping systems. Our study may potentially be used to improve
current mapping systems for guiding ablation procedures to treat
cardiac diseases.
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2 METHODS

2.1 CNN for LA Reconstruction
A CNN was developed to predict the 3D surface LA geometry given
the point-cloud recording of the LA during clinical mapping. The
architecture is shown in Figure 1, and the full summaries of
parameters are shown in Table 1. The point cloud was first pre-
processed into a fixed input volume. All inputs were then cropped to
a standard size of 128 × 208 × 88 pixels, removing background pixels
to alleviate class imbalance. The CNN architecture consisted of a
modified 3DU-Net architecture with additional residual connections
to improve the convergence. We used a fully convolutional network
to decrease computational costs and ensure the CNN operates
independent of input size. The CNN was relatively light-weight as
the maximum number of convolutional kernels per layer was 128.
This further ensured faster training and convergence, as well as being
significantly less memory intensive.

The first half of the CNN was an encoder to learn dense
features from the input through several convolutional layers of
increasing depth. The convolutional layers contained 5 × 5 × 5
kernels and a stride of 1 for an increased receptive field over
traditional 3 × 3 × 3 kernels, and the number of feature maps
increased from 8 to 128. At every 1 to 3 convolutional layers,
residual connections were added to improve feature learning and
2 × 2 × 2 convolutions with a stride of 2 were used to progressively
down-sample the input by a factor of 2. The additional residual
connections did not contribute to an increase in parameters but
greatly increased information flow throughout the network,
allowing important features to be retained as the input is

down-sampled. The use of convolutions to down-sample the
input as opposed to traditional pooling also implicitly enabled the
CNN to learn the important features while removing
unimportant information during compression.

The second half of the CNN was a decoder used to reconstruct
the input back to the original resolution through several 5 × 5 × 5
convolutional layers of decreasing depth. This was done to
facilitate subsequent segmentation. The number of feature
maps of the convolutions in this part of the network decreased
from 64 to 16. The input was progressively up-sampled by a factor
of 2 with 2 × 2 × 2 deconvolutional, or transpose convolutional,
layers with stride of 2. Residual connections were added at every
1–3 convolutional layers. In order to directly preserve high-
resolution features from the input, feature forwarding
connections were also used to concatenate the outputs of the
convolutional layers in the encoder path to those in the decoder
path at four different points along the CNN. This allowed the
CNN to learn from both raw high-level features as well as
condensed low-level features. This also greatly improved the
consistency of reconstruction by essentially guiding the output
to be representative of the input information. Overall, apart from
the final output layer, batch normalization and parametric
rectified linear units (PReLU) were used after every
convolutional layer along with the entire CNN for
normalization, and 50% dropout was used at every layer for
regularization to decrease overfitting. The final output layer of the
CNN contained a 1 × 1 × 1 convolution with a stride of 1 and a
softmax activation function to predict for zeros (background) and
ones (LA pixel).

FIGURE 1 | The architecture of the proposed 3D convolutional neural network (CNN) for predicting the left atrial (LA) geometry from a point cloud obtained during
clinical mapping. The number of kernels in each convolutional layer is shown, along with the type of convolution. The flow of the gradients between layers is also shown,
with different operations for merging two layers. The legend shows the exact operations of each layer labelled with different colors. All parameters can be found in
Table 1. BN, batch normalization; conv, convolution; PReLU, parametric rectified linear unit.
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The hyper-parameters in the CNN were selected through
controlled experimentation to determine the optimal
configuration for the task. The number of convolutional
kernels was tuned using 4, 8, and 16 kernels for the first layer,
with the remaining layers doubling as described. Experiments
showed that using four kernels did not provide the network with
sufficient depth to predict the LA accurately while 16 kernels were
too computationally intensive with minimal improvement over
eight kernels. The number of steps in the encoder and decoder
paths was also adjusted to find the degree of compression needed.
Similar with the number of kernels, CNNs without sufficient
down-sampling steps were too shallow for the task, while the
number of down-sampling steps above the optimal four steps did
not contribute to an increase in accuracy. We implemented a
CNNwith 3 × 3 × 3 kernels and compared the results with the 5 ×
5 × 5 kernels. Surprisingly, the network had difficulty converging
when using size 3 kernels, potentially due to the lack of receptive
field which could not effectively process the sparse inputs
provided. We found PReLU activations worked more
harmoniously with the network architecture compared with
ReLU and leaky ReLU as it produced the best performances.

The percentage of the dropout was also tuned with dropout rates
of 25%, 50%, and 75%. While the performance did not
significantly vary, a drop out of 50% provided sufficient
regularization without reducing the training time as when
applying 75% dropout.

To alleviate class imbalance, a dice loss function was used
during training to assign higher priorities to the pixels containing
the atria during prediction. The dice loss also increased the speed
of convergence, significantly reducing computational costs. The
formulation of the dice loss, Fdice(p, g), where p and g represents
the predicted and ground truth 3D binary masks, was

Fdice(p, g) � 2∑x∑ypg + 1∑xp
2 +∑yg

2 + 1
(1)

where p and g were of dimensions of x and y.
The adaptive moment estimation (ADAM) gradient descent

optimizer (McGann et al., 2014) was used to minimize the loss
function during training with a constant learning rate of 0.0001
and the exponential decay rates of the 1st and 2nd moment
estimates were set to 0.9 and 0.999, respectively. To reduce the

TABLE 1 | The configurations of the convolutional neural network.

Encoder path layers Kernel size Stride Feature maps Number of parameters

Input 3D - - 1 -
Conv/8 5 × 5 × 5 1 8 5 × 5 × 5 × 1 × 8
Down Conv/16 2 × 2 × 2 2 16 5 × 5 × 5 × 8 × 8
Conv/16 5 × 5 × 5 1 16 5 × 5 × 5 × 16 × 16
Conv/16 5 × 5 × 5 1 16 5 × 5 × 5 × 16 × 32
Down Conv/32 2 × 2 × 2 2 32 5 × 5 × 5 × 32 × 32
Conv/32 5 × 5 × 5 1 32 5 × 5 × 5 × 32 × 32
Conv/32 5 × 5 × 5 1 32 5 × 5 × 5 × 32 × 32
Conv/32 5 × 5 × 5 1 32 2 × 2 × 2 × 32 × 64
Down Conv/64 2 × 2 × 2 2 64 5 × 5 × 5 × 64 × 64
Conv/64 5 × 5 × 5 1 64 5 × 5 × 5 × 64 × 64
Conv/64 5 × 5 × 5 1 64 5 × 5 × 5 × 64 × 64
Conv/64 5 × 5 × 5 1 64 2 × 2 × 2 × 64 × 128
Down Conv/128 2 × 2 × 2 2 128 5 × 5 × 5 × 128 × 128
Conv/128 5 × 5 × 5 1 128 5 × 5 × 5 × 128 × 128
Conv/128 5 × 5 × 5 1 128 5 × 5 × 5 × 128 × 128
Conv/128 5 × 5 × 5 1 128 5 × 5 × 5 × 128 × 128

Decoder path layers Kernel size Stride Feature maps Number of parameters

Up Conv/64 2 × 2 × 2 2 64 2 × 2 × 2 × 128 × 64
Conv/128 5 × 5 × 5 1 128 5 × 5 × 5 × 128 × 128
Conv/128 5 × 5 × 5 1 128 5 × 5 × 5 × 128 × 128
Conv/128 5 × 5 × 5 1 128 5 × 5 × 5 × 128 × 128
Up Conv/32 2 × 2 × 2 2 32 2 × 2 × 2 × 128 × 32
Conv/64 5 × 5 × 5 1 64 5 × 5 × 5 × 64 × 64
Conv/64 5 × 5 × 5 1 64 5 × 5 × 5 × 64 × 64
Conv/64 5 × 5 × 5 1 64 5 × 5 × 5 × 64 × 64
Up Conv/16 2 × 2 × 2 2 16 2 × 2 × 2 × 64 × 16
Conv/32 5 × 5 × 5 1 32 5 × 5 × 5 × 32 × 32
Conv/32 5 × 5 × 5 1 32 5 × 5 × 5 × 32 × 32
Up Conv/8 2 × 2 × 2 2 8 2 × 2 × 2 × 32 × 8
Conv/16 5 × 5 × 5 1 16 5 × 5 × 5 × 16 × 16
Classifier 1 × 1 × 1 1 2 1 × 1 × 1 × 16 × 2
Output 3D - - 2 -

Total Parameters ˜32.5 Million

Conv, convolution.
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computational burden of the large images that needed to be
processed, all data was stored in the hierarchical data format after
pre-processing. The CNN was trained with a maximum limit of
1,000 epochs, with a criterion to stop training if the accuracy on
the validation set did not improve after 50 epochs. A batch size of
1 was used due to the high memory costs associated with 3D
volumes. The training set was also shuffled for each epoch to
increase randomness. After every epoch, the performance of the
CNN was evaluated on the validation set with the dice score. The
parameter set of the CNN which achieved the highest validation
accuracy was saved and used on the testing set. The CNN was
developed in TensorFlow, an open-source Python deep learning
library, and TFLearn, a high-level Python API for Tensorflow.
The training step was performed on an Nvidia Titan V GPU with
5120 CUDA cores and 12 GB RAM. The training phase took
approximately 10 hours. Predictions took approximately 10 s for
each partial shell input.

3 EXPERIMENTAL SETUP

3.1 Data and Pre-Processing
A summary of the three datasets (paired training data, test #1, test
#2) used in this study is shown in Table 2. The CNN was initially
trained on a generated dataset (paired training data) and tested
on two clinical datasets (test #1 and test #2). The generated dataset
was simulated to provide sufficient samples to train the CNN, as
clinical data is time-consuming and expensive to acquire. The two
clinical datasets both contained LA surface geometries segmented
from MRIs or CTs and point clouds acquired with the most
widely used commercial mapping systems merged into the same
coordinates as the imaging. This providedmatching pairs of input
point clouds and output LA for testing the CNN. The following
sub-sections describe the generation and acquisition of the three
datasets in detail.

The Waikato clinical study was approved by New Zealand
Health and Disability Ethics Committees (Ref: 16/STH/130) and
the ethics approval for the studies at other centers at Utah (Xiong
et al., 2018; Yang et al., 2020), Beijing (Kingma and Ba, 2014) and
Melbourne (Edelsbrunner and Mücke, 1994) were already
obtained.

3.1.1 Paired Training Data
The paired training dataset was generated by merging two
separate datasets: 154 LA surface geometries manually
segmented from MRIs (Yao et al., 2007) and 10 sets of point
clouds of the LA recorded with clinical mapping (Edelsbrunner
and Mücke, 1994). The point clouds were transformed to fit the

same spatial coordinates as the LA segmentations, forming
matching pairs of point cloud and LA geometries available for
the CNN. Overall, 1,540 data samples were generated by
exhausting all pairing combinations of the two datasets.

The 154 3D MRIs with a spatial resolution of 0.625 mm ×
0.625 mm × 0.625 mm were acquired from patients with atrial
fibrillation at the University of Utah, United States (Yao et al.,
2007). The LA geometries were manually segmented in
agreement with three expert observers for each scan.
Segmentations were initially performed by one observer and
modified by a second observer in agreement with the first
observer to ensure accuracy and consistency. Where there was
a disagreement between the first two observers, a third observer
was consulted to mediate and further refined the segmentation.
The LA was defined as the pixels contained within the LA
endocardial surface, including the four pulmonary veins (PVs).
The 3D coordinates of each PV in each LA were also recorded for
landmark registration.

The 10 point cloud data were created with clinical mapping
during catheter ablation to treat patients with atrial fibrillation in
Beijing, China (Edelsbrunner and Mücke, 1994). Similar to the
MRIs, the coordinates of the four PVs were annotated in the
maps. The average number of coordinates recorded for the point
clouds were 3,703 ± 1,043.

The two datasets were merged by transforming the point
cloud data using three stages: registration, projection, and
discretization. For illustrative purposes, the three stages of
the data generation process have been further outlined in
Figure 2. As the coordinates of the PVs were labelled in
both datasets, they were first used to register the point cloud
through a series of translational, rotational and scaling matrix
operations, obtaining the closest possible match of the
landmarks. Since the aim of this initial step was to generate
an approximate match between the two geometries, only rigid
registration was performed. The registered point cloud was then
spherically projected onto the surface of the 3D LA geometry
using its center-of-mass as a reference point to produce an exact
match between the two geometries. Finally, the projected point
cloud was discretized using the alpha-concave hull algorithm
(Foo et al., 2020) to generate a dense mesh of the point cloud.
An alpha value of 5 was manually selected to produce an output
which maintained the natural curvature of the LA. The concave
hull algorithm was then iteratively applied three times such that
in each iteration, points along all edges of the generated concave
hull were added to the point cloud and inputted into the next
iteration. This resulted in an exponential increase in the
number of points after each iteration, transforming a point
cloud vector of ~4,000 samples to over 250,000 samples.
Ultimately, this produced a dense mesh which was then
discretized into integers forming a 3D image representing a
partial shell of the LA.

The paired training dataset was split into training (N = 1,000),
validation (N = 240), and testing (N = 300). The input data and
labels were the point clouds and the LA segmented from the MRI
dataset, respectively. The data was split such that an LA geometry
from a given MRI was only present in one of the three datasets to
avoid repeating labels.

TABLE 2 | Summary of the data used in this study.

Dataset Training Validation Testing

Paired training data 1,000 240 300
Test#1: clinical MRI + point cloud — — 4
Test#2: clinical CT + point cloud — — 2

CT, computed tomography; MRI, magnetic resonance imaging.

Frontiers in Physiology | www.frontiersin.org April 2022 | Volume 13 | Article 8802605

Xiong et al. Automatic 3D LA Surface Reconstruction

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


3.1.2 Test #1: Clinically Paired MRI and Point Cloud
Data
MRIs with a resolution of 0.625 mm × 0.625 mm × 0.625 mm
were acquired from 4 patients at Waikato Hospital,
New Zealand, undergoing catheter ablation with the
CARTO 3 mapping system (Prabhu et al., 2018). The
average number of points recorded for the patients was
2,230 ± 790. Prior to the ablation procedure, the
corresponding MRI scans were manually annotated by a
team of experts to define the LA geometries. During
clinical assessment, the LA was merged with the point
clouds recorded during ablation mapping to spatially
match the two data. For pre-processing, the point clouds
were discretized using the method described above to
create a 3D input LA shell for the CNN. The
corresponding LA geometries from the MRIs were used as
the ground truth for evaluation.

3.1.3 Test #2: Clinically Paired CT and Point Cloud
Data
CTs were obtained from 2 patients at The Royal Hospital Melbourne,
Australia, undergoing catheter ablationwith the EnsiteNavXmapping
system (Njoku et al., 2018). The average number of mapped points
was 2,818 ± 206. Similar to the test #1 dataset above, the LA were
manually segmented from the CTs and merged in the clinic with the
point clouds. The point clouds were then discretized to create a 3D
input LA shell for the CNN, and the respective LA geometries from
the CTs were used as the ground truth for evaluation.

3.2 Evaluation
Several evaluation metrics were used to determine the accuracy of
the CNN predictions. Evaluation was performed on all three of
the paired training, test #1, and test #2 datasets. The technical
analysis included the dice score, surface-to-surface distance
(STSD), sensitivity, and specificity. The dice score was defined

FIGURE 2 | Illustration of the (A) registration, (B) projection, and (C) discretization stages for data generation from pairs of 3D left atrial (LA) geometry segmented
frommagnetic resonance imaging (MRI) and point clouds of the LA recorded during clinical mapping. Landmark registration was first performed to approximately match
the pulmonary veins (PV) of the two LA geometries. This was performed by centering the center of mass (COM) of the point cloud PVs to the MRI. The point cloud was
then rotated such that the PVs was able to closely match that of the MRI. The point cloud was lastly scaled for further refinement. The registered point cloud was
spherically projected radially from the COM to the LA wall of the MRI to simulate a surface-point cloud recording on the MRI. The point cloud was lastly converted into a
dense mesh using the concave hull.
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similarly to the loss function in Eq. 1. STSD between the
prediction, A, and ground truth, B, was defined as

STSD(A, B) � 1
np + ng

(∑np

p′�1

������
p′ − p

√
+∑ng

g′�1

�����
g′ − g

√ ) (2)

where a and b are all the pixels locations within A and B, nA is the
number of pixels in A, nB is the number of pixels in B. The
sensitivity was defined as the number of true positives divided by
the sum of the number of true positives and false negatives. The
specificity was defined as the number of true negatives divided by
the sum of the number of true negatives and false positives.

To measure the biological accuracy of the CNN
predictions, we used the error in the LA diameter and
volume. These are important biomarkers which have been
shown to provide reliable information during clinical
diagnosis and treatment stratification of atrial fibrillation
(Zhuang et al., 2011; Njoku et al., 2018; Chen et al., 2022).
The LA diameter was defined as

ØLA(M) � max
i∈I

⎛⎝∑J

j�1Mij
⎞⎠ (3)

for a 2D slice of the 3D LA geometry with the maximum 2Dwidth
to obtain the overall maximum LA diameter,M, with dimensions
I × J, where J was the anterior-posterior axis of the LA chamber.
The atrial volume, VLA, was calculated by

VLA(M) � ∑X

i�1∑Y

j�1∑Z

k�1Mijk (4)

for a 3D mask, M, with dimensions X × Y× Z. The diameter and
volume errors were then calculated by simply comparing the
measures in the predictions with those from the ground truths.
We also evaluated the coverage of the point cloud in the LA to
measure its impact on the technical and biological accuracies.
This was computed by

Coverage � ∑n
i PTi∑m

j LAsurface
(5)

given the point cloud, PT, with a length of n, and the outer surface
of the LA, LAsurface, with m pixels, and n < m.

4 RESULTS

4.1 Accuracy for Predicting the LA From
Point Clouds
Tables 3, 4 show the complete evaluation results for the 3D LA
reconstruction from point clouds in generated paired training

dataset, and clinical test #1 and test #2 datasets. Overall, the
proposed CNN achieved excellent accuracies for LA prediction,
with dice scores of 93.2% for the paired training set, 92.4% for the
test #1 set, and 93.4% for the test #2 set. These high accuracies
showed that the CNN was able to successfully reconstruct the LA
from the sparse inputs provided. The relatively low standard
deviation of 2.3% on the 300 testing samples in the paired training
set showed that the predictions were also very consistent. This
was particularly seen in the two test sets with standard deviations
of below 1% for the dice score. The CNN achieved an STSD of 1.1
pixels on the paired training set, and a more impressive 0.8 and
0.7 pixels on the test #1 and test #2 sets, showing the predicted LA
was on average within 1 pixel of the ground truth. The high
sensitivity of above 90% and the specificities of 99% showed that
the CNN was able to distinguish between the positive and
negative pixels with high certainties. Surprisingly, the
approximately 4% higher sensitivity on the two clinical test
sets indicated the CNN was able to capture the LA pixels
much more effectively than in the paired training set.

The predicted LA were also biologically accurate on average,
obtaining low diameter and volume errors of 4.4% and 5.9%,
respectively (Table 4). The higher sensitivities in the two test sets
also resulted in lower diameter and volume errors with 2.6% and
3.0% errors for the diameter, and 5.2% and 3.3% for the volume in
the test #1 and test #2 sets, respectively. We also compared the
biological measurements between the ground truth and predicted
LA to determine the error source. We found that the mean
predicted diameter of 39.9 mm and volume of 49.0 cm3 were
lower when compared to the 41.5 mm and 52.4 cm3 ground truth
measurements. This revealed the CNN had a tendency to slightly
underestimate the LA when analyzing point clouds.

4.2 Visualization and Error Analysis
3D visualizations of the ground truth and predictions
produced by the CNN were produced for further error
analysis. Figure 3 shows five samples of predictions made
by the CNN in order of increasing accuracy, representing the

TABLE 3 | Technical evaluation for left atrium reconstruction from point clouds in the 300 generated (Paired training), 4 clinical MRI (Test #1), and 2 clinical CT (Test #2) data.

Dataset Dice STSD Sensitivity Specificity

Paired training data 93.2 ± 2.3% 1.16 ± 0.48px 90.6 ± 3.7% 99.7 ± 0.1%
Test#1 92.4 ± 0.8% 0.76 ± 0.05px 94.9 ± 0.6% 99.2 ± 0.2%
Test#2 93.4 ± 0.6% 0.66 ± 0.05px 95.0 ± 0.3% 99.2 ± 0.1%

CT, computed tomography; MRI, magnetic resonance imaging.

TABLE 4 | Biological evaluation for left atrium reconstruction from point clouds in
the 300 generated (Paired training), 4 clinical MRI (Test #1), and 2 clinical CT
(Test #2) data.

Dataset Diameter error Volume error

Paired training data 4.4 ± 5.2% 5.9 ± 4.1%
Test#1 2.6 ± 1.2% 5.2 ± 1.0%
Test#2 3.0 ± 1.0% 3.3 ± 1.9%

CT, computed tomography; MRI, magnetic resonance imaging.
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range of accuracies obtained in the paired training set. The
input point cloud was also shown with the corresponding
ground truth LA geometry. From the samples shown, it was
observed that the degree of coverage depicted by the input data
had a significant impact on the accuracy of prediction. This
was clearly visible in the first row where the input point cloud
had low coverage. The CNN was therefore forced to generate
many anatomical features without guidance, based only on the
shape of the existing input. The fifth row showed an input
containing extremely good coverages, naturally making the
prediction much more accurate. However, rows one to four
also revealed the power of the CNN for data generation, as the
outputs, regardless of dice score, were all anatomically similar
to the ground truths. This also showed that the CNN would be
effective on clinically recorded point clouds which do not fully
cover the entire LA surface. Expectedly, the most erroneous
regions were the PVs when a distance-error map was
computed between the predictions and ground truths. This

was due to the PVs having a thin and inconsistent shape
compared to the rest of the LA, creating difficulties for the
CNN to consistently define.

To demonstrate our method is adaptable and feasible on the
two real clinical datasets (test #1 and test #2). we displayed the
prediction and ground truth of one sample from each dataset in
Figure 4. In general, it can be seen the point cloud in these
datasets covered a significantly larger proportion of the LA
compared to the paired training dataset. This led to the CNN
performing better given the more complete LA shells which were
generated from the point clouds. Furthermore, the adaptability of
our CNN can be seen in the results for the test #2 data. The LA
was acquired from CTs, as opposed to MRIs which were used in
both the paired training and test #1 datasets, leading to a
significantly different geometry. Nevertheless, our CNN
effectively predicted the CT geometry although it was only
trained on MRIs geometries, showing our approach was
independent of the mapping system and image modality.

FIGURE 3 | 3D visualizations of the left atrial (LA) reconstructions of five samples in the paired training dataset. The reconstructions with the highest dice scores are
in the bottom row and the top row contains the reconstructions with the lowest dice scores. The point-clouds inputs are shown in the first column. The ground truths
obtained by manually segmenting the LGE-MRIs are shown in the second column. The reconstructions predicted by the convolutional neural network (CNN) are shown
in the third column. The surface-to-surface distance (STSD) error maps between the ground truths and the predictions are shown in the fourth column, with the
colors being normalized between 0 and 7 mm for the five samples. LAA, left atrial appendage; PV, pulmonary vein.
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4.3 Impact of Point Cloud Coverage on the
Accuracy
We analyzed the impact of the coverage of the point cloud
over the target output LA on the evaluation scores obtained in
our results (Table 5). The average coverage across the paired
training dataset was 30%, while the test #1 and test #2 sets had
coverages of 40% and 44%, respectively. The standard
deviation of the coverage on the paired training set was
5.4% and contained a range of 19%–40%. This indicated
there was a wide range of point cloud coverages for the

CNN during training, allowing it to be applicable to a
range of distributions during prediction. Interestingly, the
mean coverages of the two test sets were above and outside the
range of the paired training set, showing the point clouds
acquired in the clinical sets were of higher quality. This was a
potential explanation for the increased sensitivities on the two
clinical sets, as the higher coverage allowed the CNN to
predict the entire LA geometry with slightly greater
precision compared to the training set. Although this did
not result in an increased dice score as the specificities of the
two clinical datasets were lower compared to that of the
training set. This was also visible in Figures 3 vs. Figure 4
which showed a smoother point cloud distribution for the test
#1 and test #2 data. The 5% higher coverage in test #2
compared to test #1 was also a potential reason for the 1%
higher dice score between the two clinical testing sets.

We then computed the Pearson’s correlation between the
point cloud coverage in all data and the accuracies obtained
by our CNN (Figure 5). Overall, the coverage was
significantly and strongly correlated to both the dice score
and sensitivity, with correlations of 0.7. This was a potential
explanation for the increased sensitivity on the two clinical
sets, as the higher coverage allowed the CNN to predict the
entire LA geometry with greater precision. The coverage was
also moderately correlated to the STSD with a value of 0.6 and
statistical significance. Expectedly, the errors for the diameter
and volume were both negatively correlated with the
coverage, as higher coverages resulted in better predictions
of the biological measurements, and thus lower errors. While
the diameter error had a low correlation of −0.1, the volume
error had a moderate negative correlation of −0.6. This was
due to the diameter only being measured in one dimension,

FIGURE 4 | 3D Visualizations of the left atrial (LA) reconstruction for one
sample each from test #1 (left column) and test #2 (right column) clinical
datasets. The point cloud recorded with the commercial mapping systems are
shown in the first row, along with the LA geometry obtained from
segmenting magnetic resonance imaging (MRI) and computed tomography
(CT) in the second row. The predicted LA are shown in the third row, and the
surface-to-surface distance (STSD) error maps between the ground truths
and the predictions are shown in the fourth row. The individual dice and STSD
scores are shown for each sample. PV, pulmonary vein.

TABLE 5 | The point cloud coverage over the left atrium for the generated (Paired
training), clinical MRI (Test #1), and clinical CT (Test #2) datasets.

Dataset Coverage

Paired training data 30.3 ± 5.4%
Test#1 39.5 ± 1.5%
Test#2 44.4 ± 2.6%

CT, computed tomography; MRI, magnetic resonance imaging.

FIGURE 5 |Correlation of the point cloud coverage with the dice score in
the testing datasets. The line of best fit is shown, along with the Pearson’s
correlation value and p-value. The band shows the standard deviation of the
points along the line.
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and thus being impacted less by the overall LA reconstruction
accuracy, while the volume was influenced by all three
dimensions.

5 DISCUSSION

Direct surface reconstruction of organs, such as the LA, from
point clouds is a challenging task. Prevailing methods of
analysis primarily focus on the application of CNNs for the
classification and segmentation of point cloud representations
of 3D objects or scenery. Well-established research into the
reconstruction of 3D surface geometries directly from sparse
inputs such as point cloud is therefore limited. Furthermore,
the current commercial software used to perform clinical
mapping and the subsequent LA reconstruction from the
point clouds recorded is inefficient by requiring additional
imaging prior to the procedure. The efficacy of the proprietary
software also remains difficult to validate, and open research
in the area is lacking.

To address the current issues, our study is one of the first to
propose a fully automated framework for the reconstruction
of the LA geometry directly from point clouds. Our study is
also one of few to develop a CNN for the surface
reconstruction of 3D geometries given a set of partially
complete information such as the sparse point clouds data
described. Overall, the proposed CNN produced LA
predictions with high-performance accuracies across
multiple metrics for both technical and biological
evaluation. The CNN obtained dice scores surpassing a
prior study which investigated a similar task with over 7%
accuracy improvements (Baram et al., 2018). The low surface-
to-surface distance, LA diameter, and LA volume errors
showed our approach produced anatomically accurate
predictions, which is a highly important feature for clinical
applications. The clinical applicability of our approach was
further demonstrated on the two clinical point cloud datasets
acquired with the most commonly used CARTO and
EnSiteNavX mapping systems. Experimental results showed
the CNN achieved similarly accurate and consistent
predictions when compared to LA geometries segmented
from the MRIs and CTs in the clinical datasets. By
conducting the first study which utilized real patient data
for both training and testing, this study would ideally establish
a solid benchmark in this under-investigated field.

An important component of CNN pipelines for point cloud
analysis involves the pre-processing of the point clouds data
into fixed-sized inputs. Similar to prior studies, we retained
the original dimensionality and important spatial information
of the inputs by directly discretizing the 3D point cloud
into an image volume (Tchapmi et al., 2017). However, the
pre-processing step in our study was significantly enhanced by
the proposed iterative concave-hull algorithm, which
exponentially increased the number of data points with low
computational costs. The increased number of points resulted
in smooth image volumes after discretization. This was an
improvement on past methods which attempted to directly

discretize low-density point clouds to produce sparse images
which were difficult and computationally expensive to analyze
by the CNN. As the pre-processed volumes contained a high
density of information, this also benefited the performance of
the CNN by providing concentrated data with a relatively low
memory cost, leading to more precise predictions with greater
efficiency. A further step for ensuring effective feature
learning on the pre-processed point clouds involved the
utilization of larger convolutional kernels to increase the
receptive field of the CNN. The CNN was also enhanced
with the use of feature forwarding connections, allowing it
to retain and combine features at multiple receptive levels,
maximizing the information extracted from the relatively
sparse input information provided. Due to the high class-
imbalance of the point clouds which often induces CNNs to
produce completely empty predictions, we implemented a
dice loss to prioritize non-background pixels. Residual
blocks and batch normalization were also included to
increase the ease of convergence and decrease the
likelihood that the parameter optimization process does not
stall at an undesirable local minimum during training.

Our study contains several limitations, which can
potentially be addressed in future studies. Experiments on
our CNN showed that although it performed excellently
overall, its accuracy was directly dependent on the coverage
of the point cloud. While most clinical point cloud recordings
nowadays maintain good coverage over the entire LA chamber
as seen in the samples in this study, future methods should
specifically be aimed to address low coverage maps. Such
methods could involve statistical shape models which
artificially enhance the coverage by using aggregated
anatomical features from past data to estimate the location
of potential landmarks. Future research should also
investigate changes to the CNN architecture to improve its
accuracy in general, such as introducing adversarial pathways
or auxiliary outputs which are commonly used for image
reconstruction. The loss function could be improved by
introducing anatomical constraints to ensure the outputs
contain all key anatomical landmarks which would be very
beneficial in clinical applications. Methods for directly
analysing point clouds would also be explored in future
studies including graph convolutional networks which
would save computational time during the data preparation
and remove the need for the points to be converted into image
volumes. Direct learning on the point cloud data may also
decrease potential biases introduced during the current
discretization step, as well as provide more flexibility when
handling different datasets in the future. Such methods may
also be used in conjunction with our current pipeline as an
additional pathway to further strengthen our approach.
Finally, future studies should ideally utilize larger samples
of clinical data through more extensive collaborations with
international clinical centers to further validate the robustness
of the framework. Such clinical trials would ideally involve
both LGE-MRI scanning and anatomical mapping in every
patient, with further processing using EnsiteNavX or CARTO
3 to merge and match the geometries of the atrium in both
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acquisitions. Generative neural networks could also
potentially mitigate these issues by allowing semi-
supervised learning on unlabeled datasets which are more
widely available (Chen et al., 2021) and providing greater
learning capacities when training on limited labelled
data [36].

6 CONCLUSION

In this study, we have developed and evaluated a 3D CNN for
robust automatic LA reconstruction from point clouds recorded
with clinical mapping during ablation. Our algorithm enables the
reconstruction of the LA in 3D with a dice accuracy of 93%, STSD
of approximately 1 pixel, and accurate estimations of clinical
measures. The framework was further tested on two independent
cross-modality clinical datasets, and produced similarly
impressive evaluation results. Our study may lead to the
development of a more accurate and efficient real-time LA
reconstruction approach, which can potentially be used to
improve clinical guidance during ablation procedures for the
treatment of cardiac diseases.
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