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Abstract

Si cycling is linked with processes from global carbon sequestration to community composi-

tion and is especially important in aquatic ecosystems. Lake Michigan has seen dramatic

fluctuations in dissolved silica (dSi) over several decades, which have been examined in the

context of planktonic processes (diatom blooms), but the role of benthic organisms (macro-

algae and their epiphytes) in Si cycling have not been explored. To assess significance of

nearshore benthic algae in Si dynamics, we assembled dSi data from an offshore site sam-

pled since the late 1980’s, and sampled off three Milwaukee beaches during 2005–19.

Using colorimetric assays and alkaline digestion, we measured dSi, biogenic silica in partic-

ulate suspended material (pSi) and biogenic silica in benthic macroalgae (Cladophora) and

epiphytic diatoms (bSi). Offshore, dSi increased about 1 μM per year from 25 μM in the late

1980’s to nearly 40 μM in 2019. Nearshore dSi fluctuated dramatically annually, from near

zero to concentrations similar to offshore. Both Cladophora and its epiphytes contained sig-

nificant bSi, reaching up to 30% of dry mass (300 mg Si g dry mass-1) of the assemblage in

summer. Microscopic analyses including localization with a Si-specific-stain and X-ray

microanalysis showed bSi in epiphytic diatom cells walls, but the nature and localization of

Si in macroalgae remained unclear. A simple model was developed estimating Si demand

of algae using the areal macroalgal biomass, growth rates inferred from P-content, and bSi

content, and comparing Si demand with dSi available in the water column. This indicated

that 7–70% of the dSi in water overlying nearshore benthic algal beds could be removed per

day. Key elements of the Si cycle, including which organisms sequester bSi and how rapidly

Si is recycled, remain unclear. This work has implications for coastal marine waters where

large macroalgal biomass accumulates but bSi content is virtually unknown.
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Introduction

The global Si cycle profoundly affects the earth, from the draw-down of atmospheric CO2 due

to chemical weathering of silicate minerals to driving changes in groups of silica-requiring

organisms such as radiolarians, sponges and diatoms (one of the most productive groups of

phytoplankton) over geological time [1]. In aquatic ecosystems, Si has been strongly linked to

global carbon cycling, limitations of diatom primary production, and the efficiency of trophic

transfer in freshwater lakes, streams and wetlands [2–4]. The short-term biogeochemical

cycling of Si in aquatic ecosystems involves bioavailable dissolved silicate (dSi, usually consid-

ered as Si(OH)4 and SiO(OH)3
-) and Si incorporated into organisms as biogenic silicate (bSi,

hydrated polymeric silica). Modification of the biogeochemical cycle of Si by eutrophication is

now clear in many aquatic ecosystems, but was first noted in the Laurentian Great Lakes [5].

There have been major changes in Si in the Laurentian Great Lakes, driven by anthropo-

genic nutrient inputs, invasive species and climate change [5–7]. Eutrophication from ~1954

to 1977 led to declines in dSi in the Laurentian Great Lakes and a build-up of bSi in sediments

[6]. In the open waters of the lake, invasive Dreissenid mussels have depleted phytoplankton

biomass and changed species composition [8], potentially changing water column dSi. In par-

ticular, declining spring diatom blooms have been associated with rising spring dSi concentra-

tions [9–12]. At the same time, Dreissenid mussels have concentrated limiting phosphorus (P)

in the nearshore benthos, described as a ‘nearshore shunt’ [13]. Mussel grazing removes water

column particles, which both decreases light attenuation, and releases nutrients (especially P),

for benthic filamentous algae (chiefly Cladophora), and dense epiphytic assemblages of silica-

requiring diatoms [14, 15].

While changes to Si cycling in the open waters of the Great Lakes have been relatively well-

appreciated, elements of benthic silica cycling have not been as well examined. Budgets for Si

sources, sinks and regeneration in Lake Michigan are incomplete and based on the open lake

[16] with little consideration for Si recycling in nearshore sediments [17], or the influence of

Dreissenid mussels and benthic algal growth. To address this problem and assess the signifi-

cance of benthic algal assemblages in nearshore silica dynamics, we measured water column

dSi and bSi in algal assemblages at several nearshore sites over a 15-year period, and used a

simple model to explore the potential Si demand of these assemblages in nearshore Lake Mich-

igan. Our results demonstrate dynamic dSi in the nearshore, high bSi in benthic algae and the

potential for benthic algae to have significant local effects on Si cycling in Lake Michigan and,

by extension, other freshwater bodies.

Materials and methods

Field collections

In order to provide a baseline comparison for the nearshore, dSi data for the water column at

the Fox Point station in the open waters of Lake Michigan (43.16 N, 87.67 W, 100 m depth)

was assembled from seasonal data sets in the periods 1988–1991 and 2007–2009, which were

described and published as averages by Engevold et al. [12]. In 2018 and 2019, additional dSi

data was collected from Fox Point on vertical profiles collected from the RV Neeskay, essen-

tially as previously described [12].

Three nearshore sites close to Milwaukee, Wisconsin (Atwater Beach 43.09 N, 87.87 W,

Bradford Beach 43.06 N 87.87 W, and Linwood Beach 43.07 N 87.87 W) were sampled at inter-

vals during February-December over several years between 2005 and 2019. In 2005, 2006, 2008

and 2018 sampling was conducted in the summer-fall period, in 2010 sampling focused on

winter-spring, and in 2009 and 2019 sampling was conducted through all seasons. The sites
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are readily accessible, heavily influenced by riverine inputs, upwelling and nearshore beds of

benthic algae. Samples were collected from surface water at 1 m depth by wading from shore

and water used for dSi (filtrate) and suspended, particulate biogenic silicate (pSi, material cap-

tured on filters). In addition, detached and floating benthic algae at 1 m depth was collected

for determination of biogenic Si (bSi). In 2006, attached benthic algae were sampled from the

substratum by SCUBA diving at 10 m depth off all three beaches, using quadruplicate 20 x 20

cm quadrats. Areal benthic algal biomass (dry mass) was determined after samples were

cleaned of invertebrates, sediment and stones, dried (65˚C for 24 h) and weighed.

Si analyses

Water samples were filtered (25 mm, 0.2 μm polycarbonate, Whatman Nucleopore), the fil-

trate used for dSi measurement [18] and filters with particulate material were stored frozen for

later analysis of bSi. Benthic algal biomass was dried overnight at 65˚C and both algal biomass

and filters used for bSi analysis using high-temperature carbonate digestion (0.5% Na2CO3,

2 h extraction at 85˚C, [19]). Carbonate digestion gave nearly identical results to hydroxide

methods (using a shorter extraction at 100˚C in 0.2 N NaOH, [20]), except that NaOH extracts

of Cladophora samples were highly colored and bSi values more variable (cf. Krausse et al.

[21], who noted the two methods compared favorably for freshwater diatoms). Particulate P

content was measured on ashed algal biomass followed by acid digestion [15].

Imaging of Cladophora-epiphyte assemblages

Cladophora-epiphyte assemblages were examined using light microscopy (Olympus BX-41)

and scanning electron microscopy (SEM) in combination with elemental mapping (Hitachi S-

4800 SEM with Bruker Quantax EDS system). In 2006 samples, Si incorporation into algal

assemblages was examined by incubating algae for 2–4 days at 18 oC, with ~30 μmol photons

m-2 s-1 irradiance and 100 μM of the bSi incorporation label [2-(4-pyridyl)-5{[4-dimethylami-

noethlamino-carbamoyl)-methoxy]phenyl}oxazole] (PDMPO, LysosensorTM Invitrogen,

Carlsbad, CA) and samples examined using epifluorescence microscopy [22].

Modeling

To assess potential significance of benthic algae in nearshore Si cycling, the Si demand repre-

sented by the biomass was estimated with a simple model based on data collected in 2005–6.

First, we estimated benthic algal Si demand. The average Cladophora-epiphyte biomass (g m-2)

and P content (mg P g dry mass-1) were measured from field samples at the three sites as

described above. The in situ growth rate of benthic algal assemblages (d-1) was calculated using

the measured P content of samples using a Droop-type relationship between growth rate and P

content published for Lake Huron Cladophora by Auer and Canale ([23], Fig 7). We used aver-

age bSi contents determined from nearshore sampling to estimate algal Si content, as described

above. Estimates of benthic algal areal coverage (m2) were derived from aerial photographs

(from summer 2005, Source: SSEC RealEarth, UW-Madison, http://re.ssec.wisc.edu/?products=

WICoast.100&center=43.086,-87.864&zoom=13), with nearshore area constrained by the 10 m

depth contour, above which Cladophora growth is most abundant [24, 25]. The daily Si demand

was calculated as the product of the measured average biomass and algal bSi content, the esti-

mated daily growth rate, and areal coverage. Next, we calculated the dSi available in the water

overlying the areas of each of the nearshore regions. The area (m2) was broken into depth con-

tours 0–5 m and 5–10 m, by the mean depth in each area (i.e. 2.5 m or 7.5 m) and this was mul-

tiplied by the average dSi (10 μM) over the summer 2006 period. By dividing the dSi available
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by the daily Si demand, we calculated the potential proportion of dSi that could be used by the

benthic algal assemblages and expressed this as a percentage.

Statistical analyses

Data were analyzed using General Linear Model procedures, typically linear regression and

Analysis of Variance, using logarithmic transformations when necessary to meet assumption

of normality and homoscedasticity ([26], IBM SPSS Statistics version 26.0). Seasonal Mann-

Kendall analyses [27] were used for offshore water-column dSi data, but uneven replication

across season prevented this technique from being used for nearshore data.

Results and discussion

Rising offshore dSi over 20 years

Pelagic dSi in Lake Michigan has dramatically increased over recent decades. At the open

water Lake Michigan station (Fox Point), dSi within the upper 60 m has increased from the

period 1988–91, when typical dSi was on the order of 10 μM and maximum values were 20–

25 μM, to during 2007–9 and 2018–9 when dSi averages close to 30 μM and values up to

40 μm have been recorded (Fig 1, [12]). A Seasonal Mann-Kendall analysis [27] demonstrated

a highly significant increase in dSi over the period (P< 0.001), averaging about 1 μM per year

(Sen’s slope 0.87 μM per year). Eutrophication from ~1954 to 1977 reportedly led to a 33 μM

decline in dSi in the Laurentian Great Lakes and a build-up of sediment bSi [5]. But from a

low of ~ 5 μM in 1988–90, the declining trend was reversed, a change attributed to phosphorus

reduction efforts and invasive Dreissenid mussels which depleted phytoplankton biomass and

changed phytoplankton species composition (especially decreased diatom abundance), result-

ing in declines in water column Si demand [8]. In Lake Michigan, declining spring diatom

blooms have been associated with rising dSi in spring and a loss of seasonal variation in pelagic

dSi. For example, at Fox Point Station Lake Michigan during 1986–1988 there were predictable

seasonal dSi decreases from 20–25 μM in March to close to 0 in surface waters by July, while

dSi remained at about 15 μM below the thermocline [12, 28]. Records from 2000 to 2006 show

that surface dSi concentrations increased to close to those of deep water, and also that the sea-

sonal oscillations in dSi were lost [11].

Fig 1. Dissolved silica concentrations (dSi) at Fox Point, Lake Michigan during the periods 1988–1991, 2007–2009

and 2018–9 through the top 60 m of the 100 m water column. Dots indicate sampling points.

https://doi.org/10.1371/journal.pone.0256838.g001
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The observed changes in dSi are typically attributed to changes in diatom abundance, but

such explanations are not completely satisfactory. Long-term dSi data from Environmental

Protection Agency sampling between 1983 and 2008 do show dSi increases and slower sea-

sonal draw-downs of dSi that can be attributed to reduced diatom blooms [10]. Finer scale

sampling and primary production estimates provide evidence that the key changes in diatoms

have occurred in the spring isothermal mixing period (April-May) when, until the late 1990’s,

a diatom-dominated spring bloom occurred, but has subsequently been less dominant [9].

However, it might be expected that changes in spring diatoms blooms would be reflected in

biomass or diatom species abundances later in the year, however few such differences are

apparent during summer stratified period between the late 1980’s and the late 2000’s (see [12],

S1 Fig). Moreover, declines in diatom blooms do not explain the water-column wide increases

in dSi that have been observed. Missing from more recent analyses of the silica cycle has been

consideration of pelagic or benthic bSi pools. Conley and Scavia [29] showed that at the 100 m

deep Grand Haven Lake Michigan station during the April-May spring diatom bloom, a

major pool (8–11 μM) of bSi developed in the>20 μm size fraction, which corresponded well

with a draw-down in dSi from about 13 to 3 μM. The bloom rapidly died, fragmented and the

bSi returned to dSi almost quantitatively [29].

Increasing dSi in deep water of Lake Michigan suggests additional changes, for example, in

regeneration of bSi from sediments. Schelske et al. [30] noted that dSi remineralization

depends heavily on the flux of material to the benthos and is very sensitive to regional differ-

ences in deposition; silica deposition has not been examined in Lake Michigan in some time

[31] and an understanding of current diatom bloom dynamics at this level in Lake Michigan is

lacking. However, very recent analysis of sediment cores taken at three stations in Lake Michi-

gan found that bSi in cores (as a proportion of dry mass) was similar or increased from 1960 to

2009, while there was shift from larger to smaller-sized diatoms preserved in cores [32].

Increases in sediment bSi are difficult to reconcile with either declines in diatoms blooms or

increased regeneration from sediments, and underline gaps in our understanding of the Lake

Michigan silica cycle. Rising dSi represents a major biogeochemical shift in Lake Michigan,

but such shifts are not unprecedented. Rising nitrate in Lake Superior is also occurring,

hypothesized to be caused by alterations in nitrification [33].

Nearshore Si dynamics

In the western nearshore region of Lake Michigan, there were significant seasonal variations in

Si pools. dSi varied widely, fluctuating between deep-lake values of over 30 μM to less than

1 μM within a space of days, in some years (Fig 2). Nearshore dSi fluctuations were examined

by clustering values into seasons (spring, summer, fall and winter) and analyzing using a

three-way ANOVA with location, year and season as factors. There was a significant interac-

tion between year and season (P < 0.05), thus data were compared by year using Tukey post-

hoc comparisons. No significant differences were found among the three locations (Atwater,

Bradford and Linnwood, P> 0.05), however, while in 2005–2011, dSi in spring and summer

were significantly lower than in fall and winter (P < 0.05), no significant seasonal differences

were detected in 2018 or 2019 (P > 0.05). Particulate biogenic Si suspended in nearshore water

(pSi) examined using a three way ANOVA (location, season, year) showed no significant dif-

ferences (P > 0.05), though highest values tended to occur in fall and winter (Fig 2). The bSi

content in macroalgal biomass collected from the three locations ranged from a few mg Si (g

dry mass)-1 in June when macroalgal biomass is just starting to appear in the water, to over

300 mg Si (g dry mass) -1 (i.e. over 30% of dry mass) in late July—August at Atwater Beach

(Fig 2). Analysis by three-way ANOVA (location, year, season), showed significant
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interactions between location and year, and season and year (P< 0.001 in both cases), requir-

ing separate Tukey post-hoc comparisons by year and location. Cladophora bSi values were

significantly higher in 2005 and 2006 than in other years (P< 0.05). In the years 2005–2011,

bSi values were higher in summer than other seasons (P< 0.05), but not significantly different

among winter, spring and fall, and also significantly higher at the Atwater site versus the Lin-

wood or Bradford Beach sites (P< 0.05). These differences observed in bSi among seasons

and sites in 2005–11, did not hold in 2018 and 2019 (P> 0.05 in both cases). Although we

have no objective measures of changing Cladophora growth or appearance on beaches over the

course of this study, subjectively, beach accumulation was considerably worse in the earlier

years, and this is reflected in declining frequency of Google searches by the public for informa-

tion on “Cladophora” over the period (S2 Fig), suggesting that the algal biomass may have

been more obvious to the public in the earlier period. In contrast, Kuczynski et al. [34], were

able to use closures of a Lake Ontario beach as an index of Cladophora blooms because a

County Health Department had defined “excessive Cladophora on the beach” as a criterion. It

is also worth noting that Lake Michigan water levels have fairly consistently increased over the

same time period (S2 Fig).

Increases in nearshore dSi are most likely driven by upwelling from deep lake waters; the

frequency and magnitude appear to be consistent with patterns of measured and modelled

upwelling [35]. River inputs are an alternative source of dSi, but US Geological Survey records

for the common inflow of the Milwaukee, Menomonee and Kinnickinnic Rivers to Lake Mich-

igan (Station 4087000, waterdata.usgs.gov) show modest average dSi concentrations of 245.1

(± 143.1) μM over the period 1980 to 2009, with no clear evidence of temporal trends, and no

correlation between river discharge volume and dSi measured at nearshore sites. However, we

have not adequately assessed bSi in river inputs because such measurements have rarely been

taken. Riverine bSi is dominantly from terrestrial vegetation, and there is evidence that this

Fig 2. Dissolved silicate, suspended biogenic silica and biogenic silica in Cladophora assemblages in samples

collected at 1 m depth at three Milwaukee-area beaches during 2005–2019.

https://doi.org/10.1371/journal.pone.0256838.g002
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plays a role in global silica cycling equivalent to that of oceanic diatoms [36]; river bSi as a

component of the “terrestrial silica pump” also needs to be considered.

Si in benthic algal biomass

Cladophora typically showed dense epiphyte loads, dominated by diatoms (Fig 3). Species

composition was similar to that described by Young et al. [15]: the most common species were

Cocconeis sp., Gomphonema sp., Tabellaria flocculosa, Rhoicosphenia curvata, and Cymbella sp.

along with Dinobryon sp., with filamentous cyanobacteria (including Fischerella sp. and Pleur-
ocladia lacustris) present (Fig 3A and 3C). Elemental mapping over SEM surfaces showed

highest Si localization within these epiphytic diatoms (Fig 3D), and epifluorescence micros-

copy of samples labelled with PDMPO showed Si incorporation in epiphytic diatoms, but only

red chlorophyll fluorescence in Cladophora filaments (Fig 3B). PDMPO staining mechanism is

not entirely clear but the basis of this oxazole dyes (originally developed for studying intracel-

lular pH) is strongly pH-dependent and depends strongly on surface chemistry and concentra-

tion [37], so labelling of algal bSi maybe challenging in multicellular algae like Cladophora.
Nevertheless, it seems likely that significant bSi in benthic algal assemblages is contributed by

the epiphytic diatoms. However, in 2005, we were able to obtain relatively epiphyte-free

“green” Cladophora. In July samples, Cladophora with typical epiphyte loads averaged

166 ± 68.4 mg Si (g dry mass)-1, while Cladophora with low epiphyte load had just 9.61 ± 1.79

mg Si (g dry mass)-1. Malkin et al. [14] published the only other comparable data set on ben-

thic algal Si from a 2 m deep station in Lake Ontario in 2005 from spring through autumn,

using hot NaOH extraction for bSi. While water column dSi was much lower (2.7–8.3 μM), bSi

for the Cladophora-epiphyte assemblages was similar to the present study: 56–224 mg Si (g dry

mass)-1, they also reported cultured Cladophora (without epiphytes) had only 4 mg Si (g dry

Fig 3. A. Light microscopy image of Cladophora filament with encrusting diatom epiphytes. B. Epifluorescence

microscopy image of PDMPO-labeling of bSi (pale green) accumulation in epiphytic diatoms on surfaces of

Cladophora filaments. C. Scanning electron microscope (SEM) images of Cladophora filaments with typical dense late-

summer diatom epiphyte load. D. SEM elemental mapping of Si (blue dots) on Cladophora and epiphytes—elemental

spot analysis over Cocconeis diatom cells yielded signals for C ~0.6 cps(eV) and Si >7.5 cps(eV) compared to

Cladophora, C ~0.6 cps(eV), Si<0.1 cps(eV). Scale bars are as marked.

https://doi.org/10.1371/journal.pone.0256838.g003
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mass)-1. Combining our summer estimates of bSi in the Cladophora-epiphyte assemblage, our

P content measured in benthic samples in 2006 (see above), and average C and N contents

determined on Cladophora samples collected in 2005–6, we can approximate the molar C:N:P:

Si stoichiometry of the assemblage as 331:21:1:62. Previous Lake Michigan Si budgets have not

included these benthic algal assemblages [38] and they clearly could represent significant local

Si pools, though their impact on the overall lake budget is more limited because of the rela-

tively small area of the nearshore region relative to the open waters of the lake.

Cladophora itself clearly contains some bSi, though its structural or physiological roles are

unclear. Moore and Traquair [39] showed that growth of Cladophora was promoted by Si and

inhibited by the silicate analog GeO2 and they speculated that electron dense areas in Clado-
phora cell walls might be sites of Si deposition. It is not especially surprising that Cladophora
might contain bSi because it in the evolutionary lineage leading to higher plants and many

angiosperms, including freshwater macrophytes, take up dSi [2]; Elodea, Potamogeton and

Myriophylum species use bSi structurally and contain 2–70 mg Si (g dry mass)-1 ([40–42], Jack,

Young and Berges unpublished). Freshwater phytoplankton groups contain bSi including

some chrysophytes and even certain chlorophytes [43], but Si in diverse groups has not been

incorporated into budgets or models; the current Lake Michigan Eutrophication Model

(LM3-Eutro) only associates dSi uptake with planktonic diatoms [44]. Marine cyanobacteria

in the genus Synechococcus from the Eastern equatorial Pacific Ocean accumulated Si and

exhibited Si:P ratios approaching that of diatoms, and in fact the water column inventory of Si

associated with cyanobacteria exceeded that in diatoms [45]. Potential Si pools in freshwater

cyanobacteria, which are increasing in abundance in the Great Lakes [11], is unknown. In

marine macroalgae, Markham and Hagmeier [46] showed negative growth effects of GeO2 in

several species, suggesting requirements for Si uptake, bSi deposition has been associated with

wound healing in Saccharina japonica kelp sporophytes [47], and a red seaweed showed evi-

dence of increased temperature and irradiance stress when Si was less that 50 μM [48]. There

is clearly a need to re-evaluate the pools and role of silica in broader taxonomic groups within

aquatic ecosystems.

Modelling of nearshore Si demand

We used some simple calculations to contextualize nearshore Si cycling by benthic algal bio-

mass. Using data collected in 2005–6, we calculated dSi demand of the Cladophora-epiphyte

assemblages in nearshore waters off the three beach sites, using a combination of aerial photos

(S3 Fig) for areal coverage, in situ sampling for areal biomass, and growth rates derived from

an established relationship with internal P-content [23]. Areal benthic algal bSi were calculated

by multiplying biomass by bSi content to yield 43.7–279 mmol m-2 across the three sites

(Table 1). These values are quite comparable to areal benthic algal bSi in Lake Ontario at a 2 m

Table 1. Modelled effects of the Cladophora-epiphyte assemblages on dSi at three Lake Michigan nearshore sites.

Site μ (d-1) Cover (x 106 m2) Biomass (g m-2) bSi Content (mg g-1) Si demand (tonnes d-1)a Available Si (tonnes)b % Si used (d-1)

Atwater 0.48 3.10 70.3 111.2 11.6 16.4 71.0

Bradford 0.58 3.14 10.8 109.9 2.15 9.45 22.7

Linnwood 0.58 1.75 10.8 113.7 1.26 16.7 7.5

Growth rates (μ) were estimated from Cladophora P-content, cover determined using aerial photographs, biomass from measurements of samples collected in situ, and

bSi content determined in samples collected from the nearshore. The % Si used (d-1) represents the maximum daily Si demand of benthic Cladophora-epiphyte

assemblages relative to that available in the overlying water column.
aBased on modeled growth rate (from P content), biomass and bSi content
bBased on an average dSi of 10 μM and volume of overlying water.

https://doi.org/10.1371/journal.pone.0256838.t001
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deep station: 22.7 mmol m-2 in spring, rising to 490 mmol m-2 at peak Cladophora biomass in

summer [14]. P content of Cladophora-epiphyte assemblages ranged from 0.6 to 3 mg P g dry

mass-1, very comparable to those found in Lake Huron [23], and mean values for samples

from the three nearshore sites resulted in growth rates estimates between 0.4 to 0.6 d-1, based

on Auer and Canale’s [23] data which found nutrient-replete net growth rates of 0.714 d-1.

Determining the overlying water volume from depth intervals, and assuming an average

10 μM dissolved silicate (based on summer 2005–2006 values, Fig 2), we calculated that Si

demand by the benthic Cladophora-epiphyte assemblages could account for 7 to 70% of dSi in

the overlying water each day (Table 1). This substantial proportion of available dSi would eas-

ily explain the observed nearshore fluctuations in dSi (Fig 2) during the growing season. These

calculations represent a theoretical maximum, and Cladophora cannot effectively access the

whole overlying water column to deplete dSi, and Cladophora growth is unlikely to be main-

tained at consistently high rates and in step with epiphyte growth for many weeks. Nonethe-

less, the fluctuations in dSi in nearshore waters are demonstrated over several years of

sampling, and the potential effects of the Cladophora-epiphyte assemblage on Si demand and

cycling are evident.

Importantly, we currently have very little idea where the bSi that is taken up by the Clado-
phora-epiphyte assemblage is stored, how labile it is, or where it goes after the assemblages die

and break down. Because Cladophora coverage and biomass can be extensive in the nearshore

(exceeding 80% of the benthic surface area and reaching up to 260 g dry mass m-2, [49]), the

need to understand links to P cycling and model its growth dynamics have been appreciated

[50]. However, while there is evidence of P-limitation in Cladophora (e.g. the presence of alka-

line phosphatase activity [15], nutrient stoichiometry [25]), benthic algae in Lake Michigan

also shows evidence of secondary limitation by dSi at concentrations below approximately

14 μM; nutrient enrichment with P + N+ Si show greater effects than enrichment without Si

[51]. Furthermore, if we consider the benthic diatoms in the assemblage, there is evidence that

they may be capable of extraordinary dSi uptake and uptake kinetics may not show saturation

at typical lake dSi [52]. The critical importance of attached algae (including diatoms) in lake

and river ecosystems with respect to food web effects has been recognized [53], but the roles of

these groups in biogeochemical nutrient cycling are also significant and need further

consideration.

Critical gaps in understanding

In both the open lake and nearshore, recycling of bSi is a particularly critical component of Si

budgets, yet our understanding is dated and fragmented. In open Lake Michigan waters, 80–

100% of bSi may be recycled annually [5, 54, 55] and just 5% of bSi due to diatom production

was estimated to be buried annually [56]. Schelske [38] completed a mass-balance and found

that Lake Michigan contrasted sharply with Lake Superior in that Si demand by diatoms after

the winter dSi maximum was 71% in Michigan vs. only 8% in Superior, a difference attributed

to the eutrophication and P additions to Michigan. Nearshore Lake Michigan has received less

attention than the open lake, but although we have now demonstrated seasonal depletion of

dSi (Fig 2) we still know little about nearshore bSi recycling. In another deep lake system, Lake

Malawi, riverine inputs were more significant as ~25% of Si input to the epilimnion (mostly as

bSi within phytoliths from maize and grasses), but 75% Si still came from vertical exchange of

Si-rich water from depth, and only 7 to 11% of diatom production becomes permanently bur-

ied [57]. In the shallower Lough Neagh, Northern Ireland, seasonal recycling of Si in the sedi-

ments is the major source of dSi to planktonic diatoms and benthic invertebrates play a major

role in remineralization [58]. Indeed, Quigley and Vanderploeg [59] demonstrated the
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effectiveness of the benthic amphipod Diporeia in digesting diatom frustules, but it is also

worth noting that Diporeia has significantly declined in Lake Michigan following the invasion

by Dressenid mussels [32, 60]. Alternatively, the activity of invertebrates such as amphipods

may also suppress dSi regeneration from sediments by burying bSi deposits [17]. There is little

doubt that the invasion of Dreissenid mussels into Lake Michigan and other lakes has radically

changed food web dynamics, and the cycling of phosphorus [13]. Since the examination of Si

in Lake Michigan in the 1980’s [56], invasion and expansion of mussels and establishment of

benthic algal blooms have quite likely altered Si cycling and pools, and a re-evaluation of these

is needed. There is no doubt that changes in silica recycling can have profound effects on

aquatic ecosystem function. In eutrophic Lake Kasumigaura (Japan), a three-decade-long

increase in dSi, driven by sediment release and resuspension, has resulting in increases in dia-

toms and decreases in cyanobacteria in the phytoplankton [61].

Conclusions

In conclusion, we have shown that benthic macroalgae and their epiphytes constitute a signifi-

cant pool of bSi in nearshore Lake Michigan with potentially significant effects on dSi, but

many key elements of the nearshore silica cycle such as rates of recycling of algal bSi pools

remain poorly understood. Our work also has implications for coastal marine waters where

large biomasses of macroalgae accumulate but bSi pools within this biomass, or contribution

to Si cycling is virtually unknown.

Supporting information

S1 Fig. Comparison of diatom abundances at offshore Lake Michigan sites between the

late 1980’s and 2008. Average counts of diatoms in samples collected June through August at

two Lake Michigan stations at 100 m depth. 1985–8 data from Sandgren and Lehman (Sandg-

ren CD, Lehman JT. Response of chlorophyll a, phytoplankton and microzooplankton to inva-

sion of Lake Michigan by Bythotrephes. Verh. Int. Ver. Theor. Angew. Limnol. 1991; 24:386–

92), 2008 data from Simmons et al. (Simmons LJ, Sandgren CD, Berges JA. Problems and pit-

falls in using HPLC pigment analysis to distinguish Lake Michigan phytoplankton taxa. J.

Great Lakes Res. 2016; 42: 397–404).

(PDF)

S2 Fig. Comparison of popularity of Google searches for “Cladophora” with mean Lake

Michigan water levels. Relative popularity of Google searches for the term “Cladophora” in

Wisconsin, 2004 through 2019 by month, assessed with Google Trends (trends.google.com).

Mean water level in Lake Michigan from US Army Corp of Engineers (www.lre.usace.army.

mil/Missions/Great-Lakes-Information/Great-Lakes-Information-2/Water-Level-Data/).

(PDF)

S3 Fig. Images showing the nearshore regions of three Milwaukee areas beaches examined

in Cladophora modeling. Aerial photographs (Source: SSEC RealEarth, UW-Madison,

re.ssec.wisc.edu/?products=WICoast.100&center=43.086,-87.864&zoom=13) and matching

geo-referenced charts with depth contours (created by the authors in ESRI’s ArcGIS v.10.6; no

copyrighted material was used) for three sites near Milwaukee, Wisconsin. Regions outlined in

red represent the extent of benthic Cladophora distributions selected down to the 10 m depth

contour.

(PDF)
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