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INTRODUCTION
Targeted DNA sequencing of disease-associated genes has long 
been a mainstay of clinical genetic testing to uncover causative 
sequence variants. Implementation of next-generation sequenc-
ing (NGS) platforms in clinical laboratories has expanded the 
genomic footprint of these tests,1 and panels testing tens to thou-
sands of genes simultaneously are now offered by academic2–4 
and commercial centers.5–7 Initially deployed for detection of 
single-nucleotide variants and small insertions or deletions, 
many of these panels target genes for which copy-number varia-
tion is also an important source of pathogenic genome variation.

Our laboratory initially deployed targeted NGS-based tests 
for causative sequence variants underlying multiple cardiomy-
opathies2,3 (Pan Cardiomyopathy v1, 1,016 exons in 46 genes; 
v2, 1,095 exons in 51 genes) and nonsyndromic hearing loss4 
(OtoGenome, v1, 1,236 exons in 71 genes; v2, 1,231 exons in 
70 genes). These panels were originally launched as pooled 
bait sets that included probes targeting genes associated with 
Marfan syndrome (90 exons in 4 genes). However, these are 
diseases to which germ-line copy-number variants (CNVs) are 
also important contributors, and additional gene-specific copy-
number assessments have historically been performed in paral-
lel, resulting in increased cost and overall test complexity.

Several software tools have been developed to infer copy-num-
ber alterations from exome- and genome-scale NGS data.8–13 
These methods often use complex data-normalization methods 
that reduce sensitivity for exon-level copy-number alterations 
and provide highly segmented copy-number regions, resulting 
in high false-positive rates.14 Proof-of-principle studies describ-
ing panel-based inference of CNVs have also been reported,15,16 
but these methods do not offer clear communication of exon-
level data underlying these calls or native support to tune data 
visualization outputs to reflect data thresholds derived empiri-
cally by user-specific clinical validation experiments. Therefore, 
we set out to develop a method to infer constitutional (i.e., 
germ-line) copy-number alterations from targeted, clinical 
NGS data, with particular focus on data visualization and qual-
ity control suitable for deployment in clinical laboratories.

VisCap is a CNV-detection and -visualization tool that com-
pares the relative depth of read coverage across arbitrary sets 
of genome coordinates (e.g., exons) targeted in a set of DNA 
samples using the same laboratory workflow. In addition to 
data normalization and identification of candidate CNVs, 
VisCap provides graphical outputs to enable quality control and 
manual review in the context of exon-level data supporting and 
surrounding each CNV call. Our tool was tailored for use in 
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Purpose: To develop and validate VisCap, a software program 
targeted to clinical laboratories for inference and visualization 
of germ-line copy-number variants (CNVs) from targeted next-
generation sequencing data.

Methods: VisCap calculates the fraction of overall sequence cover-
age assigned to genomic intervals and computes log2 ratios of these 
values to the median of reference samples profiled using the same test 
configuration. Candidate CNVs are called when log2 ratios exceed 
user-defined thresholds.

Results: We optimized VisCap using 14 cases with known CNVs, 
followed by prospective analysis of 1,104 cases referred for diagnostic 
DNA sequencing. To verify calls in the prospective cohort, we used 
droplet digital polymerase chain reaction (PCR) to confirm 10/27 

candidate CNVs and 72/72 copy-neutral genomic regions scored 
by VisCap. We also used a genome-wide bead array to confirm the 
absence of CNV calls across panels applied to 10 cases. To improve 
specificity, we instituted a visual scoring system that enabled experi-
enced reviewers to differentiate true-positive from false-positive calls 
with minimal impact on laboratory workflow.
Conclusions: VisCap is a sensitive method for inferring CNVs from 
targeted sequence data from targeted gene panels. Visual scoring of 
data underlying CNV calls is a critical step to reduce false-positive 
calls for follow-up testing.
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clinical molecular genetic laboratories with a focus on usability, 
clear communication of results in the context of clinically vali-
dated data thresholds, common annotation of CNVs between 
text and graphical outputs, and flexible, panel-specific annota-
tion to enable downstream CNV interpretation.

MATERIALS AND METHODS
Generation of clinical sequencing data
Targeted DNA sequencing data were generated and analyzed 
as previous described.2 Briefly, DNA fragments were sheared 
to ~150–200 bp and barcoded adapters were ligated to facilitate 
multiplexed capture and sequencing. Batches of 7–10 DNA sam-
ples were pooled, and regions of interest were isolated by in-solu-
tion capture using custom RNA baits (Agilent SureSelect). These 
baits correspond to previously described Pan Cardiomyopathy2,3 
and OtoGenome4 panels as well as genes associated with Marfan 
and related syndromes. Captured fragments were purified and 
50-bp paired-end sequencing reads were generated on a single 
lane of a HiSeq 2000 or 2500 instrument. Sequencing reads were 
aligned using bwa version 0.5.8c17 and realigned around inser-
tions and deletions using the Genome Analysis Toolkit18 version 
1.0.4705 (GATK) IndelRealigner. Quality scores were recali-
brated using GATK version 1.0.4705 BaseRecalibrator and the 
total depth of coverage across each genomic interval was calcu-
lated using the GATK version 1.0.4705 DepthOfCoverage tool.

VisCap software code availability, dependencies, and inputs
VisCap is a publicly available (Supplementary File S1 online, 
https://github.com/pughlab/viscap) CNV-detection and -visual-
ization tool written in R (http://www.r-project.org) for analysis 
of targeted NGS data derived from hybrid-capture experiments. 
VisCap version 0.8 and R version 2.15.1 were used for the analy-
ses in this report, as were dependent R libraries “gplots” version 
2.11.0, “zoo” version 1.7–11, and “cluster” version 1.15.2. This pro-
gram can be executed using the Unix command line or through a 
Windows graphical interface dependent on the R “winDialog()” 
command. As input, VisCap reads a directory containing interval 
summary files generated by the GATK DepthOfCoverage tool. 
For each sample, these files contain a summary of the total cov-
erage of each genome region interval listed in a reference interval 
list. For the panels described in this report, each genomic inter-
val corresponded to a single exon, although in practice these 
regions may be of any length and genomic location acceptable by 
the GATK DepthOfCoverage tool. A description of each output 
file is provided in Supplementary Table S1 online.

Normalization and visualization of sequence 
coverage data
The initial step in the VisCap program is to generate a matrix 
of all intervals captured and the fraction of total coverage 
assigned to these intervals. These are derived for each sample 
from DepthOfCoverage “sample_interval_summary” files using 
total coverage values in the column “{sample name}_total_cvg”. 
Next, the sample-specific fractional coverage of each region is 
divided by the median for that region across the entire batch, 

where the number of samples to be batched together can be any 
size that provides a representative median coverage across all 
target regions. In our clinical workflow, a batch refers to a set of 
7–10 DNA samples captured in a single multiplexed pool and 
sequenced in a single flow-cell lane of an Illumina HiSeq 2000 
or 2500 DNA sequencer. These batch median-normalized data 
are stored as a matrix of log2 ratios that is written to a text file. To 
facilitate visual review of the data for each sample, log2 ratios are 
plotted by relative genome order (i.e., rank order, not to scale on 
genome), and data points supporting CNVs are color-coded and 
linked to a unique identifier listed in the text output (Figure 1).

The X-chromosome requires further normalization because 
there are significant fractional coverage differences between 
males and females. Depending on the balance of males and 
females in the batch, males may display single-copy loss of chro-
mosome X or females may display a single-copy gain. These 
patterns are evident from the presence of two clusters of box-
plots depicting fractional coverage values across targets on the 
X-chromosome for each sample (Figure 2). These clusters are 
detected computationally by removing outlier probes and then 
partitioning all samples around two medoids, a more robust 
alternative to K-means clustering.19 To enable consistent visual-
ization of CNVs from male and females in the same batch, the 
log2 ratios for each sample are normalized toward zero through 
subtraction or addition of the cluster median. To facilitate review 
of this procedure, boxplots of log2 ratios are generated before and 
after subtraction/addition of the cluster medians (Figure 2a,b, 
respectively). The program also outputs predicted sex for each 
case as an additional source of quality control (QC) data.

To derive thresholds for detection of copy-number gains and 
losses, boxplots are constructed using the R graphics “box-
plot()” command. This provides a visual representation of the 
distribution of log2 ratios from each sample, as well as the five-
number summary used for subsequent thresholding and qual-
ity control. The five-number summary includes upper whisker, 
Q3, median, Q1, and lower whisker. Upper (lower) whiskers 
are the greatest (lowest) values that fall within Q3 (Q1) plus 
a user-defined multiplier of the interquartile range (Q3–Q1). 
A sample fails quality control if either of the boxplot whiskers 
extends beyond the expected theoretical log2 ratio for a single-
copy gain (0.58) or a single-copy loss (−1). To avoid skewing 
of the batch median used for normalization, failed samples are 
identified in the boxplot summary output and removed, trig-
gering an iterative additional run with the remaining samples 
(Figure 2c). VisCap automatically repeats the analysis until all 
samples pass this automated QC. In our laboratory, an entire 
batch is failed if fewer than three samples pass QC. Files gener-
ated by each iteration are stored in separate output folders.

Calling CNVs
The strategy to detect a gain or a loss is dependent on the distribu-
tion of log2 ratios for each sample as well as a set of user-defined 
thresholds. To be called, a copy-number gain must have log2 ratios 
that exceed (i) the user-defined gain threshold and (ii) the upper 
whisker of the boxplot representing the sample’s data distribution. 
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Figure 1   Example of VisCap chromosome-level outputs. Fractional depth of coverage values for each genomic interval (black dot) sequenced on a targeted 
panel plotted as log2 ratios against the median of a reference set of samples analyzed using the same panel and laboratory workflow. Copy-number variants 
supported by multiple consecutive exons with log2 ratios outside user-defined thresholds (solid black lines at −0.55 and 0.40, in this case) are color-coded: gains are 
red and losses are blue. An orange marker denotes the affected genomic segment with a number corresponding to the CNV identifier listed in the output text file. 
This plot is overlaid with guidelines depicting the two sets of user-defined thresholds used for copy-number variation (dashed = whiskers derived from the boxplot 
denoting the sample’s overall data distribution; solid black = fixed, user-defined thresholds) and the theoretical log2 ratios (solid light gray) for single-copy gains 
and single-copy losses. Labels on the x-axis mark the first interval of each group of exons (commonly a gene name) as specified in the list of intervals provided to 
the program (e.g., TP53_Exon1 and TP53_Exon2 would be marked by a single TP53 label underneath exon 1). Panels a–d contain examples of VisCap output plots 
from four cases selected from Table 1. (a) Whole-genome view depicting log2 ratios from all intervals from a single patient run on a large gene panel. This individual 
had a GJB6 deletion known from previous testing as well as an unexpected gain of chromosome X. The patient was phenotypically female and had median log2 
ratio of X-chromosome probes twice that of other females, suggesting a potentially undiagnosed sex chromosome abnormality. (b) Single-chromosome view of 
data indicating a full gene, single-copy deletion of OTOF in a patient with a loss-of-function mutation on the remaining allele, illustrating compound heterozygosity 
resulting in nonsyndromic hearing loss. (c) Example of a multi-exon copy-number gain within FBN1 leading to Marfan syndrome. (d) Example of two homozygous, 
noncontiguous exon-level deletion calls within TMPRSS3 in a patient with nonsyndromic hearing loss. Family testing found that both of the patient’s parents were 
heterozygous for both deletion calls, suggesting the deletions are on the same allele and may be indicative of a complex rearrangement.
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Copy-number losses must have consecutive probes below the 
loss threshold and the lower boxplot whisker. For our prospective 
study, these fixed thresholds were established based on the retro-
spective training set of 14 positive control samples (see Results, 
Supplementary Figure S1 online), leading to a requirement for 
the minimum log2 ratio for gains of 0.40 and maximum log2 ratio 
for losses of −0.55. The boxplot IQR multiplier was set at 3.

Confirmation of candidate CNVs by genome-wide bead 
array
To estimate our method’s ability to identify both true regions of 
copy-number changes and copy-neutral regions, we analyzed a 
subset of 16 samples from the validation set using the 2.3 mil-
lion–feature Illumina Human Omni2.5–8 BeadChip array at the 
Princess Margaret Genomics Centre, Toronto, Canada (http://
www.pmgenomics.ca). Each sample was processed following 
the Illumina Infinium LCG assay protocol, hybridized to two 

BeadChips, stained as per Illumina protocol, and scanned on 
an Illumina iScan. The data files were quantified and normal-
ized in the GenomeStudio version 2010.2 genotyping module 
using HumanOmni25-8v1-1_C.bpm manifest.

To call CNVs, data were exported from Genome Studio and 
uploaded into Biodiscovery Nexus v7.5 program. The significance 
threshold for segmentation was set at 1 × 10−8 and also required 
a minimum of three probes per segment and a maximum probe 
spacing of 1,000 between adjacent probes before breaking a seg-
ment. The log ratio thresholds for single-copy gain and single-
copy loss were set at 0.13 and −0.23, respectively. Systematic GC 
wave correction was applied using Linear Correction with the 
HumanOmni2-5-8v1-1-C_hg19_illum_correction.txt file.

Confirmation of candidate CNVs by droplet digital PCR
For more in-depth validation of VisCap, a minimum of one 
primer/TaqMan probe (Life Technologies, Carlsbad, CA) 

Figure 2  Normalization of log2 ratios from probes on the X chromosome. Distribution of log2 ratios from probes across all samples in a sequencing batch. 
Upper panels depict log2 ratios from probes on the X chromosome before (panel a) and after (panel b) inference and correction for sex composition within 
the sequencing batch used as a reference set. Lower panels depict log2 ratios from all probes from all samples run on a panel, including a sample that failed 
automated QC (panel c, case H) and was removed for an iterative run. Each boxplot depicts a 5-number summary dependent on the interquartile multiplier (x) 
set in the configuration file: 1) lower whisker is the lowest value to exceed the Q1 - x times the interquartile range; 2) lower hinge is the first quartile value (Q1); 
3) middle line is the median; 4) upper hinge is the third quartile (Q3) value; 5) upper whisker is the lowest value to exceed Q3 + x times the interquartile range.
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combination was designed to verify candidate CNVs called by 
VisCap. These oligonucleotides typically targeted an exon and 
were designed to avoid overlap with single-nucleotide poly-
morphisms and nonunique homologous regions when possible. 
Multiple probes were designed for larger or multigene CNVs. 
Droplet digital polymerase chain reaction (PCR) was performed 
using the Bio-Rad QuantaLife Droplet Digital PCR (ddPCR) 
device comparing the target of interest against a control probe 
targeting RPP30. To control for potential CNV of RPP30, we com-
pared the copy number of RPP30 against a second control, AP3B1. 
As a further control, all ddPCR assays were run simultaneously 
against DNA from the NA12878 cell line (Corriel). Results were 
analyzed using the QuantaSoft program and further normalized 
by dividing copy-number values by a sample-specific “Reference 
Correction Constant,” calculated as two-times the copy-number 
ratio of the AP3B1 and RPP30 reference genes. Samples with an 
RPP30:AP3B1 ratio <0.9 or >1.2 were manually reviewed for 
quality or potential copy-number variation of reference genes. For 
each loci tested, a loss was called if the normalized value was <1.5, 
and a gain was called if the normalized value was >2.5.

RESULTS
Validation of this tool involved retrospective analysis of 14 
cases with known CNVs detected by other clinical tests, as well 

as prospective analysis of 1,104 cases followed by confirmation 
of 27 candidate CNVs using ddPCR.20 The ddPCR-confirmed 
CNVs were used to estimate the positive predictive value of 
variant calls and to assess the added value of visual scoring of 
the graphical VisCap output.

Retrospective analysis of 14 cases with known CNVs
To establish algorithmic thresholds to maximize the sensitivity 
and specificity of the VisCap program, we analyzed targeted DNA 
sequencing data from 10 hearing loss cases, 3 Marfan syndrome 
cases, and 1 hypertrophic cardiomyopathy case, with a total of 15 
pathogenic CNVs known from previous testing (Table 1). This 
analysis uncovered 165 candidate CNVs at exon-level resolution, 
including all 15 pathogenic CNVs and 97 unique CNV calls. Of 
the unique CNVs, 95 were supported by data from only one or 
two exons and were often seen in multiple samples. We attrib-
uted many of these calls to specific baits with inconsistent capture 
performance. This inconsistency is probably due to extreme GC 
content because the small, recurrent CNV calls were enriched for 
exons with GC sequence <35 or >65% compared with the patho-
genic and novel, larger CNVs (P = 0.002).

We reanalyzed all 14 cases after optimizing and implement-
ing log2 ratio thresholds of 0.4 for gains and −0.55 for losses 
(see receiver-operating characteristic curve in Supplementary 

Table 1  CNVs from 14 samples used for retrospective training of thresholds for VisCap algorithm

Case 
ID

Previous testing

Method

VisCap

CNV call, interval range

Intervals 
within 
CNV

Median log2 
ratio (copy 
number)

Additional 
CNV callsb

Result (heterozygous 
unless noted) Panela

1 CDH23 deletion of exons 
13–14

Sanger, no PCR 
products, segregation

Oto Loss, CDH23 exons 
12-14A

3 −0.79 (1.2) 14 > 2

2 MYBPC3 exon 29 indel (c.2995-
58_3151del215insTACCAGGCC)

MLPA PCM Loss, MYBPC3 exons 
28–30

3 −0.59 (1.3) 22 > 9

3 USH2A exon 10 deletion aCGH Oto Loss, USH2A exon 10 1 −1.0 (1.0) 1 >1

4 FBN1 deletion of exons 36–65 MLPA Marfan Loss, FBN1 exons 36–65 30 −0.92 (1.1) 20 > 7

5 FBN1 deletion of exons 6–65 MLPA Marfan Loss, FBN1 exons 6–65 60 −0.92 (1.1) 20 > 10

6 USH2A deletion of exons 
22–32

Microarray Oto Loss, USH2A exons 21–33 13 −0.98 (1.0) 2 > 2

7 POU3F4 hemizygous whole-
gene deletion

Sanger, no PCR 
products

Oto Loss, POU3F4 exon 1 1 −6.9c (0) 17 > 6

8 USH2A homozygous deletion 
of exons 63–64

Sanger, no PCR 
products

Oto Loss, USH2A exons 63–64 2 −6.0c (0) 14 > 4

9 GJB2/GJB6 regulatory region 
deletion

Microarray Oto Loss, CRYL1 exons 2–8 4 −0.98 (1.0) 12 > 6

10 4-kb deletion on 10q22.1 
including >1 exon of CDH23

Microarray Oto Loss, CDH23 exons 
13-14A

2 −1.0 (1.0) 9 > 4

11 GJB6 D13S1830 deletion PCR/Gel Oto Loss, 309kb including 
GJB6 exons 1–3

5 −0.93 (1.0) 9 > 6

12 OTOF whole deletion Sanger, homozygous 
novel LOF variant

Oto Loss, OTOF exon 1-47A 47 −0.91 (1.1) 11>8

13 FBN1 duplication MLPA Marfan Gain, FBN1 exon 53–65 13 0.57 (3.0) 10 > 10

14 TMPRSS3 homozygous 
deletions of exons 2–5 and 13

Resequencing array, no 
PCR products

Oto Loss, TMPRSS3 exons 2–5; 
loss, TMPRSS3 exon 13

4; 1 −4.3c (0.10); 
−4.2c (0.11)

4 > 2

aCGH, array comparative genomic hybridization; CNV, copy- number variant; LOF, loss-of-function; MLPA, multiplex ligation-dependent probe amplification; PCR, 
polymerase chain reaction; Sanger, dideoxynucleotide sequencing of PCR products; resequencing array = OtoChip; segregation, segregation with disease within family.
aOto, OtoGenome; PCM, Pan Cardiomyopathy. bBefore > after optimized thresholds applied. cHomozygous deletion or deletion of an X chromosome gene in a male, 
resulting in large, negative log2 ratios.
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Figure S1 online). These thresholds enabled detection of all 
pathogenic variants in our training set and reduced the num-
ber of CNV calls by more than 50%, from 165 to 77 (5.5 CNVs 
per sample on average; Table 1). Given the high sensitivity for 
pathogenic variants and relatively few additional CNVs for 
follow-up interpretation per sample, we next sought to test this 
configuration in a larger sample set.

Prospective analysis of 1,104 cases and follow-up 
confirmation testing
To validate our VisCap configuration, we prospectively analyzed 
1,104 cases analyzed in 113 batches using Pan Cardiomyopathy or 
OtoGenome panels (Table 2). Of these, 141 cases (12.8%) could 
not be scored; these consisted of 139 cases that were removed 
by the automated VisCap QC procedure (i.e., log2 ratio distri-
butions were too broad to resolve single–copy number changes) 
and two cases that passed QC but were not analyzed due to fail-
ure of all other samples in the batch (minimum of three passing 
samples needed per batch). Across samples that passed QC, the 
median average target coverage was 724×, and 90% of cases had 
median target coverage between 329× and 1,684×.

From the 961 cases that passed QC, we inferred 3,005 can-
didate CNVs: 1,337 gains and 1,668 losses, with an average of 
3.1 CNVs per sample, which is consistent with our training set. 
After removing single-exon CNV calls in exons frequently fail-
ing NGS analysis, 556 gains and 1,072 losses remained. Of these, 
1,249 candidate CNVs corresponded to 105 unique calls seen in 
>1% of our cohort, likely copy-number polymorphisms or sys-
tematic artifacts; these calls were removed from further analysis. 
Consistent with the training cohort, the 105 recurrent calls were 
enriched for exons with GC content <35 or >65% compared with 
the remaining 378 candidate CNVs for follow-up (P  =  10−10). 
The CNVs for follow-up were supported by 1–37 exons and rep-
resented 0.4 CNVs per case. Of note, panels with skewed GC 
content are more likely to benefit from removal of recurrent arti-
facts calls, as illustrated by the decrease in CNV calls on the Pan 

Cardiomyopathy panel (3.5 reduced to 0.4 CNVs/sample) that 
had a median GC content of 45% compared with 52% of the 
OtoGenome panel (0.3 reduced to 0.2 CNVs/sample).

To confirm these candidate CNVs, and to test whether bona 
fide CNVs were missed due to our VisCap thresholds, we reana-
lyzed six samples with CNVs called by VisCap and 10 samples 
with no candidate CNV calls using the 2.3 million–feature 
Illumina Human Omni2.5–8 BeadChip array. We confirmed 
five of six CNVs detected by VisCap and did not identify any 
CNVs within the targeted panel regions of the 10 negative 
samples (Supplementary Table S2 online). The sixth CNV not 
detected by the microarray was confirmed by digital droplet 
PCR, representing a likely false negative from the array platform. 
For further confirmation, we selected 27 of 379 candidate CNVs 
plus 72 negative control regions with log2 ratios between −0.55 
and 0.4 (our thresholds to issue a CNV call). To assess the abil-
ity of VisCap to discriminate potentially ambiguous CNV calls, 
we biased our selection of copy number–neutral regions toward 
those with values away from log2 ratio = 0 (i.e., copy number = 
2) but still below our cutoffs for calling a CNV. No CNVs were 
detected in the 72 negative control regions by ddPCR. Of the 27 
candidate CNVs, 10 were confirmed by ddPCR (Table 3), with 
high concordance between copy number inferred by VisCap 
and absolute copy number detected by ddPCR (P = 0.97).

The 17 calls that were not confirmed by ddPCR were enriched 
for smaller CNVs supported by three exons on average (range, 
1–8 exons). However, we were not able to differentiate false-posi-
tive and true-positive calls based on size alone, because true posi-
tive CNVs were also found in this range. Therefore, we set out 
to assess whether visual scoring of data surrounding candidate 
CNV regions could be used as an effective method to identify 
false-positive calls and avoid unnecessary follow-up testing.

Visual scoring of CNV calls
To determine whether visual scorers could differentiate the 
10 true-positive from 17 false-positive calls, we trained four 

Table 2  Summary of prospective validation cohort
Panels Pan cardiomyopathy OtoGenome Total

Batches 99 14 113

Batches passing QC 98 14 112

Samples 973 131 1,104

Samples passing QC 841 122 963

Samples analyzed 839 122 961

Failure rate 13.6% 6.9% 12.8%

Mean coverage (5/50/95 percentile) 319/724/1,694 422/597/1,538 330/724/1,684

CNV calls 2,963 42 3,005

Gains 1,332 5 1,337

Losses 1,631 37 1,668

CNVs/sample 3.5 0.3 3.1

Filtered CNV callsa 357 22 379

Gains 110 2 112

Losses 247 20 267

CNVs/sample 0.4 0.2 0.4
aRemoved 131 recurrent calls seen in >1% of cases.

CNV, copy- number variant.

Genetics in medicine  |  Volume 18  |  Number 7  |  July 2016



718

PUGH et al  |  VisCap germ lineOriginal Research Article

laboratory technicians to read and interpret VisCap plots (train-
ing material supplied as Supplementary File S2 online), fol-
lowed by testing using a set of practice variants (Supplementary 
File S3 online). The technicians next scored the VisCap plots for 
the 27 candidate CNVs as either true-positive or false-positive 
calls without knowing the outcome of the ddPCR analysis (Table 
3). All four technicians correctly identified all 10 verified CNVs. 
Although two of four technicians correctly categorized all false-
positive calls, the other two technicians flagged 2/17 and 12/17 
false positives for follow-up, highlighting the need for training 
and experienced review of these data. This illustrates the added 
value of human review of these data to reduce the overall false-
positive rate while retaining high sensitivity.

DISCUSSION
We report here an open, flexible software program (and accom-
panying training documents) to detect and visualize germ-line 
CNVs from targeted DNA sequencing data. The software was 

specifically designed for implementation within a clinical labo-
ratory, including laboratory-defined thresholds, static plots 
amenable for routine review, and standardized procedures and 
training documentation. This program has been validated in a 
clinical diagnostic laboratory and has been used for CNV analy-
sis of >4,000 patients in our laboratory to date (1,118 described 
in this report), using multiple gene panel configurations, includ-
ing Pan Cardiomyopathy and OtoGenome panels. Consistent 
with our prospective cohort, we anticipate that this method 
will scale well across a wide range of coverage levels (including 
low-pass sequencing for CNV detection only), as long as refer-
ence samples display limited batch-to-batch technical variabil-
ity across target regions (hence our focus on enabling routine 
manual review of VisCap data). Although NGS data used for 
our study were generated from genomic fragments isolated by 
hybrid capture followed by sequencing on the Illumina HiSeq 
platforms, this method is amenable to alternative target isola-
tion and sequencing platforms that generate depth-of-coverage 

Table 3  Candidate CNVs selected for confirmation by ddPCR and used for visual assessment training

Case ID
CNV 
call Chromosome Start interval nameb

End interval 
nameb

Intervals 
within CNV

VisCap visual reviews 
concordant with ddPCR 

result (four reviewers total)

Confirmed by ddPCR

15 Gain 2 TTN Exon 233 TTN Exon 197 37 4

16 Gain X LAMP2 Exon 01 TAZ Exon 11 18 4

17 Gain 3 RAF1 Exon 17 RAF1 Exon 02 16 4

18 Loss 10 LDB3 Exon 01 LDB3 Exon 16 16 4

19 Gain 12 PKP2 Exon 14 PKP2 Exon 01 14 4

20 Gain 15 FBN1 Exon 65 FBN1 Exon 53 13 4

21 Gain 3 RAF1 Exon 12 RAF1 Exon 02 11 4

22 Loss 11 MYBPC3 Exon 20 MYBPC3 Exon 12 8 4

23a Loss 21 TMPRSS3 Exon 05 TMPRSS3 Exon 02 4 4

24a Loss 21 TMPRSS3 Exon 05 TMPRSS3 Exon 02 4 4

Not confirmed by ddPCR

25 Loss 2 TTN Exon 112 TTN Exon 110 3 4

26 Loss 2 TTN Exon 126 TTN Exon 124 3 4

27 Loss 2 TTN Exon 170 TTN Exon 169 2 4

Loss 12 KRAS Exon 04 KRAS Exon 04 1 4

28 Loss 2 SOS1 Exon 18 SOS1 Exon 18 1 4

Loss 2 TTN Exon 152 TTN Exon 149 4 3

Loss 2 TTN Exon 114 TTN Exon 112 3 3

Loss 2 TTN Exon 170 TTN Exon 169 2 3

Loss 12 KRAS Exon 06 KRAS Exon 04 3 2

29 Loss 2 TTN Exon 152 TTN Exon 145 8 3

Loss 2 TTN Exon 170 TTN Exon 168 3 3

Loss 2 TTN Exon 127 TTN Exon 125 3 3

Loss 2 TTN Exon 114 TTN Exon 112 3 3

Loss 12 KRAS Exon 06 KRAS Exon 04 3 3

Loss 2 SOS1 Exon 06 SOS1 Exon 03 4 2

30 Loss X LAMP2 Exon 01 EMD Exon 03 4 3

31 Loss X LAMP2 Exon 01 EMD Exon 02 3 3
aParents of case 14. b“Start” and “End” refer to relative genome position, whereas the exon numbers in the interval names are ordered by position on the gene transcript. 
Therefore, “start” exon numbers are greater than “end” exon numbers for genes on the minus strand of the genome reference.

CNV, copy-number variant; PCR, polymerase chain reaction.
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data. As a proof of concept, we have previously applied this 
method to PCR amplicon sequencing data generated on the Ion 
Torrent platform (Life Technologies, Carlsbad, CA).21

In its current implementation, VisCap is highly sensitive 
(no known false negatives in our training set, 10 copy-neutral 
samples tested by genome-wide bead array, or 72 copy-neutral 
regions selected from our validation cohort) but has a relatively 
high false-positive rate (only 10/27 candidate CNVs targeted for 
verification were confirmed), a known issue in detecting small 
CNVs from targeted data.14,16 Additional intronic probes may 
aid in identifying small CNVs, albeit potentially at an increased 
cost. We have addressed the issue of a high false-positive rate 
through manual review of all CNV calls with relatively minor 
impact on our overall workflow and test turnaround time (4 
CNVs/case run on a 46-gene panel, <1-min review per CNV). 
This approach will not scale well as gene panels continue to grow, 
and future improvements to the software will attempt to capture 
features that are important for manual review but not yet part of 
the CNV calling algorithm. Beyond confirmation of simple gains 
and losses, the value of manual data review is particularly valu-
able to uncover potential complex structural alterations such as 
STRC deletions in hearing loss.4 Therefore, visual interpretation 
of these data is currently a critical component of our clinical test-
ing workflow. Although much of the informatics analysis is fully 
automated, we have demonstrated value in continued manual 
intervention and effective visualization for quality control and 
scoring of copy-number data generated by VisCap.

SUPPLEMENTARY MATERIAL
Supplementary material is linked to the online version of the paper 
at http://www.nature.com/gim
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