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It is estimated that human body is inhabited by approximately 380 trillions of viruses, which exist in the
form of viral communities and are collectively termed as human virome. How virome is assembled and
what kind of forces maintain the composition and diversity of viral communities is still an open question.
The question is of obvious importance because of its implications to human health and diseases. Here we
address the question by harnessing the power of Hubbell’s unified neutral theory of biodiversity (UNTB)
in terms of three neutral models including standard Hubbell’s neutral model (HNM), Sloan’s near-neutral
model (SNM) and Harris et al. (2017) multi-site neutral model (MSN), further augmented by Ning et al.
(2019) normalized stochasticity ratio (NSR) and Hammal et al. (2015) power analysis for the neutral test
(PNT). With the five models applied to 179 virome samples, we aim to obtain robust findings given both
Type-I and Type-II errors are addressed and possible alternative, non-neutral processes are detected. It
was found that stochastic neutral drifts seem prevalent: approximately 65–92% at metacommunity/land-
scape scales and 67–80% at virus species scale. The non-neutral selection is approximately 26–28% at
community scale and 23% at species scale. The false negative rate is about 2–3%, which suggested rather
limited confounding effects of non-neutral process on neutrality tests. We postulate that prevalence of
neutrality in human virome is likely due to extremely simple structure of viruses (stands of DNA/RNA)
and their inter-species homogeneities, forming the foundation of species equivalence—the hallmark of
neutral theory.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Our body does not consist of our own cells alone; instead, it is
cohabited by trillions of microorganisms, collectively termed as
human microbiome. For this reason, some scientists consider our
body as the holobiont, consisting of the host cells and all of its sym-
biotic microbes [1,2]. It is estimated that the human body is inhab-
ited by at least 38 trillion bacteria, which is about 10 times of the
cell number of our body. However, the award for the most abun-
dant microbes in the human microbiome cannot be awarded to
bacteria, and instead the award goes to viruses which are esti-
mated to exceed 380 trillions that are collectively termed as the
human virome [3,4]. Human virome is made of bacteriophages that
predate bacteria and archaea, human-cell virus causing transient
infections, endogenous retroviruses, as well as viruses leading to
persistent and latent infections [5]. First principles of Darwin’s
evolutionary theory tells us that the microbiome should have coe-
volved with us since the early days of humans. Recent studies have
suggested that the hologenome, a collective genome carried by the
holobiont, may be inherited between generations with reasonable
fidelity. The first principles would also predict that the variations
in hologenome are subject to selection and drift effects evolutionar-
ily. Similar studies with the bacterial part of human microbiomes
have suggested that both selection and drift, as well as dispersal
and speciation are the four processes or mechanisms that underlie
the assembly and diversity maintenance of bacterial communities
(e.g., [6–12]). However, the question has not been addressed, to the
best of our knowledge, regarding the human virome.

Human virome exists in the forms of ecological communities
or assemblages of viruses [3,4]. How ecological community is
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assembled (formed) and how its diversity is maintained after for-
mation is a central topic of community ecology. In fact, Darwin
wrote, in the concluding paragraph of On the Origin of Species,
‘‘It is interesting to contemplate an entangled bank, clothed with
many plants of many kinds, with birds singing on the bushes,
with various insects flitting about, and with worms crawling
through the damp earth.” It is true that Darwin was stressing that
the endless, most beautiful and wonderful forms of lives (which
are essentially the ecological communities) have all evolved
through the process of natural selection [13]. Nevertheless, the
evolutionary theory through natural selection could not interpret
how the entangled bank is formed especially on the ecological
time scale. For example, Darwin’s evolutionary theory maintained
that the universal struggle for life as a consequence to natural
selection, then how could diverse lives (species) in entangled
bank coexist. Two diametrically opposed theories explaining com-
munity assembly exist in modern community ecology to explain
the mechanism of community assembly. One is classic niche the-
ory first proposed nearly a century ago (e.g., [14]). Niche can be
roughly defined as the sum of the habitat requirements and
behaviors that allow a species to persist and produce offspring,
and natural habitats can be considered as mosaics of niches suit-
able for different species to live and prosper. Niche theory main-
tains that different species occupy differentiated niches in
ecological community; therefore community assembly is a deter-
ministic process. In other words, deterministic selection forces
drive the assembly of community and maintain the coexistence
of many species rather than monopolized by a single species
(i.e., diversity maintenance).

That each species lives and prospers in its own niches also
implies that niche differences influence the species abundances.
In late 1990s, Stephen Hubbell challenged the niche view and he
assumed that the differences among members of an ecological
community of tropically similar species (e.g., the viral species in
our gut) are neutral in the sense that the differences do not matter
for their success. This assumption implies that niche differences do
not influence species abundances and the abundance of each spe-
cies follows a random walk—that is primarily determined by
stochastic drifts of birth, death and dispersal. In other words, spe-
cies are born unequal in abundances not because of their niche dif-
ferences, instead, because of the randomness (stochastic drifts) in
their birth/death/dispersal probabilities.

Like many scientific theories, diametrically opposed theories
are rarely totally correct and a middle ground is frequently possi-
ble. In fact, several hybrid models of niche and neutral theories
have been proposed (e.g., [9,10,15–25]. Therefore, ideally, studies
with objectives like ours of this study should resort to niche-
neutral hybrid models. However, testing niche theory with statisti-
cal rigor is already rather difficult, and so does the testing of hybrid
models, primarily because the data requirements for testing niche
or niche-neutral hybrid are far more demanding and especially
hard to meet in the case of human microbiomes because manipu-
lative experiments are often not allowed due to ethic constraints.
Actually, even testing the neutral theory, which is much less
demanding for data requirements than testing the niche or
niche-neutral hybrid models, is rather challenging. This is the very
reason we adopt five neutral models/approaches in this study to
comprehensively cross-verify the findings regarding the test of
neutral theory, as introduced in the section of Material and
Methods.

The single objective of this study is to test the fitness of neu-
tral theory, with statistical rigor, to the human virome by reana-
lyzing four independent datasets of human virome. The
significance of the neutral-theoretic tests of the human virome
answers the following fundamental question: how is the human
virome assembled and how its diversity is maintained after
2030
assembling? If neutrality is prevalent in the human virome, then
stochastic neutral drifts in demography (birth/death) and disper-
sal (migration) are primarily responsible for the patterns of
observed community structures and dynamics. This is equiva-
lently to say that deterministic selection forces play relatively
small role in shaping the virome diversity patterns or driving vir-
ome dynamics. Practically, the structure and dynamics of human
virome have far reaching implications to our health and diseases.
For example, certain states of virome dynamics or certain pat-
terns of viral communities might be associated with healthy
hosts, and alternative states/patterns might be associated with
disease. To the best of our knowledge, this study should be the
first comprehensive tests of five neutral-theoretic models, includ-
ing standard Hubbell’s neutral model (HNM), Sloan’s near-neutral
model (SNM) and Harris et al. [26] multi-site neutral model
(MSN), further augmented by Ning et al. [27] normalized stochas-
ticity framework and Hammal et al. [28] power analysis for the
neutral test (PNT), in virome ecology. The multi-model approach
allows us to not only determine the relative importance of
stochastic neutrality (drifts) vs. deterministic selection in shap-
ing/driving viral community patterns/dynamics, but also evaluate
the level of type-I and type-II errors.
2. Material and Methods

2.1. Virome datasets and bioinformatics analysis for viral OTU tables

Four published datasets of human viromes were reanalyzed in
this study, with a total of 179 samples (Table S1). There were
287 samples in the four original studies and we excluded 108 dis-
eased samples and only preserved 179 healthy samples in the pre-
sent study. Since it was difficult to collect multiple datasets with
the same or even very similar meta (environmental) factors, we
decided simply to ignore the difference in meta factors such as host
age, sex, etc. Instead, we only required that the datasets were col-
lected for sequencing the reads of human viromes. In other words,
we did not care the ‘‘heterogeneity” or lack of homogeneity among
the treatments of the four datasets. Nevertheless, starting from the
virome reads, we kept the exactly same computational procedures
and quality control measures to get the viral OTU (operational tax-
onomic unit) tables. Since all of the analyses used in this study
adopt treatment or group as the basic unit, i.e., each treatment is
tested for the neutrality or non-neutrality independently, the
potential inter-treatment (group) heterogeneity does not matter
for drawing conclusions.

We adopted VirusSeeker, a BLAST-based NGS data analysis soft-
ware pipeline [29], to reanalyze all of the virome reads with the
same configurations and to ensure consistent computational pro-
cedures were applied to obtain the viral OTU tables. Fig. 1 illus-
trated the flowchart of VirusSeeker, as well as the follow-up
procedures for performing the power law analysis with the viral
OTU tables generated from the VirusSeeker pipeline. An advantage
with the VirusSeeker pipeline is that it handles both eukaryotic
virus and virome composition equally well, while many other
pipelines usually focus on one or the other. This advantage is rather
helpful for us to obtain consistent OTU tables across the four
datasets.

For Hubbell’s neutral model (HNM), each sample within each
treatment is tested for neutrality.

All samples from a treatment are treated as a metacommunity
and are fitted to a MSN model.

Pair-wise source–destination model for each pair of treatments
is used to build a Sloan near-neutral model (SNM). For the time-
series samples, only the early-late pair is allowed for building Sloan
model (dataset #2).



Fig. 1. A diagram illustrating the computational pipelines and procedures for testing the neutrality of virome diversity: the left side illustrated the bioinformatics pipelines
for obtaining the viral OTU table (top right); the bottom right block illustrated the five models used to test and confirm the neutrality of virome diversity. In the bioinformatics
pipeline (left), sequences were clustered using CD-HIT with �98% identity, and we utilized BAW-MEM (v0.7.11, k = 15, L = 100,100) for mapping sequences against reference
genomes.
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3. Methods

3.1. Hubbell’s UNTB (unified neutral theory for biodiversity and
biogeography) and Hubbell’s standard neutral model (HNM)

With the UNTB, conceptually, local communities are connected
through migration to form metacommunity. It is assumed that
similar neutral processes drive both the dynamics of local and
metacommunities, except that in metacommunity speciation,
rather than migration, is in operations [30,31]. The neutral process
or ecological equivalence between species implies that the demo-
graphic rates (birth/death) of all species are stochastic but equiva-
lent on per capita basis [26]. There are three key parameters
(elements) with the UNTB, the immigration probability (m), which
controls the coupling of a local community to the metacommunity,
namely the fundamental dispersal number. The second is the speci-
ation rate, also known as the fundamental biodiversity number (h),
which can be interpreted as the rate at which new individuals
are added to the metacommunity through speciation. The third
aspect of the UNTB is to assume that the SAD (species abundance
distribution) of each community sample (Xi) can be described by
the multinomial (MN) distribution, i.e.,:

Xi

�
M~NðNi; p

�
iÞ ð1Þ

where Ni is the size of i-th local community, p
�
i is a vector of the

probability of observing a particularly species at i-th local commu-

nity [26], Xi

�
represent vector of local community sample (Xi).

With Hubbell’s UNTB or standard neutral model (HNM), Eti-
enne’s [32,33] exact neutrality test can be used to test the neutral-
ity of community samples, a pseudo P-value is obtained to
determine the difference between observed (actual) and simulated
likelihoods based on the HNM. When the P-value >0.05, it means
that both the actual likelihood and predicted likelihoods by the
2031
HNM are not distinguishable and the neutrality hypothesis (H0)
cannot be rejected.
3.2. Harris et al. [26] Multi-Site neutral model (MSN)

With the previous HNM, the migration probability for each
community sample is estimated independently. The advantage of
this approach is its simplicity, but local communities are linked
via migration and the migration probabilities can be different from
community to community. That is, simultaneously estimating the
migration rates (Ii) for all local communities should be more real-
istic in emulating neutral theory model. In general, fitting multiple
sites (local communities) UNTB with possibly different immigra-
tion rates is computationally intractable when the number of sites
increases to certain level, and the computation must be approxi-
mated [26]. Harris et al. [26] approximated the neutral models
with the hierarchical Dirichlet process (HDP) and developed an
efficient Bayesian fitting framework to fit the multi-site neutral
model (MSN), which is essentially a version of Hubbell’s UNTB
allowing for potentially different migration probability (mi). Harris
et al. [26] approximation encapsulated the three essential ele-
ments of Hubbell’s [30] UNTB, as mentioned previously, offering
an efficient Bayesian fitting strategy for the MSN.

At the local community scale, assuming there is a potentially
infinite number of species that may exist in the local community,
then the stationary distribution of observing local population i is
a Dirichlet process (DP), i.e.,

pi
� ���Ii;b�D~PðIi;b�Þ ð2Þ

Where b
�
¼ ðb1; :::;bSÞ is the relative frequency of each species in the

metacommunity, and Ii is the immigration rate.
Ii ¼ ðmi=ð1�miÞðNi � 1Þ, where mi is the immigration probability
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(the same as the previous HNM) to local community i, and Ni is the
local community size.

At the metacommunity level, a Dirichlet process was still used
by Harris et al. [26], the metacommunity distribution is modeled
as a purely stick-breaking process, i.e.,

b
�
S~tickðhÞ ð3Þ

where h is the fundamental biodiversity number.
When both local community and metacommunity are approxi-

mated with Dirichlet processes, the problem becomes a hierarchi-
cal Dirichlet process (HDP) [26,34]. Alternatively, Dirichlet process
(DP) can also be derived from the so-called Chinese restaurant pro-
cess, from which the Antoniak equation is derived.

The Antoniak equation represents the number of species (S)
observed following N times of sampling from a Dirichlet process
with biodiversity number h:

PðS h;Nj Þ ¼ sðN; SÞhS CðhÞ
Cðhþ NÞ ð4Þ

in which s(N, S) is the unsigned Stirling number and C(.) denotes
the gamma function [54].

Coupling equations (1–4) forms the full HDP-MSN, and Harris
et al. [26] developed an efficient Gibbs sampler, which is a type
of Bayesian Markov Chain Monte Carlo (MCMC) algorithm, for
implementing the HDP-MSN approximation. The Gibbs sample is
then used to simulate neutral local- and meta-communities. Harris
et al. [26] adopted a set of procedures similar to Etienne’s [32,33]
exact neutrality test, and developed the procedures to test the neu-
trality based on the MSN model on both local- and meta-
community level, respectively. To test the neutrality at the meta-
community level, PM, which is ‘‘the proportion of the simulated
neutral samples with their likelihoods not exceeding (�) the
observed data likelihood” [26]. If PM > 0.05, the metacommunity
appears to satisfy the MSN model, according to Harris et al. [26].
Similarly, there is PL, which is the proportion of the simulated
locally neutral samples not exceeding (�) the observed data likeli-
hood [26]. If PL > 0.05, the local community appears to satisfy the
neutral model.

3.3. Sloan et al. [35,36] near-neutral model (SNM)

Sloan et al. [35,36] derived a near neutral model to explain the
assemblymechanisms of prokaryotic communities. Themodel con-
tains source and local communities, similar to ‘‘mainland” and ‘‘is-
land” in the theory of island biogeography. A significant difference
between Sloan near-neutral model (SNM) and Hubbell’s standard
neutral model (HNM) is that the former does not enforce strict neu-
tral equivalence: a species may possess competitive advantage
(positively selected) or disadvantage (negatively selected). As a
continuous version of Hubbell’s discrete neutral community model,
Sloan’s model does not require observed species abundance distri-
butions and can test exceptionally large prokaryotic communities.
The following equations are introduced to outline the near-
neutral process captured by Sloan near neutral model.

Let us assume that the local community is saturated with NT

individuals. The renewal of individuals within the local commodity
is as follows. One individual dies or leaves the local community and
is replaced by another individual immigrating from a source com-
munity with probability m or by offspring of a random individual
within the local community with probability (1-m). Then, the prob-
ability that the abundance of the i-th OTU increases by one individ-
ual, decreases by one individual, or unchanged can be given by:
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PrðNi þ 1=NiÞ ¼ 1� Ni

NT

� �
mpi þ ð1�mÞ Ni

NT � 1

� �� �
ð5Þ

PrðNi � 1=NiÞ ¼ Ni

NT
mð1� piÞ þ ð1�mÞ NT � Ni

NT � 1

� �� �
ð6Þ

PrðNi=NiÞ ¼ Ni

NT
mpi þ ð1�mÞ Ni � 1

NT � 1

� �� �

þ NT � Ni

NT

� �
mð1� piÞ þ ð1�mÞ NT � Ni � 1

NT � 1

� �� �

ð7Þ
in which pi is the occurrence frequency of the i-th OTU in the source
community and Ni is the abundance of i-th OTU in the local commu-
nity. Let xi = Ni/NT is the occurrence frequency of the i-th OTU in the
local community. From Sloan’s model, one can determine whether
each species is neutral or not [35–37]. That is, to determine whether
the observed xi of species (OTU) i fall within its 95% theoretical
interval predicted from the neutral community model. If xi falls
within the predicted interval, the species is judged to be neutral.
If xi exceeded the predicted upper interval, the species is judged
to be above neutral (positively selected) and the species is consid-
ered to possess a competitive advantage. Vice versa, if xi is below
the predicted lower interval, the process is judged to be below neu-
tral or negatively selected, and the species is considered to possess a
competitive disadvantage.

3.4. Ning et al. [27] normalized stochasticity ratio (NSR)

There was concern that the UNTB might over-estimate the true
strength of neutral processes, and Ning et al. [27] developed the so-
termed normalized stochasticity ratio (NSR) framework as an alter-
native approach to gauging the ‘‘upper bounds” of the stochasticity
level. The principal foundation of Ning et al. [27] mathematical
framework is that deterministic processes should drive ecological
communities more similar or dissimilar than null expectation of
neutrality. Ning et al. [27] formulated a sophisticated procedure
to implement a null model for quantifying stochasticity. A key met-
ric in their framework was the adoption of Ružička similarity met-
rics, a species-abundance based similarly that generalized Jaccard
binary similarity coefficient [55]. Let Cij represent the observed
similarity between the i-th and j-th community,

Cij ¼
P

Sminðpi
k; p

j
kÞP

Smaxðpi
k; p

j
kÞ

ð8Þ

where S is the number of species, pi
k and pj

k are the relative abun-
dance of k-th species in the i-th and j-th community.

Assume there exist m local communities in a metacommu-
nity, Cij be the observed similarity between the i-th local com-
munity and the j-th local community in the metacommunity.
Let Eij be the null expected similarity between the i-th commu-
nity and the j-th community in one simulated metacommunity.

Let Eij

�
be the average of the null expected similarity between

the i-th and the j-th communities in 1000 simulated metacom-
munities. Two possibilities exist in the evaluation of the commu-
nity stochasticity. One is that deterministic processes drive

communities more similar, in which Cij > Eij

�
, and the stochastic-

ity ratio (type A SR) is.

SRA
ij ¼

Eij

�

Cij
ð9Þ
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Another possibility is that deterministic processes drive communi-

ties less similar, in which Cij < Eij

�
, and the stochasticity ratio (type B

SR) is.

SRB
ij ¼

1� Eij

�

1� Cij
ð10Þ

The stochasticity ratio in the whole metacommunity is then,

SR ¼
PnA

ij SR
A
ij þ

PnB

ij SR
B
ij

nA þ nB
ð11Þ

in which nA represents for the number of the pair-wise similarities
that are larger than null expectation, and nB represents for the num-
ber of the pair-wise similarities that are less than null expectation.
SR measures the strength of stochasticity in the community assem-
bly, and it takes the values from 0 to 100%. If the community assem-
bly is extremely deterministic without any stochasticity, then SR
would be 0%; otherwise SR would be 100%. Ning et al. [27] sug-
gested that when expected stochasticity is very low, SRmay overes-
timate stochasticity. To remedy this issue, SR should be normalized,
and the normalized stochasticity ratio (NSR) exhibits higher preci-
sion than the ST and its exact definition and computational proce-
dure are referred to Ning et al. [27]. We adopt the NSR in this study.

3.5. Checking Type-I and Type-II errors in neutrality tests and power
analysis

3.5.1. Type-I error, FDR (false discovery rate) control and P-threshold
in neutrality tests

The previous neutrality test procedures used a significance level
a = 0.05 that may lead to Type-I error, namely, incorrectly reject
the true neutrality null hypothesis with a 5% probability (i.e.,
obtaining a false positive with a small probability event). When
many tests are performed simultaneously in the so-termed multi-
ple testing problem, the chance for committing Type-I error can be
raised inadvertently. The false discovery rate (FDR) control is fre-
quently used to adjust the potential bias. However, the slightly
‘‘unorthodox” convention used for testing the neutral theory made
FDR adjustment inapplicable. In terms of the convention used to
test neutral theory, the null hypothesis (H0) is constructed in the
following manner: No significant difference exists between the
actual likelihood and the theoretical likelihood predicted by the
neutral theory, and whether or not an associated pseudo P-value
computed for the likelihood difference exceeding the P-threshold
value set for testing the null hypothesis. When a pseudo P-
value > P-threshold, then the community tested is judged to satisfy
the neutral model, that is, there is not significant different between
the observed and neutral likelihoods. To the best of knowledge,
this has been a de facto standard practice in virtually all tests of
the neutral theory. A somewhat unexpected consequence for this
standard practice is that the FDR control for correcting Type-I error
is not applicable for neutrality tests. This is because FDR control
can only raise the P-value for each test, and then can lead to higher
‘‘passing rates” (strictly speaking, ‘‘failure rates” to reject neutral-
ity) of neutrality when the convention used in neutrality tests is
adopted [11]. In other words, application of FDR may actually relax
the criterion for passing neutrality tests and make the inference
less strict (conservative), an obviously undesirable consequence
in testing neutral theory. We believe this somewhat unorthodox
convention used to test neutral theory in the existing literature,
which makes FDR control impossible, is an issue that should be
fixed, but rarely raised in our observation. In our opinion, it
appears that there is not an easy fix to the issue unless the tradi-
tional convention is changed, but a direct change of the convention
may create a dilemma in reviewing the existing literature of neu-
2033
trality tests. Instead, a simple fix for dealing with the dilemma in
neutrality tests can be to adopt various P-threshold values, as
detailed in Ma [11,12]. When the P-threshold is raised gradually,
the bar to accept neutrality tests is raised accordingly. This fix
equivalently lowers the risk of committing Type-I error without
resorting to FDR.

3.5.2. Type-II error and Hammal [28] framework for detecting
alternative non-neutral processes

Like any statistical hypothesis tests, testing the neutral theory
model also involves Type-II error—incorrectly not rejecting a false
null hypothesis (i.e., obtaining a false negative finding). In testing
neutral theory, Type-II corresponds to a popular criticism, that
apparent satisfaction to the neutral theory patterns may not be
attributed to true neutral processes; instead, non-neutral processes
may be responsible for the similar or same patterns indistinguish-
able statistically from what are predicted by neutral theory model.
If this objection to neutral theory is completely true, then neutral
theory and, to a larger extent, the SAD datasets, are of little or no
value in detecting the underlying mechanisms (processes) of com-
munity structures (i.e., community assembly and diversity mainte-
nance). The fact of the matter seems to be, while the criticism
certainly has certain merits, it cannot be true totally. One success-
ful effort to deal with the well-known criticism is Hammal et al.
[28], which purely depended on simulation efforts without resort-
ing to wet-lab experiments that often depends on artificially con-
trolled experiments. While the controlled wet-lab experiments
can be rather involving, the simulation-based Hammal approach
can be rather computationally intensive. Hammal et al. [28] devel-
oped a framework to determine when SAD datasets and what neu-
tral models can indeed detect non-neutrality. They formulated the
problem as a power analysis for the neutrality test (abbreviated as
PNT in this article) for controlling Type-II error, and their approach
is of obviously critical importance for neutral-theoretic studies like
this one.

The power of a statistical test can be defined as the probability
that an in-fact false null hypothesis (the alternative hypothesis is
true) is correctly rejected. It is the capacity (power) to avoid
type-II error, i.e., (1 � b), where b is Type-II error rate. Generally,
three factors determine the power of a test: (i) the sample size;
(ii) statistical significance level as measured by the threshold P-
value of hypothesis testing (therefore, influenced by Type-I error;
iii) the effect size that is quantified by the deviation from the null
hypothesis. In Hammal et al. [28] framework, the effect size is con-
trolled by the parameter value of the non-neutral models that they
developed to simulate possible non-neutral processes in the SAD
data to be analyzed. They introduced three non-neutral local com-
munity models and two non-neutral metacommunity models, all
of which are stochastic and similar to Hubbell’s [30] standard neu-
tral model (SNM) but driven by explicit non-neutral forces such as
competitions and unequal species fitness. Hammal et al. [28]
showed that the presence of non-neutral processes in SADs, which
also satisfy the SNM, is detectable as long as sample size is suffi-
ciently large and/or the effect size (amplitude of non-neutral pro-
cess effect) is sufficiently strong. They concluded that, although
the PNT can indeed be rather complex, computationally expensive
particularly, resolving the issues related to Type-II error in analyz-
ing SAD patterns with neutral theory models is possible. In prac-
tice, their work demonstrated that it is possible to offer
convincing evidence to either support or rejected the findings from
a neutral theory model, as long as sample size and/or effect size are
appropriate. In the present study, we adapt their framework to
check the validity of our findings from neutrality tests.

Since the power of a statistical test is dependent on which alter-
native hypothesis is assumed, Hammal et al. [28] framework
strategically chose to demonstrate two classes of non-neutral pro-
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cesses: interspecific competition and intrinsic (density-independent)
fitness differences between species. The former promotes species
co-existence and the latter signals the niche differentiations. Both
represent opposite ends of a spectrum of possible non-neutral pro-
cesses, which could potentially be of infinite varieties. On the one
end, the symmetric inter-specific competition is likely to generate
equal abundances among species (hardly discernible from neu-
trally generated equal abundances); on the other end, the intrinsic
fitness differences tend to generate heterogeneous species
abundances.

Tactically, Hammal et al. [28] introduced two local-community,
non-neutral, competition models: (i) the HL model, which is
named after the authors of Haegemann & Loreau [38] that pro-
posed a multi-species stochastic Lotka-Volterra model; (ii) the PC
model, a density-dependent dynamics model similar to one stud-
ied by Pigolotti & Cencini [25]. They also introduced a third
local-community non-neutral model: the intrinsic fitness (IF)
model that assumes the fecundity of each species is a random vari-
able following a Gamma distribution. Furthermore, they intro-
duced two non-neutral metacommunity models, LOGS model
described by a log-series distribution and EVEN model in which
all species have equal abundances. Mathematical details of these
three non-neutral local and two metacommunity models are
referred to Hammal et al. [28].

When coupled with non-neutral LOGS metacommunity model,
each of the three local-community non-neutral models should be
equivalent to the standard HNM model when the local dynamics
are actually neutral (the model control parameter is set to zero).
When the dynamics becomes more non-neutral (by raising the
control parameter), the deviations from the HNM (the effect size)
become stronger, and then it is expected that the power of the test
for the neutral null hypothesis to be lifted.

Hammal et al. [28] defined the power of the test as the propor-
tion of non-neutral datasets (generated by one of the non-neutral
local community models: HL, PC or IF) for which the test of non-
neutral effect was significant. That is, the neutral null hypothesis
is rejected and the alternative non-neutral process simulated by
HL, PC or IF model is accepted. The small power value indicates
that there is no no-neutral process or that the non-neutral process
is not sufficiently strong in the metacommunity. Alternatively, the
large power value indicates that there is sufficiently strong non-
neutral process in the community. Finally, we compare the power
test finding (PNT tests) with the finding from standard neutrality
tests. If both findings are consistent, we conclude that the neutral-
ity testing results are reasonably reliable, and the risk of incurring
Type-II error is tolerable. If both findings are not consistent, we
conclude that the neutrality testing results should be questioned
and the risking of incurring Type-II error (obtaining false nega-
tives) is high [11,28].
4. Results

4.1. Hubbell’s [30] neutral model (HNM)

Hubbell’s [30] neutral model (HNM) is the first unified neutral
theory model (UNTB) for biodiversity, although similar neutral the-
ory models were already influential in molecular biology in the
form of neutral theory for molecular evolution, and primitive eco-
logical neutral model existed before Hubbell’s comprehensive
UNTB was developed.

The HNM neutrality test results (Table 1, summarized from
Table S2 in the online supplementary information or OSI) show
that the passing rates of the human virome ranged between
55.6% and 100% with an average of 88%. The 3 treatments of data-
set #3 had the lowest passing rates (55.6–84.6%), which may be to
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do with the sampling locations (blood and lung). All other samples
except for the dataset #3 were obtained from gut and therefore the
gut virome appears to have higher neutrality than the lung.

4.2. Ning et al. [27] normalized stochasticity ratio (NSR)

The average normalized stochasticity ratio (NSR) across the 14
treatments of the 4 datasets was 0.65 (Table 2, Fig. 2), which sug-
gests that stochastic neutrality level should be approximately 65%
on average. This confirms the finding from previous HNM tests.

4.3. Sloan’s [36] neutral model (SNM)

The results from fitting Sloan neutral model to the human vir-
ome datasets suggest that the abundances of approximately 67%
species are consistent with the prediction of the neutral model
(Table 3, Fig. 3). The average immigration rate (probability) (m)
or fundamental dispersal number ranged from 0.336. The percent-
age of species whose abundances are higher than predicted by
Sloan model is approximately 22%, which is termed as positively
selected species. The percentage of species whose abundances
are lower than predicted by Sloan model is approximately 10%,
which is termed as positively selected species. Therefore, we con-
clude that at species level, stochastic neutral forces (neutral drifts
in demography and dispersal) are likely to be responsible for deter-
mining the species abundances of approximately 67% species. That
is stochastic neutrality play a major role given its influences reach
2/3 viral species.

In above interpreted results from Sloan near-neutral modeling
(Table 3, Fig. 3), the source and destination communities were
set to different sets of virome samples, which is de facto standard
scheme for applying Sloan model. Alternatively, both source and
destination communities could be set to the same sets of virome
samples; Table S5 in the OSI exhibited such results from Sloan
modeling. With the alternative scheme, the neutrality level or
the proportions of neutral species increased to 80%, compared with
67% in the previous paragraph where source and destination com-
munities are set differently. The proportion of positively selected
species decreased to 14.4% from 22%. These comparative results
should be expected, as determined by the difference in their test
schemes. When the source and destination are set to same virome
samples, both the similarity and corresponding neutrality should
rise. This higher neutrality of 80% is closer to the neutrality level
discovered with Hubbell’s standard neutral model, interpreted
previously.

4.4. Harris et al. [26] Multisite neutral model (MSN)

Table 4 shows the results of fitting Harris et al. [26] HDP-MSN
model to the human virome datasets, and the percentage for pass-
ing the MSN neutrality tests is 91.7%. What the MSN describe is
actually the landscape scale because the virome of each individual
is a metacommunity of viruses, and community of metacommu-
nity is equivalent to landscape.

The results here from the MSN modeling are fully consistent
with previous test results based on Hubbell’s [30] standard neutral
model, Ning et al. [27] normalized stochasticity ratio (NSR) and
Sloan [35,36] near-neutral model. These findings lead to a consis-
tent conclusion, that is, the stochastic neutral drifts play a domi-
nant role in virome assembly at species (Sloan), community/
metacommunity (Hubbell, NSR), and landscape (MSN) levels. At
all three levels, the neutrality levels exceed 50% (65–92%), as sug-
gested by the NSR (65%) (Table 2) and by the MSN (92%) (Table 4,
Fig. 4). The final sub-section of this results section address a possi-
ble challenge to the conclusion of neutrality dominance. In the fol-
lowing, the power analysis for the neutrality test is used to test the



Table 1
The mean of Hubbell’s neutral model (HNM) parameters fitted to the human virome datasets, summarized from Table S1.

Datasets Group J S h m P-value Percentage (%) for passing neutrality test

Dataset #1 Urban A 24,301 176 27.248 0.996 0.950 95.0
Village B 12,809 211 37.276 0.999 0.765 90.0
Village C 58,423 250.5 37.621 0.994 0.998 100
Village D 27,053 271 45.175 0.993 0.787 86.7

Dataset #2 Oct-2013 83,321 523 77.946 0.631 1.000 100
Jan-2014 93,226 544 78.401 0.812 1.000 100
Aug-2014 78,517 533 79.502 0.743 1.000 100

Dataset #3 Blood-Control-LTR 2324 23 5.547 0.970 0.749 84.6
Lung-Control-LTR 3135 98 23.920 0.682 0.337 65.2
Lung-Control-OD 2604 116 27.775 0.979 0.466 55.6

Dataset #4 Healthy 2234 50 9.437 0.982 0.924 100

Average across datasets 35,268 254 40.895 0.889 0.816 88.8 %
Standard error across datasets 10,889 59 8.089 0.043 0.069 4.6 %

*Samples with less than 100 reads were excluded from the neutrality test.

Table 2
The mean of Ning et al. [27] similarity (S) and normalized stochasticity ratio (NSR) for each treatment of the human virome datasets.

Datasets Treatments Number of Pair-wise Comparisons Similarity (S) Normalized Stochasticity Ratio (NSR)

Dataset #1 Urban A 190 0.747 0.300
Village B 45 0.725 0.238
Village C 120 0.795 0.371
Village D 105 0.781 0.389

Dataset #2 Oct-2013 3 0.693 0.528
Jan-2014 28 0.848 0.797
Apr-2014 21 0.886 0.830
Aug-2014 66 0.907 0.857

Dataset #3 Blood-Control-LTR 120 0.878 0.939
Lung-Control-LTR 630 0.919 0.833
Lung-Control-OD 465 0.931 0.881

Dataset #4 Healthy 10 0.956 0.866

Mean 150 0.839 0.652
Standard Error 0.025 0.076

Fig. 2. The NSR (normalized stochasticity ratio) for the 12 treatments of 4 datasets (case studies): the large NSR values indicated strong level of stochastic neutrality.
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Table 3
Fitting of the human virome datasets to Sloan’s [35,36] near neutral model*.

Datasets Source
Community

Destination
Community

N Immigration
Probability (m)

R2 Total
Number
of
Species

Percentage of Species
Below Neutral (%)

Percentage of
Neutral Species (%)

Percentage of Species
Above Neutral (%)

Dataset
#1

Village B Urban A 24,301 0.046 0.265 478 14.4 65.1 20.5
Village B Village C 58,423 0.174 0.128 511 11.2 66.9 21.9
Village B Village D 27,053 0.262 0.094 505 12.3 64.4 23.4
Village C Urban A 24,301 0.014 0.031 541 15.0 60.6 24.4
Village C Village D 27,053 0.089 0.172 594 14.6 67.2 18.2
Village D Urban A 24,301 0.024 0.110 551 14.0 69.7 16.3
Village D Village B 12,809 0.052 0.093 505 10.9 80.4 8.7
Village D Village C 58,423 0.072 0.189 594 12.5 70.0 17.5

Dataset
#2

Oct-2013 Jan-2014 93,226 1.127 0.109 594 2.7 67.7 29.6
Oct-2013 Aug-2014 96,039 1.135 0.349 597 3.2 64.3 32.5
Jan-2014 Aug-2014 96,039 0.929 0.661 674 3.7 67.8 28.5
Apr-2014 Aug-2014 96,039 0.108 0.772 686 4.5 65.0 30.5

Mean 53,167 0.336 0.248 569 9.9% 67.4% 22.7%
Standard Error 9795 0.129 0.068 19 1.416 1.397 2.006

* Some samples that failed to fit Sloan near neutral model (negative R2) are not list here.

Fig. 3. The Sloan [35,36] near neutral model fitted to the ‘‘Aug-2014” treatment of Dataset #2, suggesting that most species are neutral (green dots), and small numbers are
positively selected (pink dots) or negatively selected (cyan dots). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
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robustness of neutrality test by assessing the level of alternative
non-neutral processes as interpreted below.
4.5. Power analysis for the neutrality test (PNT)

The final part of our results exposition is to interpret the PNT
(power analysis for the neutral test) based on Hammal et al. [28]
for detecting possible existence of non-neutral processes. The
power analysis is designed to address the issue of Type-II error, i.
2036
e., incorrectly failing to reject a false null hypothesis (i.e., obtaining
a false negative finding). This corresponds to a common criticism
that argues for the possibility of apparent satisfaction to the neu-
tral theory patterns could not be due to the neutral processes,
instead, due to non-neutral processes that may generate the simi-
lar or same patterns indistinguishable statistically from what are
predicted by neutral theory model.

Table S3 listed the parameters from both neutral (based on
Hubbell’s UNTB) and non-neutral (i.e., power analysis based on IF



Table 4
Fitting the HDP-MSN model to the human virome datasets (with all samples from a single treatment are treated as a metacommunity described by a HDP-MSN model.

Dataset Treatment h M-value Metacommunity Local Community

NM N PM NL N PL

Dataset #1 Urban A 176.930 53.841 2500 2500 1.000 2500 2500 1.000
Village B 152.340 125.902 2500 2500 1.000 2500 2500 1.000
Village C 171.999 103.245 2500 2500 1.000 2500 2500 1.000
Village D 164.331 162.840 2500 2500 1.000 2500 2500 1.000

Dataset #2 Oct-2013 150.349 532.679 1924 2500 0.770 2500 2500 1.000
Jan-2014 135.137 573.799 1178 2500 0.471 2500 2500 1.000
Apr-2014 138.761 561.640 105 2500 0.042 2500 2500 1.000
Aug-2014 126.480 582.104 386 2500 0.154 2500 2500 1.000

Dataset #3 Blood-Control-LTR 112.662 6.885 2462 2500 0.985 2437 2500 0.975
Lung-Control-LTR 102.194 119.136 2496 2498 0.999 1487 2498 0.595
Lung-Control-OD 113.817 106.854 2499 2499 1.000 1425 2499 0.570

Dataset #4 Healthy 96.124 22.823 2457 2500 0.983 2124 2500 0.850

Mean 136.760 245.979 1958.9 2499.8 0.784 2289.4 2499.8 0.916
Standard Error 7.838 68.717 257.8 0.2 0.103 116.6 0.2 0.047
Passing Percentage (%) 91.7 100

Fig. 4. Fitting Harris et al. [26] MSN (multi-site neutral model) with ‘‘Lung-Control-LTR” treatment dataset.
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and PC models) tests, including the J, S, h, m and P-value from the
neutral test with Etienne’s sampling formula (i.e., Hubbell’s UNTB);
Ave. P-value (IF) model and Ave. P-value (PC) (the average of P-
values from non-neutral datasets generated by IF and PC non-
neutral models respectively), as well as corresponding Power val-
ues. Table S4 is a summary version of Table S3, which exhibited
average parameters from Table S3.

In Table 5, which is further summarized from Table S4, the first
result column of P-values (after the three columns describing data-
set information) is the P-value from standard neutrality test based
on Hubbell’s neutral model (HNM). This column is the same as that
of Table 1 for testing the HNM. P-value > 0.05 suggests that the
community is indistinguishable from neutral. The next four col-
umns of Table 5 presented the essential statistics of the power
analysis, based on which we can draw the following findings
and/or conclusions.

The column of P-value-IF > 0.05 but <P-value from neutrality
test indicates that the non-neutral process represented by IF model
is not strong enough to revoke the neutral test conclusion. Simi-
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larly, the column of P-value-PC > 0.05 but <P-value from neutrality
test indicates that non-neutral process represented by PC model is
not strong enough to revoke the neutral test conclusion. The small
Power-value of IF (or PC) model (i.e., the last two columns in
Table 5) indicates weaker non-neutral process represented by IF
(or PC) model.

If P-value > Ave.P-value of IF or PC non-neutral model, we can
conclude that there is no non-neutral process or the non-neutral
process is not strong enough to explain the neutrality represented
by the P-value. Otherwise, we have detected the non-neutral pro-
cess. Acceding to the IF non-neutral model, in approximately 26%
(30/116) of viral communities (samples) (highlighted in grey or
red in Table S3, and summarized in Table 5), the non-neutral pro-
cess is detected. The percentage is slightly low with PC model, and
is equal to 24% (28/116). These percentages measure the non-
neutrality level in the virome, which are approximately 1/3. This
number is also consistent with the percentage of neutrality mea-
sured by the NSR (65%, Table 2); theoretically and ideally the
non-neutrality + NSR should be 100% (�1/3 + 65%).



Table 5
The results from PNT (power analysis for the neutrality tests) excerpted from Table S3.

Dataset Treatment Parameter Neutrality test PNT: P-value from non-neutrality tests (with non-neutral datasets from
simulation)

P-value from Neutrality Test P-value from IF model P-value from PC model Power of
IF model

Power of PC model

Dataset #1 Urban A Mean 0.950 0.509 0.509 0.008 0.008
Standard Error 0.049 0.007 0.007 0.005 0.005

Village B Mean 0.765 0.516 0.516 0.016 0.016
Standard Error 0.116 0.014 0.014 0.007 0.007

Village C Mean 0.997 0.527 0.527 0.005 0.005
Standard Error 0.003 0.009 0.009 0.003 0.003

Village D Mean 0.772 0.529 0.529 0.007 0.007
Standard Error 0.097 0.012 0.012 0.003 0.003

Dataset #2 Blood-Control-LTR Mean 0.749 0.456 0.456 0.009 0.009
Standard Error 0.094 0.010 0.010 0.007 0.007

Lung-Control-LTR Mean 0.337 0.462 0.410 0.050 0.101
Standard Error 0.079 0.030 0.037 0.016 0.030

Lung-Control-OD Mean 0.466 0.514 0.518 0.029 0.024
Standard Error 0.104 0.016 0.017 0.006 0.005

Dataset #3 Healthy Mean 0.924 0.454 0.454 0.020 0.004
Standard Error 0.034 0.020 0.014 0.011 0.004

Percentage with Non-neutrality detected (%) with IF
or PC non-neutral model

25.9%
(30/116)

24.1%
(28/116)

Percentage with Non-neutrality detected but
passed neutrality test (%) (False positive cases)

3.4 %
(4/116)

1.7%
(2/116)
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The focus of power analysis is to detect the cases when P-
value < Ave.P-value and P-value > 0.05. In these cases, although
we cannot reject the neutrality hypothesis, we have detected
the non-neutral process in the community that may be confound-
ing the supposed neutral effects suggested by the P-value. These
are false negative cases from neutrality test perspective (Hub-
bell’s neutral model in this article)—incorrectly failing to reject
a false null hypothesis (i.e., obtaining a false negative finding).
As revealed in Table S3 (highlighted in red), the number of false
negative cases was 4 in terms of the IF non-neutral model or 2
Fig. 5. The power analysis for the neutrality tests with Hubbell’s UNTB (plotted based o
that there is no no-neutral process or that the non-neutral process is not sufficiently stron
neutrality tests are reasonably robust.
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in PC model (Table 5, Fig. 5), which are included in the 30 (IF
model) or 28 (PC model) total cases of non-neutral processes
detected by the power analysis as mentioned previously. The 4
(or 2) out of 116 cases indicate that in approximately 3% (2%)
cases, the non-neutral processes can contribute confounding
effects on the neutrality test, which is a rather low percentage
and suggests that the power of neutrality test is exceptionally
high. Therefore, the power analysis in this sub-section confirms
the reliability (robustness) of the neutrality test from Hubbell’s
neutral model.
n Table 5): The small power values (Power of IF model and PC model) demonstrate
g in the metacommunity of human virome, and therefore, the findings based on the
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5. Conclusions and discussion

Disentangling the mechanisms underlying entangled banks or
revealing the mechanisms shaping the viral community assembly
and diversity maintenance is rather challenging. First, manipula-
tive experiments that could be designed to reconstruct the com-
munity assembly processes are usually infeasible, especially in
studies of human microbiome and/or virome. For this reason, ideal
data, particularly quantitative datasets, for detangle the mecha-
nisms are hardly available. Second, for the previous reason, species
abundance distributions (SAD) in the form of OTU tables are often
the only available datasets for mechanistic analyses. This is indeed
true, but there have been many critics on the usage of SAD data for
testing the neutral theory. Two major critics for using the SAD
datasets to testing the neutral theory for the purpose to investigat-
ing the underlying mechanisms for community assembly and
diversity maintenance are: (i) the neutral models overestimate
the neutral effects, (ii) the observed SAD patterns that satisfy the
predictions of neutral theory models may actually be generated
by non-neutral processes. In other words, both neutral and non-
neutral processes (forces) may produce indistinguishable SAD pat-
terns. Besides using Hubbell’s standard neutral model (HNM) as
basic model for testing the neutral theory, we use Ning et al. [27]
NSR (normalized stochasticity ratio) to gauge the minimal level
of stochasticity (neutrality) level, which address the critic (i). To
address critic (ii), we applied Hammal et al. [28] power estimation
for the neutral test (PNT) to detect the possible existence of non-
neutral processes. Aided by Ning et al. [27] and Hammal et al.
[28] approaches, we not only provided reasonably strong cross-
verification for the test results revealed by Hubbell’s HNM model.

While the three models of Hubbell’s HNM, Ning et al. [27] and
Hammal et al. [28] offered comprehensive and robust tests of the
neutral theory at the community/metacommunity levels, we fur-
ther used Harris et al. [26] multi-site neutral model to explore
the virome neutrality at landscape scale, and Sloan [35,36] near-
neutral model (SNM) to identify the neutral, positively selected
and negatively selected species (i.e., at the species level). Therefore,
our study offers comprehensive testing of the stochastic neutral
forces in driving virome assembly across virtually all ecological
scales from population, community, and metacommunity to land-
scape. These comprehensive analyses concluded that the neutrality
level (or passing rates of neutrality tests) ranged from 88.8% (single
site neutral model) to 91.7% (multi-site neutral model) at the
community/metacommunity/landscape scale. At species level, the
neutral species ranged from 67.4% to 80.0%, positively selected spe-
cies ranged from 14.4% to 22.7%, and negatively selected species
ranged from 5.6% to 9.9%. Ning et al. [27] suggested that the lower
bound of neutrality should be 65% (0.652 on the scale between 0
and 1). Finally, Hammal et al. [28] power analysis suggests that
the non-neutrality is 26–28%, and among which only 2–3% may
have exerted confounding effects on the neutrality test based on
Hubbell’s standard neutral model.

In summary, all of the results from the five neutral-theoretic
models (approaches) (i.e., Hubbell’s neutral model, Sloan’s near
neutral model, Harris MSN, Ning NSR, and Hammal power analysis)
point to one conclusion: the stochastic neutral drifts seem to be
prevalent in driving the virome assembly and its diversity mainte-
nance across scales from viral population to landscape. Roughly,
the neutrality level exceeds at least ½ and is approximately 2/3,
while the non-neutrality level is approximately 1/3. The false neg-
ative rate is approximately 2–3%. Given these findings, we further
postulate that deterministic forces may play a relative low role in
shaping/driving viral community patterns/dynamics.

Although the neutral theory of molecular evolution for viruses
has been extensively investigated since the 1990s (e.g., [39,40],
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to the best of our knowledge, the neutral theory of biodiversity
for virome or viruses has not been addressed previously. Arguably,
the only exception is the work by Anthony et al. (2015) who wrote
‘‘we clarify that it is not our intention at this time to determine the
process behind non-randomness, as these might involve a variety
of either neutral processes assuming ecological equivalence or pro-
cesses based on ecological niche differentiation” [56]. In that study,
Anthony et al. (2015) sampled macaque feces across nine sites in
Bangladesh and used consensus PCR and sequencing to identify
184 viruses from 14 viral families [56]. They used network model-
ing and statistical null-hypothesis testing to detect the existence of
non-random deterministic patterns between the nine sites and
within individual macaques. They concluded that determinism is
an important process in virome assembly but is not absolute. Com-
pared with their study with primates (Rhesus macaques), our
study reveals a seemingly more prevalent randomness or neutral-
ity in the human virome than in the primates.

Finally, we should note possible limitations of this study.
Although we have utilized virtually all major neutral-theoretic
models, the virome datasets we were able to collect are of limita-
tions. This limitation is not specific to our study; instead, it has to
with the state-of-the-art technology in virus identifications. Our
body is inhabited by both prokaryotic (mostly bacterial) viruses
and eukaryotic (mostly human) viruses. In early days, much of
the efforts have been focused on eukaryotic viruses (such as
influenza, HIV and Ebola) thanks to their conspicuous impacts on
human health. Realizing that prokaryotic viruses can significantly
affect human health by influencing the structure and function of
the bacterial communities that symbiotically interact with human
hosts is a recent advance. The bacteriophages, or the viruses that
infect bacteria, have been found to play a critical role in shaping
the bacterial community structure and function. In the case of
human gut virome, as in other environments, bacteriophages dom-
inate over other viruses in the gut ecosystem [41]. Indeed, bacte-
riophages are the most abundant group of viruses and are
obligatorily parasites propagating in bacterial hosts, and human
gut virome consists mostly of bacteriophages [41]. For this reason,
approximately 78% of sequencing reads and 86% viral OTUs in the
datasets we used in this study are actually bacteriophages. There-
fore, the results we obtained in this study should just reflect this
predominance of bacteriophages. It will be interesting to compare
our findings with the results from other virome datasets in which
the proportion of bacteriophages differ significantly from what we
used.

Large-scale studies of microbiome are mostly started with the
human microbiome project (HMP), and have been going on for
slightly more than a decade. The study of virome is further behind
that of bacterial microbiome [3,4,12]. In both cases, the late start
was primarily due to our incapacity to readily culture or detect
them. The difficulty is particularly serious in virome research. This
is because there is not yet a universal 16S ribosomal RNA equiva-
lent, as in bacteria, allowing for rapid taxonomic characterization
of viruses. For this, metagenomic sequencing of all DNA or RNA
in a sample (human, bacterial, and viral), and then computationally
aligning the massive number of sequences to identify those that
resemble known viral genes, have been the primary technology
[29,42]. The whole-genome sequencing is not only costly, but also
computationally time-consuming. An improvement for this
approach resorts to filtering samples to purge eukaryotic cells
and bacteria so that only virus-like particles (VLPs) are sequenced.
This technique significantly lowers the sequencing cost and
reduces the computational time. Nevertheless, since the virome
consists of both temperate bacteriophages within bacterial gen-
omes and free VLPs, both total and VLP sequencing should provide
greater representation of all viruses [43].
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Besides the previously discussed difficulties associated with
sequencing virome, many of the viral reads cannot be aligned to
virome species in existing bioinformatics databases such as NCBI
databases, due to our limited identification knowledge of virus
species [12,29,42]. Although de novo assembly has been widely
used in virology research, the effectiveness of de novo assembly
for large-scale virome studies may be limited due to the complex-
ity of viral metagenomes and the excessive micro-diversity of
phages [44,45]. In addition, using de novo assembly for large vir-
ome study can also be computationally expensive. Yet, another
serious computational challenge that is specific to the neutral the-
oretic studies for virome is that the virome reads for some viral
species are particularly large. When the number of reads exceeds
30,000, most existing software packages for neutrality tests could
be overwhelmed because extensive simulations needed to simu-
late the demography and dispersal of (e.g., those 30,000) individu-
als. The neutral theory was developed in community ecology of
plants and animals, in which 30,000 individuals, is not a small
number at all. Therefore, it seems that there is not an easy solution
for this problem either since the simulations of large number of
individuals in either microbial or macrobial communities are not
an easy computational task at all.

Many alternative packages to VirusSeeker [29] that is used in
this study are available (see detailed reviews by Liang and Bush-
man [4], Sommers et al., 2021 [57]). For example, Lin et al. [46]
web pipeline (VIPIE) can process multiple NGS samples in parallel,
and Vilsker et al. [47] Genome Detective (GD) software package is
designed for virus identification from high-throughput sequencing
data. We used more recent GD software [47] to reanalyze one of
the virome datasets and listed the comparative results of GD and
VirusSeeker in Table S6. The VirusSeeker appears to be more pow-
erful in identifying virus species (OTUs), but GD appears more cap-
able in identifying virome reads. Note that this limited comparison
obviously should not be used to evaluate the performance or mer-
its of both the packages, which requires far more comprehensive
evaluations in future. Both GD (https://www.genomedetec-
tive.com/) and VIPIE have been in active updates since their initial
releases and both can identify SARS-CoV-2 (COVID-19 virus)
efficiently.

Traditionally, most ecological theories have been developed
and tested in macrobial ecology of plants and animals. The
human microbiome project (HMP) triggered the avalanches of
the expansions and tests of classic ecological theories in micro-
bial ecology, thanks to revolutionary metagenomic sequencing
technology, which made the generation of the microbial species
abundance distribution (SAD) datasets even more accessible than
that of macrobial SADs. Nevertheless, two issues arise from this
gold rush in microbial ecology. First, the validity of classic eco-
logical theories originated in macrobial ecology in microbial
ecology is not automatic, and instead, microbes may possess
some unique characteristics possibly different from plants and
animals. Second, most microbial ecology studies have been per-
formed with bacteriomes, rather than with viromes for the rea-
sons discussed previously, i.e., lacking a universal virus marker
gene similar with 16S-rRNA for bacteria and difficulties in align-
ing viral sequencing reads to existing virome databases. This
made virome ecology lags behind both microbial ecology and
macrobial ecology significantly. For example, Sommers et al.
(2021) called for integrating viral metagenomics into an ecolog-
ical framework and presented a comprehensive review on exist-
ing literatures on the relevant topics [57]. Ecological dimension
(framework) is largely missing in traditional virology research,
and virome ecology should be established to provide frameworks
for investigating populations of diverse virus variants, communi-
ties of interacting viruses, virome ecosystems and landscapes
[57]. For another example, Liang & Bushman’s [4] review high-
2040
lighted a few consensuses and mainstream hypotheses: (i) Most
viral reads from typical metagenomic sequencing studies are still
unidentified with existing virome databases. (ii) There may be
disease/health-specific viral community states, a postulation bor-
rowed from studies on bacteriomes. (iii) Emphasized the critical
significance of studies on the assembly, composition and dynam-
ics of the human virome as well as host–virome interactions in
health and disease. Besides classic ecological theories or theoret-
ical ecology, computational biology and bioinformatics are essen-
tial for virome ecology (e.g., [45]).

In spite of the previously mentioned difficulties in studies of
virome ecology, advances have been made steadily in recent years.
Below are some specific examples reported in last couple of years.
Cebriá-Mendoza et al. [48] demonstrated that even healthy blood
contains both bacteria and viruses, somewhat contrary to knowl-
edge in traditional textbooks of medicine. Gregory et al. [49]
revealed that the diversity patterns of gut viromes are age-
dependent. Zuo et al. (2020) suggested that human gut-DNA vir-
ome is more heterogeneous than bacteriome in several Chinese
cohorts, but they did not give precise description for how hetero-
geneity was measured [58]. Their primary finding that the gut vir-
ome diversity and composition are influenced by geography,
ethnicity and urbanization, is similar to the case of the bacteriomes
[58].

The previously mentioned examples of virome ecology research
focused on the baseline virome in healthy human cohorts. Equally,
if not more, important studies on virome-associated diseases have
been conducted. Indeed, virome ecology is also critical for investi-
gating virome-associated diseases. Cao et al. [50] found that the
integrated gut virome and bacteriome dynamics are associated
with severity of COVID-19 infections. Iorio et al. [51] reviewed
the virome-bacteriome cross-correlation with the host-
metabolome, which consequently influences the progression and
severity of respiratory infections such as COVID-19. Li et al. [52]
reviewed the interactions between virome and host immune sys-
tem: how gut viruses are sensed by immune system, and in turn,
modulate host immune responses during homeostasis and disease.

Bacteriophages are natural predators of bacteria since they can
precisely edit the bacterial microbiota. In the case of pathogenic
bacteria, studies of their phages can open potential novel treat-
ment to fatty liver diseases and cirrhosis [53]. Szafrański (2021)
suggested that oral bacteriophage is of potential therapeutic utility
for killing periodontopathic bacteria, which frequently forms bio-
films resistant to many antibiotics [59].
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