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Abstract

Motivation: There is a plethora of measures to evaluate functional similarity (FS) of genes based on their
co-expression, protein–protein interactions and sequence similarity. These measures are typically derived from
hand-engineered and application-specific metrics to quantify the degree of shared information between two genes
using their Gene Ontology (GO) annotations.

Results: We introduce deepSimDEF, a deep learning method to automatically learn FS estimation of gene pairs
given a set of genes and their GO annotations. deepSimDEF’s key novelty is its ability to learn low-dimensional
embedding vector representations of GO terms and gene products and then calculate FS using these learned
vectors. We show that deepSimDEF can predict the FS of new genes using their annotations: it outperformed all
other FS measures by >5–10% on yeast and human reference datasets on protein–protein interactions, gene
co-expression and sequence homology tasks. Thus, deepSimDEF offers a powerful and adaptable deep neural
architecture that can benefit a wide range of problems in genomics and proteomics, and its architecture is flexible
enough to support its extension to any organism.

Availability and implementation: Source code and data are available at https://github.com/ahmadpgh/deepSimDEF

Contact: ahmadpgh@gmail.com or julie.hussin@umontreal.ca

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In the past decades, a wide array of biological networks such as pro-
tein–protein interaction (PPI) and gene co-expression networks have
come into existence. However, despite their utility, such networks
are often incomplete or under-represented meaning they miss a lot
of real associations and interactions. Given the fact that laboratory-
based experiments are time-consuming and labor-intensive, compu-
tational algorithms have been seen as a viable solution. Many of
such algorithms integrate curated ontologies, such as Gene
Ontology (GO) (Ashburner et al., 2000), into the original biological
networks to predict missing associations. GO-based semantic simi-
larity (SS) measures allow the comparison of GO terms by leverag-
ing GO properties and on annotation corpora which, in turn, leads
to functional similarity (FS) measurement of genes. These measures

have been applied to important biological problems such as PPI pre-
diction (Yu et al., 2017), analysis of gene co-expression
(Makrodimitris et al., 2020), protein subcellular localization predic-
tion (Cao et al., 2018), among others, showing the vast utility of
GO for the characterization of genomic and proteomic entities. For
instance, Yang et al. (2018) proposed a new method to measure the
GO-based functional similarity for miRNAs providing the commu-
nity with the largest similarity matrix of human miRNAs. These
similarity scores can serve as a basic feature in various prediction
tasks related to miRNA functions. Schaefer and Serrano (2016)
demonstrated the importance of using GO semantic similarities on
pairs of genes for characterizing gene groups in cancer research,
arguing that general cancer genes tend to show a higher pairwise
similarity as compared to genes implicated in specific types of
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cancer. Kim et al. (2019) used GO similarity of drug-target and
disease-related genes to address drug repositioning of herbal com-
pounds. Despite these recent advances, current GO-based FS meas-
ures still depend on slow FS computation and empirical SS metric
engineering. To address this inadequacy, the employment of
advanced feature learning techniques offered by deep neural net-
works seems inevitable.

With the revival of deep neural networks around 2006 (Hinton
et al., 2006), deep learning methods have become prevalent in the
research community. Such methods are representation learning tech-
niques that combine multiple non-linear modules to obtain multiple
levels of representation (LeCun et al., 2015; Jiang et al., 2017). One
key advantage of deep learning is that human researchers do not de-
sign the layers of features, hence, minimal feature engineering is
needed. For their promising performance, deep learning methods are
increasingly being applied in the medical field including bioinfor-
matics (Ben Ali et al., 2021; Pesaranghader et al., 2021a,b). For ex-
ample, BioVec (Asgari and Mofrad, 2015), inspired by the
Word2Vec (Mikolov et al., 2013) widely used in natural language
processing, is an initiative in bioinformatics to offer a solution for
an unsupervised data-driven vector representation of biological
sequences. It is becoming increasingly clear that these powerful
approaches can help the mining of ontologies such as GO to extract
meaningful insights about genes and proteins’ biological functions
and interactions.

There exist two computational classes of GO-based FS measure-
ments. Ontology-based methods take advantage of the GO structure
by computing SS of GO terms prior to drawing on them for FS esti-
mation. The SS measures revolve around the idea of shared
Information Content (IC) (Resnik, 1995) of GO terms annotating
genes. The IC-based FS measures of Resnik (1995), Lin (1998),
Jiang and Conrath (1997), GraSM (Couto and Silva, 2011) and AIC
(Song et al., 2014) depend on these engineered SS measures.
Recently, Dutta et al. (2018) presented a new approach (which we
call clusteredGO in our evaluation) that utilized IC of the GO terms
and the GO graph to do GO term clustering. In contrast to these
pair-wise FS measures, group-wise FS measures such as simUI
(Falcon and Gentleman, 2007), simGIC (Pesquita et al., 2007) and
SORA (Teng et al., 2013) directly calculate FS by measuring the dis-
tance between two sets of GO term annotations. Based on Jaccard
distance (Levandowsky and Winter, 1971), the group-wise measures
are less computationally intensive; however, this occurs at the cost
of accuracy. This process of FS estimation is executed and then
reported for every GO sub-ontology separately.

Distributional-based FS measures are based on Firth’s idea
(1957), characterizing one natural language word by its surrounding
words in a given context. Our previous works (Pesaranghader et al.,
2014, 2016; Pesaranghader, 2019), proposing the simDEF model
which compared the text definitions of two GO terms, were inspired
by this notion to address several drawbacks of the ontology-based
methods. Recently, Duong et al. (2019) introduced AicInferSentGO,
a definition-based model that aimed to improve simDEF by propos-
ing a new approach for vector representation of GO terms. Even
though simDEF and AicInferSentGO demonstrated the significant
advantage of vector representation of GO terms, they suffered from
important shortcomings, some of which are still shared with even
the recent FS measures: manual metric and feature engineering for
aggregating GO-term SS scores prior to the computation of gene FS;
large dimensions of GO-term vectors; and, separate consideration of
each sub-ontology of GO for a biological task in hand due to

uncertainty on how the downstream biological attributes from those
sub-ontologies should be combined.

In this work, we introduce deepSimDEF, a paired neural net-
work that attempts to address the above-mentioned shortcomings.
Supervised deepSimDEF neural networks are designed to address
the biological tasks; hence, the main output of deepSimDEF is a pre-
diction model, where GO-term and gene-product embeddings are
the by-products of the training process. Prior to training,
deepSimDEF networks are typically initialized with pretrained
GO-term embeddings that we compute in advance. deepSimDEF
can be run in two settings: single channel considering sub-ontologies
separately, and multi-channel with sub-ontologies combined.
Evaluated on both yeast and human reference datasets, we demon-
strate the performance of deepSimDEF against the FS measures of
Resnik, Lin, Jiang and Conrath, GraSM, AIC, clusteredGO,
simGIC, simDEF and AicInferSentGO (see Supplementary material
S1 for their details). We also show in contrast to previous FS
measures in which the estimation results hinged upon the choice of
hand-engineered metrics such as Maximum (MAX), Average or
Best-Match Average (BMA) to aggregate the SS scores of the two
underlying GO annotation sets, a deepSimDEF network automatic-
ally learns this quantification regarding a biological application of
interest, and later, measures FS of new genes and gene products.

2 Results

2.1 Experimental design and data overview
Table 1 provides an overview of the datasets prepared for the evalu-
ation in the study (see Evaluation and validation datasets section for
details). In order to include all available proteins of every experi-
ment of the study (i.e. PPI, protein sequence homology or gene ex-
pression) in the testing phase, we used a 10-fold cross-validation
approach by randomly dividing the total number of proteins into 10
non-overlapping sets. In each of 10 separate runs we held out one of
those sets and all the protein pairs made of that set for testing; the
rest of the protein pairs, devoid of any protein in the test set, were
employed for network training. For example, in the PPI experiment
on human data, out of the total number of 14 096 proteins in that
experiment a test split consisted of 1410 proteins (their available
pairs with PPI values); the rest of the proteins were used in training
phase. After the model hyper-parameters were selected using 10%
of the training set as a validation set, the final network in that fold
was trained on the whole training set and then was evaluated on the
held-out test set of protein pairs (for detailed hyper-parameters see
Supplementary material S4). This design insured no interconnection
between the pairs of gene products in the training and test data (i.e.
no direct transitive inference between the protein pairs) while all
protein pairs were tested. Despite the negligible variance in the
results, for a solid conclusion, we repeated the permutation of pro-
teins in every experiment 10 times and the average of all 100 runs
was considered as the final result of that experiment.deepSimDEF
networks learn low-dimensional vectors of GO terms and gene
products, and then learn how to calculate the functional similarity
of their pairs using these embedding vectors. The low-dimensional
vectors of GO terms can be trained in advance by relying on natural
language definitions of the GO terms and statistical measures of
pointwise mutual information (PMI) and latent semantic analysis
(LSA) applied to their result definition vectors (see Section 3 and
Pesaranghader et al. (2013b, 2019)). Once GO term LSA embed-
dings are pretrained, a deepSimDEF network can be initialized by

Table 1. Experiments and datasets used for the evaluation of FS measures

Yeast dataset Human dataset Task

No. of gene pairs No. of genes No. of gene pairs No. of genes

PPI 50 154 4591 65 542 14 096 PPI classification

Sequence homology 26 757 3972 381 379 13 626 Sequence similarity estimation

Gene expression 37 405 2239 62 470 2361 Level of co-expression redection
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these vectors and then be fine-tuned on training data of biological
application of interest. The network design of the deepSimDEF
model also takes into account multi-channel and single-channel
architectures for combined and separate consideration of GO sub-
ontologies respectively.

GO annotations that lack curation or experimental validation
have the ‘Inferred from Electronic Annotation (IEA)’ evidence code
that is assumed to be the lowest confidence (Mazandu et al., 2017).
In the context of GO semantic similarity measures, however, the use
of all evidence codes including IEA has been shown to yield
improved prediction accuracy (Tian et al., 2020) as IEA annotations
are becoming more and more accurate. Hence, following what is
common in the literature, we explored both cases of including and
excluding IEAs (IEAþ and IEA–, respectively) in our FS model
evaluation. Additionally, we conducted negative control experi-
ments (see Supplementary material S1) to investigate the effect of in-
correct annotations of proteins on deepSimDEF model training.

2.2 Semantic similarity of pretrained GO-term

embeddings
Our definition-based pretraining method organizes embeddings of the
GO terms within the Euclidean space. Once initializing a network,

these embeddings have the potential of putting the network in a proper
state for model optimization, leading to faster convergence and more
accurate predictions. For three random quarry GO terms from a pool
of �30 000 pretrained biological process (BP) terms, Table 2 shows
the 5 top-most similar GO terms in terms of cosine similarity; and as
expected, the returned GO terms are very close semantically. For cellu-
lar component (CC) and molecular function (MF), we observed the
same behavior (see Supplementary material S2).

2.3 Prediction of PPIs
Protein–protein interactions play a key role in various aspects of the
structural and functional organization of the cell and their know-
ledge provides insights into the molecular mechanisms of biological
processes that lead to rational drug design (Murakami et al., 2017).
It has been shown that the FS values can be employed as an indicator
for the plausibility of putative PPIs (Zhang and Tang, 2016).

Similar to other studies, we formulated this as a classification
problem and examined how well a deepSimDEF network predicted
true PPIs. We directly interpreted FS values as the classification
probability of ‘Interaction’ and ‘No Interaction’. Table 3 for yeast
PPI data and Table 4 for human PPI data demonstrate the results of
predictions for deepSimDEF and other FS similarity measures with
respect to F1-scores. Among the SS aggregation metrics used in the
previous studies, MAX yielded the highest PPI prediction results, so
we considered this metric in our evaluation.

In yeast PPI prediction, single-channel BP deepSimDEF, when
initialized with LSA embeddings, achieved an F1-score improvement
of �5% compared to the second-best methods, AicInferSentGO and
simDEF (�8.5% on average for BP, CC, and MF). With multi-
channel deepSimDEF architecture, we observed a further increase of
�1.25% compared to a single-channel deepSimDEF network of BP,
which yielded the best results among the three single channels. This
indicates consideration of all three sub-ontologies together increases
PPI predictability. clusteredGO did not improve the results of
Resnik or any other earlier IC-based FS measures, whereas the
group-wise simGIC represented the worst performance among the
evaluated FS measures. Comparing vector-based simDEF with
AicInferSentGO, we observed similar results as expected due to their
definition-based nature. Additionally, including IEA GO term anno-
tations did not improve yeast PPI prediction.

For human PPI prediction, we observed slight improvements for
almost all cases when including IEAs. The other results were consist-
ent with our observations from the yeast PPI prediction; for ex-
ample, working with single GO ontologies, BP showed better
predictive power compared to CC and MF. However, when BP was
combined with the other two we achieved higher F1-scores; the
multi-channel deepSimDEF outperformed all FS measures including
AicInferSentGO, the second-best model (93.68% versus 88.83%).
Compared to random initialization of deepSimDEF we obtained a
�3% improvement in F1-score when the embedding layer was ini-
tialized with our LSA embeddings. deepSimDEF with random
weights, however, outperformed all baselines in the same category.

Table 2. Sense similarity results for three BP terms over pretrained

embeddings

Query GO term ID GO term name

Q#1 GO: 0072521 Purine-containing compound metabolic process

1 GO: 0072523 Purine-containing compound catabolic process

2 GO: 0072527 Pyrimidine-containing compound metabolic

process

3 GO: 0072529 Pyrimidine-containing compound catabolic

process

4 GO: 0052803 Imidazole-containing compound metabolic

process

5 GO: 0046453 Dipyrrin metabolic process

Q #2 GO: 0045292 mRNA cis splicing, via spliceosome

1 GO: 0000398 mRNA splicing, via spliceosome

2 GO: 0048024 Regulation of mRNA splicing, via spliceosome

3 GO: 0000380 Alternative mRNA splicing, via spliceosome

4 GO: 0090615 Mitochondrial mRNA processing

5 GO: 0000395 mRNA 50-splice site recognition

Q #3 GO: 0001116 Protein-DNA–RNA complex assembly

1 GO: 0001115 Protein–DNA–RNA complex subunit

organization

2 GO: 0001117 Protein–DNA–RNA complex disassembly

3 GO: 0071165 GINS complex assembly

4 GO: 0071824 Protein–DNA complex subunit organization

5 GO: 0032986 Protein–DNA complex disassembly

Table 3. PPI F1-score prediction of the yeast data (FS aggregation uses MAX)

Including IEA (%) Excluding IEA (%)

ALL BP CC MF ALL BP CC MF

Resnik 87.29 85.65 81.57 74.06 86.91 83.28 79.96 72.00

Lin 78.75 85.53 79.12 73.37 81.24 82.68 77.44 73.47

Jiang and Conrath 78.75 84.77 79.06 72.26 80.79 81.27 76.65 74.11

GraSM 87.55 85.33 81.35 74.16 86.83 83.26 80.08 72.16

AIC 78.39 85.71 79.13 72.99 81.18 82.40 77.70 73.73

clusteredGO 78.98 84.70 78.93 72.68 80.92 81.13 76.59 74.59

simGIC 68.22 63.31 61.56 59.27 67.84 62.52 61.22 58.62

simDEF 88.56 86.74 82.67 75.42 88.38 84.45 81.43 74.31

AicInferSentGO 88.61 86.71 82.75 75.47 88.31 84.38 81.28 74.36

deepSimDEF (random emb.) 90.05 88.88 88.08 84.77 90.07 86.71 86.45 83.57

deepSimDEF (LSA emb.) 92.78 91.57 89.58 87.64 92.99 91.68 89.35 86.69
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In order to verify that the method uses GO term vector similar-
ities that are highly indicative of functional similarity, we further
investigated if the characterization of proteins with low-level GO
terms leads to better FS prediction of proteins. For this purpose, in
separate experiments, we replaced the GO annotation of the pro-
teins with their higher-level GO terms such as their parents and their
grandparents, and then trained and tested the networks. For human
data, when only MF was considered, the PPI prediction decreased
from 87.80% to 85.36% and 82.97% for parent and grandparent
considerations, respectively. This could be explained by the under-
specification of given pairs with broader terms. For instance, the
deepSimDEF network was able to correctly predict the interaction
of P27695 and HMGB2 proteins with their original low-level
GO-term annotations of GO: 0003691 (double-stranded telomeric
DNA binding) and GO: 0000976 (transcription cis-regulatory
region binding). Once these annotations were replaced by the
broader GO terms such as GO: 0003677 (DNA binding) the
networks estimated a lower probability of their interaction. We
observed similar behavior for other sub-ontologies.

2.4 Correlation with sequence similarity
Proteins with similar sequences are usually homologous and tend to
have similar functions (Cozzetto and Jones, 2017). For that reason,

proteins in a newly sequenced genome are routinely annotated using
the sequences of similar proteins in genomes of other species. Even
though not always functional and sequence similarity tracks well
(Schlicker et al., 2007) information from sequence-similarity networks
offers a powerful way to highlight where a potential manual or elec-
tronic GO misannotation may occur (Dessimoz and �Skunca, 2017).
Hence, correlation with sequence similarity data sets a benchmark for
the evaluation of GO-based FS measures (Lord et al., 2003).

Every gene pair in our sequence homology data is accompanied
by the log-reciprocal (LRBS) and relative reciprocal (RRBS) BLAST
scores indicating the level of sequence similarity of their component
genes (see Evaluation and validation datasets section for the LRBS
and RRBS details). Pesquita et al. (2008) noted that the relationship
between semantically derived shared information from GO and
RRBS is non-linear. Therefore, in our experiment with sequence
data, the results of non-linear Spearman’s correlations were primar-
ily considered for the evaluation of the FS measures (see
Supplementary material S3 for Pearson’s correlation). Additionally,
in the baseline FS measures, MAX and BMA metrics showed incon-
sistency in their correlation with sequence homology data as de-
pending on the measure and sub-ontology of choice one metric
worked better than the other, therefore both of these aggregation
metrics were considered in our evaluation.

Table 4. PPI F1-score prediction of the human data (FS aggregation uses MAX)

Including IEA (%) Excluding IEA (%)

ALL BP CC MF ALL BP CC MF

Resnik 88.02 86.59 81.70 75.14 87.96 84.33 80.60 73.31

Lin 79.02 85.69 79.62 73.88 81.88 82.87 77.58 73.57

Jiang and Conrath 79.48 85.47 79.72 72.82 81.35 81.45 77.57 74.81

GraSM 87.97 86.58 81.83 75.12 87.59 83.53 80.38 73.02

AIC 79.78 86.05 79.37 74.10 81.52 83.50 77.66 73.69

clusteredGO 79.15 84.94 80.05 72.53 81.03 82.21 76.96 74.45

simGIC 69.33 64.19 62.34 60.66 69.16 63.56 62.47 59.32

simDEF 88.74 87.12 82.72 76.19 88.53 85.12 81.24 74.21

AicInferSentGO 88.83 87.14 82.04 75.96 88.31 84.54 81.04 74.45

deepSimDEF (random emb.) 90.69 87.63 86.71 85.13 89.91 87.12 86.51 84.54

deepSimDEF (LSA emb.) 93.68 90.60 89.12 87.80 93.12 90.19 88.26 87.38

Table 5. Spearman correlation of FS measures versus yeast sequence homology

LRBS RRBS

ALL BP CC MF ALL BP CC MF

Resnik MAX 0.7089 0.7269 0.5337 0.4743 0.6088 0.6378 0.5132 0.3514

BMA 0.6066 0.5862 0.4771 0.5193 0.5236 0.5312 0.4752 0.4278

Lin MAX 0.3831 0.6463 0.3763 0.6026 0.2512 0.4900 0.2892 0.4085

BMA 0.5952 0.5756 0.4490 0.5866 0.4862 0.4919 0.4048 0.4478

Jiang and Conrath MAX 0.3500 0.6504 0.2997 0.4975 0.1814 0.5030 0.2325 0.2845

BMA 0.6190 0.6298 0.4733 0.5595 0.4958 0.5317 0.4126 0.3978

GraSM MAX 0.3465 0.6584 0.2978 0.4895 0.1799 0.5002 0.2231 0.2911

BMA 0.6277 0.6258 0.4659 0.5651 0.4990 0.5240 0.4154 0.3944

AIC MAX 0.3434 0.6423 0.3094 0.5044 0.1873 0.5099 0.2275 0.2927

BMA 0.6197 0.6215 0.4727 0.5694 0.5028 0.5348 0.4047 0.3920

clusteredGO MAX 0.3591 0.6449 0.3027 0.4970 0.1720 0.5061 0.2277 0.2865

BMA 0.6198 0.6282 0.4784 0.5504 0.4998 0.5237 0.4081 0.3917

simGIC 0.3140 0.6036 0.2519 0.4404 0.1237 0.4643 0.1703 0.2296

simDEF MAX 0.4505 0.7339 0.4082 0.5946 0.2770 0.6126 0.3396 0.3845

BMA 0.7252 0.7308 0.5661 0.6637 0.5974 0.6418 0.5079 0.4880

AicInferSentGO MAX 0.4499 0.7314 0.4073 0.6018 0.2886 0.5996 0.3289 0.3841

BMA 0.7252 0.7354 0.5775 0.6681 0.6049 0.6412 0.5220 0.5076

deepSimDEF (random emb.) 0.7590 0.6600 0.5918 0.7102 0.6813 0.6050 0.5438 0.6846

deepSimDEF (LSA emb.) 0.8078 0.7532 0.6077 0.7844 0.7255 0.6498 0.5409 0.6943
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Table 5 shows deepSimDEF outperformed other FS measures in
the correlation task with the yeast sequence homology data: on aver-
age, the initialized single-channel deepSimDEF improved the correl-
ation results by �5.5% for LRBS, and >7% for RRBS. Compared
to IC-based measures, distributional definition-based measures con-
sistently showed higher accuracy. When all sub-ontologies were
combined, the multi-channel deepSimDEF improved the FS results
even more by at least 3% (>7% and >8% compared to the second-
best measures from AicInferSentGO and simDEF in BP for LRBS
and RRBS, respectively). In baseline models, in contrast to PPI
experiments, the combination of sub-ontologies for the correlation
computation between FS measures and sequence homology data
reduced the correlation results. For deepSimDEF, however, it was
otherwise indicating that the gating mechanism in the highway layer
of the network (described in Section 3, Highway layer subsection)
helps to learn how the shared information of two proteins should be
computed (see additional results in Supplementary material S1).
Similar to PPI experiments still, initialization of the networks with
LSA embeddings improved the correlation results (�6% improve-
ment for LRBS and �2.5% for RRBS on average, when compared
with random weight initialization).

Table 6 shows Spearman correlation results between human
LRBS and RRBS and FS measures. While the results were generally
consistent with the yeast experiment findings, including that
deepSimDEF outperformed all baselines with considerable margins

of improvement (>7% and �6% compared to the second-best meas-
ure simDEF in MF for LRBS and RRBS, respectively), correlation
values were less than what we achieved in the yeast experiment,
which is not surprising considering the extent of the human genome
and the complexity of human sequence homology data. Also, while
in the yeast experiment BP yielded better results for the baseline
measures, we observed that for human data it was the MF that was
superior. For deepSimDEF, in both human and yeast, MF outper-
formed the other two sub-ontologies, yet fell short when they were
combined. That is explainable as homologs are more likely to have
similar functions (e.g. catalyze similar reactions) than participate in
the same biological process. Also for both yeast and human
sequence homology data, for Spearman’s correlation, FS measures
correlated with LRBS better than RRBS.

2.5 Correlation with gene expression
Highly correlated gene expression levels are often seen when genes
are functionally related and participate in the same biological proc-
esses. Previous studies evaluated the performance of their FS meas-
ures by calculating the correlation between their estimations and
gene-expression data (Bible et al., 2017).

Wu et al. (2013) achieved poor correlations between their
GO-based FS measure and gene expression from microarray data of
yeast and human. They argued that the inconsistent results experi-
enced in the previous studies indicate the correlations between

Table 6. Spearman correlation of FS measures versus human sequence homology

LRBS RRBS

ALL BP CC MF ALL BP CC MF

Resnik MAX 0.4941 0.4768 0.2531 0.5834 0.4530 0.4605 0.2962 0.5222

BMA 0.5095 0.4606 0.3288 0.5262 0.5196 0.4525 0.4212 0.5332

Lin MAX 0.3087 0.5149 0.3500 0.3231 0.2820 0.5065 0.3374 0.2789

BMA 0.5052 0.5081 0.3970 0.3777 0.5278 0.5035 0.4618 0.4194

Jiang and Conrath MAX 0.2933 0.4981 0.2884 0.3734 0.2153 0.4865 0.2531 0.2730

BMA 0.4847 0.5418 0.3995 0.3714 0.5280 0.5492 0.4506 0.3894

GraSM MAX 0.2841 0.3787 0.2909 0.5071 0.2148 0.2713 0.2617 0.4876

BMA 0.4884 0.3636 0.3907 0.5449 0.5311 0.3992 0.4517 0.5403

AIC MAX 0.2931 0.3650 0.2797 0.4952 0.2146 0.2655 0.2449 0.4941

BMA 0.4875 0.3737 0.4089 0.5514 0.5247 0.3923 0.4483 0.5563

clusteredGO MAX 0.2944 0.3830 0.2788 0.4927 0.2101 0.2735 0.2589 0.4840

BMA 0.4918 0.3731 0.3960 0.5330 0.5271 0.3801 0.4575 0.5561

simGIC 0.2356 0.3296 0.2307 0.4472 0.1530 0.2279 0.2013 0.4281

simDEF MAX 0.3505 0.4383 0.3578 0.5528 0.2850 0.3374 0.3129 0.5412

BMA 0.5541 0.4335 0.4320 0.6011 0.5823 0.4446 0.4956 0.5944

AicInferSentGO MAX 0.3574 0.4387 0.3428 0.5515 0.2723 0.3288 0.3138 0.5430

BMA 0.5440 0.4250 0.4383 0.6011 0.5897 0.4522 0.4956 0.5927

deepSimDEF (random emb.) 0.6437 0.5241 0.4232 0.6268 0.6425 0.5222 0.4986 0.6346

deepSimDEF (LSA emb.) 0.6723 0.5300 0.4480 0.6623 0.6514 0.5306 0.5126 0.6432

Fig. 1. Pearson’s correlation results for the prediction of gene–gene co-expressions in yeast data
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GO-based FS measures and gene co-expression data are sensitive to
the source of data and method of evaluation. Similar to Wang et al.
(2007), however, we argue that this inconsistency stems from the in-
herent complexity of the gene expression datasets, and the fact that
there exists no direct correlation between GO annotations and
co-expression levels that one ideal GO-based FS measure can com-
pletely discover. We hypothesize though that deep neural networks
have the potential to accommodate this non-linear complexity and
discover the underlying inner dependency to the greatest degree
possible.

In our evaluation (shown in Fig. 1 for yeast experiment and
Fig. 2 for human experiment), the Pearson’s correlation coefficients
between the GO-based FS measures and the actual gene
co-expression data were studied (see Supplementary material S3 for
the exact values including Spearman’s correlation). We considered
both MAX and BMA aggregation metrics in our evaluation.

We observed significantly higher correlation results for the pre-
diction of yeast gene co-expression values relative to human values
across all FS measures, which was expected given the differences in
organism complexity (unicellular versus multi-cellular eukaryotes).
This could also be explained by the smaller number of yeast genes
leading to less complexity of co-expression patterns to discover and
learn from in the training phase.

For the yeast experiment, initialized deepSimDEF was the best-
performing FS measure. Single-channel deepSimDEF networks
improved Pearson’s correlation with the co-expression data by
>11% (average over all three GO sub-ontologies’) compared to the
second-best results achieved by simDEF and AicInferSentGO
(0.7238 versus 0.6146/0.6128). Regarding GO sub-ontologies, for
almost all FS measures, BP showed better prediction power com-
pared to CC and MF; for deepSimDEF this improvement over CC
was much smaller. In the multi-channel deepSimDEF, we also
observed a negligible increase in the Pearson correlation result over
the single-channel model results in BP and CC; however, compared
to MF this improvement was >3%. The multi-channel deepSimDEF
outperformed simDEF, the second-best-performing measure, by
�9% (0.7336 versus 0.6432). The inclusion of IEA also helped
deepSimDEF, while for the other FS measures it was not always the
case.

For the human experiment, initialized deepSimDEF was the best-
performing FS measure. deepSimDEF, with the single-channel net-
works, improved Pearson’s correlation with the co-expression data by
>6.5% compared to the second-best results achieved by simDEF
(0.2442 versus 0.1774). Regarding GO sub-ontologies, similar to the
yeast experiment, for almost all FS measures, BP showed better pre-
diction power compared to CC and MF. In the multi-channel architec-
ture also, we observed a �2.5% increase in Pearson correlation
over the single-channel result in BP; compared to CC and MF this im-
provement was �9% and �11%, respectively. Additionally, the
multi-channel deepSimDEF outperformed simDEF, the second-best
performing measure, by �6% (0.2873 versus 0.2313). In contrast to
the yeast experiment, however, the inclusion of IEA annotations did
not always improve deepSimDEF’s results. In the baseline measures,
AicInferSentGO showed comparable results to simDEF.

Similar to the PPI and sequence homology experiments, the ini-
tialization of deepSimDEF networks with our embeddings (versus
random) increased the correlation results in all experiments (e.g.
0.2873 versus 0.2741 in IEAþ multi-channel deepSimDEF).
deepSimDEF also outperformed other measures regarding Spearman
correlation in all settings (see Supplementary material S3).

3 Materials and Methods

3.1 Experimental data
GO and GO annotations

In GO, GO terms are structured in three mutually exclusive sub-
ontologies of biological process (BP), cellular component (CC) and
molecular function (MF). Each GO annotation consists of an associ-
ation between a gene and a GO term with an evidence code that
shows how a given annotation is supported. Out of all the evidence
codes, Inferred from Electronic Annotation (IEA) is the least reli-
able. In this study, the latest GO and the GO annotations of yeast
and human genes were downloaded from the Gene Ontology web-
site (http://www.geneontology.org/page/download-ontology (March
2021)). All genes and proteins that do not have GO annotations will
be removed from our datasets, meaning that, for example, hypothet-
ical proteins will not be investigated.

MEDLINE abstracts

MEDLINE (https://www.nlm.nih.gov/databases/download/pubmed_
medline.html) includes >20 million citations of life sciences and bio-
medical articles from 1966 to the present. Combined with the GO
term definitions, we employed the MEDLINE bigram list (https://
www.nlm.nih.gov/databases/download/data_distrib_main.html) to
build our pretrained GO-term embeddings. These pretrained
GO-term embeddings initialize the first layers of the deepSimDEF net-
works to facilitate network optimization.

Evaluation and validation datasets

Protein–protein interaction. From the STRING database (https://
string-db.org/cgi/download.pl), we collected two lists of experimen-
tally supported interactions for yeast and human. For negative inter-
actions, following what is common in the literature, we
independently generated random selection of pairs that were absent
from the lists of positive PPIs. After removing proteins that had no
GO term annotations from all three sub-ontologies (not considering
IEAs), each pair of interacting proteins was labeled 1 indicating a
positive interaction, or 0 offering no interaction. Our final balanced
PPI datasets contained 50 154 interactions for yeast and 65 542
interactions for human proteins.

Protein sequence homology. For our sequence homology data-
sets, we first collected the sequences of yeast and human proteins
from the UniProt database in FASTA format (For the yeast: https://
www.uniprot.org/proteomes/UP000002311; For human: https://
www.uniprot.org/proteomes/UP000005640 (March. 2021)). We
used bitscores from the Basic Local Alignment Search Tool (BLAST)

Fig. 2. Pearson’s correlation results for the prediction of gene–gene co-expressions in human data
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algorithm Altschul et al. (1990) when performing an all-versus-all
comparison of proteins for each organism with an expectation-value
threshold of 0.1. Although this threshold is liberal, the correspond-
ing bitscores associated with e-values near this threshold will be very
low and have a minimal effect on our analysis. Since a bitscore for
query and subject proteins is not symmetrical, we computed log-
reciprocal BLAST score (LRBS) Eq. (1) and relative reciprocal
BLAST score (RRBS) Eq. (2) to express the general sequence similar-
ity of yeast protein pairs. After computation of LRBS and RRBS, for
the yeast organism, we had a dataset of 26 757 protein pairs along
with their LRBS and RRBS sequence similarity scores. This number
for human protein pairs was 381 379. All proteins in these final
datasets had GO annotations from the BP, CC and MF sub-
ontologies (non-IEA and non-ND annotations).

LRBSðA;BÞ ¼ log
BitscoreðA;BÞ þ BitscoreðB;AÞ

2

� �
(1)

RRBSðA;BÞ ¼ log
BitscoreðA;BÞ þ BitscoreðB;AÞ
BitscoreðA;AÞ þ BitscoreðB;BÞ

� �
(2)

Gene expression-Yeast. From the microarray gene expression
data from Eisen et al. (1998), our gene expression dataset was built
by integrating their data constructed for 2465 yeast genes under 79
biological conditions (four experiments on cell cycle, sporulation,
temperature shock and diauxic shift processes). We first computed
the absolute Pearson correlation of all possible gene–gene pairs
based on the expression values regardless of their sign as we focused
on the strength of co-expression, and then applied Fisher’s z trans-
formation to these results to convert them into normally distributed
variables suitable for parametric statistical testing. After removing
those genes that had no GO annotations, all the genes in the result
set had their own GO annotations from all three sub-ontologies
(without considering IEAs and NDs). Due to sub-sampling from this
large set, since the final dataset could be easily over-represented
with co-expressed gene pairs that have small correlations, we con-
sidered a binning strategy with which the absolute Pearson correla-
tions of pairs could fall into one of five non-overlapping bins of size
0.2 between 0 and 1. In our random sub-sampling process, we
allowed only an equal number of gene pairs within the bins. The
final dataset contained 37 405 gene–gene pairs along with the trans-
formed Pearson’s correlation of their expressions.

Gene expression-Human (Homo sapiens). In order to demon-
strate the utility of the approach in human genomics, we used data
coming from the Genotype-Tissue Expression (GTEx) portal
(https://gtexportal.org/), which is a comprehensive public resource
to study tissue-specific human gene expression and regulation Ardlie

et al. (2015). Although their samples are collected from 54 non-
diseased tissue sites across nearly 1000 individuals, as a proof of
concept we limited our experiment to whole blood tissue gene ex-
pression available for 754 individuals. A total of 2361 genes had
complete GO annotations and were retained for further analysis.
The absolute Pearson correlation value was calculated between their
pairs to infer the strength of the relationship; this was followed by
Fisher’s z transformation. Similar to yeast data, due to the large size
of the calculated correlation set, by executing our binning strategy, a
subset of this computed set was employed for our experiments
and for the evaluation of gene FS measures. This process resulted in
a co-expression dataset of 62 470 gene-gene pairs.

3.2 Pretraining of GO-term embeddings
Initialization of a neural network with pretrained embeddings has
proven to be effective in a variety of applications (Xu et al., 2015).
Our GO term pretraining approach consists of six steps depicted in
Figure 3. In essence, the second-order computation of vector represen-
tation of GO terms based on their text definitions and co-occurrence
vector of their content words in MEDLINE abstracts prevents the
issue of the sparsity of word features in the first-order vector represen-
tation of the definitions (Pesaranghader et al., 2013a); Pointwise
Mutual Information statistically defines the degree of association be-
tween each GO term and its second-order word features, and Latent
Semantic Analysis condenses the final high-dimensional vectors to a
size tractable by deep neural networks. Theses pretraining steps are
thoroughly detailed in Supplementary material S1.

3.3 deepSimDEF network definition
deepSimDEF offers single-channel and multi-channel network archi-
tectures that learn and represent the shared information of two pro-
teins based on their GO annotations, and then measure FS of genes
for an application of interest. While a single-channel network only
considers annotations of one sub-ontology, as depicted in Figure 4
for the BP sub-ontology, the multi-channel architecture, with more
layers shown in Figure 5, takes into account all the three GO sub-
ontologies together. The 8 layers fundamental to both deepSimDEF
architectures are described as follows.

GO-term embedding layer. The GO term annotations of two
proteins are fed to the model as indexes taken from three fixed sets
of GOBP, GOCC or/and GOMF. These sets contain the indexed GO
terms of a particular database from the sub-ontologies of BP, CC
and MF. Each set is also associated with a 100-row look-up table.
These tables, ideally initialized with our pretrained GO-term embed-
dings, are parameters of the model. First, for every protein, its GO
term indexes transform into vectors by looking up their GO-term

Fig. 3. Definition-based embedding model of the Gene Ontology terms
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embeddings. Then, within the embedding layer, for each sub-
ontology, the two input proteins are represented as two lists of fixed
length t0, each list containing the 100-dimensional GO embeddings
of those two genes’ annotations looked up already (Eq. (3)). In the
architectures, for consistency across GO annotations of all genes,
whenever the annotation sets of a gene had the length of less than t0,
we padded the annotation list with a generic vector of a large nega-
tive value (padding was repeated whenever needed); subsequent
Max-pooling Layer later suppressed the effect of this generic vector,
and the final estimations were calculated only based on the actual
annotations. For yeast database, when IEA–, inferred from the larg-
est number of annotation for a gene, the fixed annotation length for
BP, CC and MF were 50, 22 and 24, respectively.

Xebm ¼ ½x1; x2; . . . ;xt0
� 2 R100�t0 (3)

where xi denotes the GO-term embedding of the ith BP GO annota-
tion of a gene. An embedding layer is denoted by ebm(100, t0) in the
figures.

Max-pooling layer. Generally, a max-pooling layer aggregates
the input vectors by taking the maximum over a set of intervals.
Here, for the output of an embedding layer, the max operation is
applied over all column features, which is denoted by maxpool(t0).
We also considered flattening of the resulting pooled column-vector
into a row feature-vector representation as an integrated part of the
max-pooling layer prior to passing the results of the layer to a higher
fully connected layer. After max-pooling, proteins with different
lengths of GO annotations are represented with 100-dimensional
global feature vectors each for one sub-ontology.

Merge layer. For a single-channel architecture, we have only one
merge layer at the gene-product similarity level due to the paired na-
ture of the input data. That means prior to the extraction and repre-
sentation of the shared information between two gene products,
their individual feature vectors need to be merged through concaten-
ation. For the multi-channel architecture, however, besides having a
merge layer at the gene-product level, we have an earlier merge layer
at the GO term annotations level. For a given gene product of an in-
put gene pair, this extra merge layer is used to concatenate the three

Fig. 4. Paired single-channel deepSimDEF network architecture for BP

Fig. 5. Paired multi-channel deepSimDEF network architecture
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100-dimensional feature vectors of the BP, CC and MF annotations
from the max-pooling layer. In the multi-channel architecture, at the
GO term annotation level, mgo multi 2 R1�300 is the result of the
merge layer. At the gene-product level, mgp single 2 R1�200 and
mgp multi 2 R1�600 are the results of the merge layers for the paired
single-channel and paired multi-channel architectures, respectively.
Merge layers are denoted by merge(‘concat’).

Fully connected layer. The fully connected layer takes a d0-di-
mensional input vector xfch 2 Rd0 to learn higher level feature repre-
sentations of the underneath layers (In the equations, � denotes
matrix multiplication.) with:

h ¼ ReLUðWh � xfch þ bhÞ; (4)

where Wh 2 Rnhid�d0 , nhid is the size of the fully connected hidden
layer, bh 2 Rnhid is the bias vector, and ReLU is the rectified linear
activation function (Nair and Hinton, 2010). The output of the
first fully connected layer can be seen as the embeddings of the in-
put gene products. Depending on whether the single-channel or
multi-channel network is employed, this embedding size can be
100-dimensional or 300-dimensional. The fully connected hidden
layers are denoted by dense(nhid, ‘relu’). At the similarity level,
the fully connected layer improves representation of the shared
information between two genes.

Highway layer. In the previous measures including simDEF, for
FS estimation of two input gene products, human-engineered aggre-
gation metrics were used—while the SS scores of their pair-wise GO
annotations made the inputs of these metrics. However, there is no
consensus in the literature on what metric is the best choice for the
aggregation of the shared information, as from one biological ex-
periment to another the results vary, and even sometimes, the con-
clusions contradict each other (Guzzi et al., 2012). In the
deepSimDEF model, the highway layer (Srivastava et al., 2015) is
devised to let the model itself properly learn an adaptive representa-
tion of the provided information of the two input genes encoded in
the lower layer for the comparison of those genes’ biological traits
including their molecular functions (see also Supplementary material
S1). This representation uses a gating mechanism that controls the
flow of information from the two gene products into an aggregated
high-level representation. This adaptive representation of the shared
information strengthens an affine transformation—similar to what
is presented in Eq. (4)—with a non-linear transform function T. We
refer to the vector T as the transform gate since it expresses how the
output is produced through transforming or carrying the input. If
we consider the size of the concatenated feature vectors of two input
genes to be d1-dimensional, T can be formulated as:

T ¼ rðWT � xfch þ bTÞ; (5)

where WT 2 Rnhid�d1 is the weight matrix, nhid is the size of the fully
connected hidden layer and here is equal to d1 since we do not want
to expand or shrink the representation result at this stage, bT 2 Rnhid

is the bias vector, and r is a sigmoid function employed in the origin-
al paper as the transform function (Srivastava et al., 2015). If we
want to represent two extreme cases which apply either transform
state or block (or carry) state on the input data, Eq. (6) formulates
that for us:

x0 ¼
�

xfch; if T ¼ 0
rðWh � xfch þ bhÞ; if T ¼ 1

: (6)

Therefore, depending on the output of the transform gates, a
highway layer should smoothly vary its behavior between that of a
plain layer with a non-linear activation of interest (if T¼1; in
deepSimDEF we achieved better results with sigmoid function) and
that of a layer which simply passes its inputs through (if T¼0).
Equation (7) formulates this favorable behavior (In the equation, �
implies element-wise multiplication.):

x0 ¼ rðWh � xfch þ bhÞ � T þ xfch � ð1� TÞ: (7)

The transform gate—which is the principal component in the
deepSimDEF network(s) for a high-level representation of the shared

information of two input genes, and all the weights in the highway
layer, will be learned during the training phase. The highway layer is
denoted by highway(‘sigmoid’).

Classification/regression layer. Whether an experiment con-
ducted in a study is a classification problem or a regression problem,
the output of the last dense layer is fully connected to either a
sigmoid classification layer (e.g. for our PPI experiment) or a linear
regression layer (for the gene expression and sequence homology
experiments). After the lower layer processing, a fixed dimensional
feature vector xcl or xrg 2 Rd2 is the input to the classification/regres-
sion layer, with a sigmoid or linear activation, whose output is the
FS estimation of the genes. For a classification task we have:

pðy ¼ ijxclÞ ¼
expðWouti

� xcl þ bouti
ÞPnout

j¼1 expðWoutj
� xcl þ boutj

Þ ; (8)

where pðy ¼ ijxclÞ outputs probability distribution over labels,
Wout 2 Rnout�d2 , nout is the size of the classification layer (for the PPI
prediction it is equal to two types), bout 2 R is the bias vector, and
d2 is either 100-dimensional (for single-channel) or 300-dimensional
(for multi-channel architecture). The classification layer is denoted
by dense(1, ‘sigmoid’). For a regression task:

ŷ ¼Wout � xrg þ bout; (9)

where ŷ outputs a scalar value, Wout 2 R1�d2 , d2 is either 100- or
300-dimensional depending on the architecture, and bout 2 R is the
bias vector. The regression layer is denoted by dense(1, ‘linear’).

Since a deepSimDEF network needs to be symmetric to produce
the same result for the two input pairs of [g1, g2] and [g2, g1], all
equivalent layers of the paired networks, including embedding
layers, must share the same weights [similar to Siamese network
(Siamese network is an artificial neural network that uses the same
weights while working in tandem on two different input vectors to
compute comparable output vectors.)]. Meaning, for each sub-
ontology, we only have one look-up table (initialized randomly or
with the pretrained GO-term embeddings). In the training phase and
during back-propagation, this table(s) will be updated simultaneous-
ly for every gene product in a training gene product pair. We also
used dropout (Srivastava et al., 2014) of 0.3 on the fully connected
and highway layers to allow a more accurate generalization. The
parameters of the networks are optimized to maximize the correl-
ation between the estimated FS of gene products predicted by the
models and the target scores in the training datasets. This selection
was done in a 10-fold cross-validation manner where validation
splits chose the best parameters using an early stopping strategy
(Prechelt, 1998). Additionally, since the weight matrices of the high-
way layer for the concatenated feature-vectors of the paired net-
works are not symmetric and do not update symmetrically, we not
only trained the networks on ([g1, g2], score) instances, we also
trained them on ([g2, g1], score) instances. See Supplementary mater-
ial S4 for further details and the exact hyper-parameters of the
networks.

4 Discussion

In comparison to baseline FS measures, validation of deepSimDEF
on yeast and human reference datasets yielded increases in PPI pre-
dictability by >4.5% and �5%, respectively; a correlation improve-
ment of �9% and �6% with yeast and human gene co-expression
values; and improved correlation with sequence homology by up to
6% for both organisms. Unsurprisingly, we observed significantly
better results for the predictions in yeast than in human, especially
for the co-expression analysis. This is likely due to the fact that our
human data came from whole blood samples (the largest dataset
available in GTEx), which is a mix of several cell types regulated in
different ways, inevitably creating noise in co-expression networks,
whereas the information available from yeast co-expression net-
works is likely more complete given its unicellular nature.

One important aspect regarding the hyper-parameter setting of
the deepSimDEF networks was that for all the experiments, one set
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of hyper-parameters always helped to get the optimal results for the
networks (multi- or single-channel). For example, if we changed the
embedding size in one experiment and observed a decline or an im-
provement in the results, for other experiments, we observed the
same trend in the results applying the same changes to their net-
works. This allowed us to maintain a consistent structure across all
experiments, which will be very beneficial as deepSimDEF can be
extended to less well-characterized datasets than the yeast and
human examples we show here. Regarding computational complex-
ity of the deepSimDEF model, since the networks are trained in ad-
vance, prediction of FS for batches of new proteins will be very fast
at inference time while this is not true for the pair-wise FS measures.
deepSimDEF networks were trained and tested on NVIDIA Quadro
RTX 6000 GPUs. Depending on the experiment and deepSimDEF
network architecture the training time varied from a few hours to al-
most a day.

Future work with deepSimDEF can involve extension to other
problems where FS and SS measures have been applied, including
microRNA function analysis (Peng et al., 2017), co-expression net-
work construction (Wang et al., 2017), drug discovery (Sridhar
et al., 2016) and cancer treatment studies (Schaefer and Serrano,
2016). deepSimDEF needs to be tested on species other than yeast
and human as well, and, in humans, on different tissues. Indeed,
co-expression and PPI patterns will vary according to tissue type,
and future work should focus on integrating multiple tissues to de-
rive tissue-specific predictions.

Finally, we emphasize that our result derived from IEA should be
taken with a grain of salt as such annotations are typically assigned
on the basis of homology or domain content, meaning that if two
proteins are similar in the sequence they are likely to obtain similar
inferred GO annotations. There may thus be an influence of data
circularity in the behavior of the results derived from IEA (Pesquita
et al., 2008), and it is possible that we are partly measuring the sen-
sitivity of the electronically inferred GO annotations. However, by
excluding IEA annotations in our experiments, we could not identify
any significant change in the prediction power of deepSimDEF net-
works. On the other hand, IEA annotations can produce erroneous
results when key functional residues are mutated, when genes are
duplicated to acquire additional functions, or when the alignment
does not span the whole length of the proteins possibly indicating
changes in domain architecture. As a result, the computational as-
signment of GO terms demands more advanced techniques which go
beyond homologous sequences. Such techniques are the topic of
many recent studies (Littmann et al., 2021; Seyyedsalehi et al.,
2021). While we considered IEAþ and IEA� in our experiments (as
commonly done in the previous studies), sensitivity to other evidence
codes employed in the GO annotations pipeline can be the subject of
further studies. Last but not least, in the context of transfer learning,
more studies are needed to be done to discover how the learned in-
formation from a biological task for an organism can be transferred
to another organism.

5 Conclusions

Many important applications in computational molecular biology
such as gene clustering, protein function prediction, protein inter-
action evaluation, and disease gene prioritization require functional
similarity of genes. deepSimDEF offers a novel deep neural network-
based tool for functional similarity prediction of genes and gene
products. It results in valuable low-dimensional embeddings of GO
terms and gene products and provides powerful, flexible, easily
transferable deep neural architectures applicable to a wide range
of problems in genomics and proteomics. When evaluated on
the yeast and human databases, deepSimDEF single-channel and
multi-channel networks outperformed the well-known functional
similarity measures in the tasks of PPI prediction, correlation with
gene expression as well as correlation with sequence homology data
by gaining large margins of improvement. Also, in contrast to previ-
ous measures which are computationally expensive, once a
deepSimDEF network is trained, its functional similarity prediction

of batches of genes is reasonably fast which could be substantially
helpful for real-life applications.
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