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Abstract: Asymmetric epoxidation of a series of olefinic substrates with sodium percarbonate oxidant
in the presence of homogeneous catalysts based on Mn complexes with bis-amino-bis-pyridine
ligands is reported. Sodium percarbonate is a readily available and environmentally benign oxidant
that is studied in these reactions for the first time. The epoxidation proceeded with good to high yields
(up to 100%) and high enantioselectivities (up to 99% ee) using as low as 0.2 mol. % catalyst loadings.
The epoxidation protocol is suitable for various types of substrates, including unfunctionalized
alkenes, α,β-unsaturated ketones, esters (cis- and trans-), and amides (cis- and trans-). The reaction
mechanism is discussed.

Keywords: enantioselective; epoxidation; manganese; sodium percarbonate; olefin; alkene

1. Introduction

Chiral epoxides are useful building blocks in organic synthesis and essential synthetic
targets [1–3]. The demand for synthetic methodologies of chiral epoxides preparation
has been nourished by the biological activities exhibited by various natural products
containing an epoxide unit and their applications as convenient (stable yet readily reactive)
precursors to more complex chiral molecules [4–6]. The production of epoxides from the
corresponding olefins by asymmetric epoxidation reaction in the presence of transition
metal catalysts is considered the most efficient and versatile method [7–11]. In this realm,
manganese(II) complexes with chiral N4 bis-amino-bis-pyridine and related ligands were
established as highly enantioselective and efficient catalysts of olefins epoxidation with the
environmentally benign oxidant hydrogen peroxide [12–15]. In the recent decade, the topic
has been extensively studied by groups of Sun [16–23], Costas [24–27], Bryliakov [12,28–32],
and others [33–35]. Using hydrogen peroxide in these reactions is considered beneficial for
several reasons: aqueous H2O2 is a safe, easy-to-handle oxidant with high active oxygen
content (47%), which produces water as the only by-product. Nonetheless, it is known
that hydrogen peroxide is prone to disproportionation in solutions containing transition
metals like iron or manganese, which may significantly deteriorate the oxidant efficiency.
Typically, this is partially sorted out via slow, syringe-pump oxidant addition. Other
oxidants, including peracids, alkylhydroperoxides, and iodosylarenes, have also been
utilized in bis-amino-bis-pyridine manganese complexes catalyzed epoxidation [31,36].
We present the use of sodium percarbonate as a convenient and environmentally benign
solid oxidant for manganese catalyzed enantioselective epoxidation, which is added to the
reaction mixture in portions. The corresponding epoxides of various olefins were obtained
in good to quantitative yields with up to 99% ee.

2. Results and Discussion

The commercial bleaching agent sodium percarbonate (Na2CO3 1.5H2O2) is a white
powder stable at room temperature [37]. It has no shock sensitivity and contains 15%
of active oxygen. Previously, sodium percarbonate was utilized in various oxidation
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reactions, including oxidations of sulfides to sulfones, anilines to nitroarenes, and non-
enantioselective epoxidations [37,38]. In order to find appropriate conditions for employing
sodium percarbonate in manganese-catalyzed asymmetric epoxidation, we initially tested
it in reaction with chalcone in the presence of catalyst 1 [30] (Figure 1).
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Figure 1. Manganese complexes used in this study. OTf = trifluoromethanesulfonate. 
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2-ethylbuthanoic acid (EBA) [20,29] was probed (Table 1, entry 2). Indeed, the enanti-
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The epoxidations with H2O2 in the presence of bis-amino-bis-pyridine manganese com-
plexes usually require adding carboxylic acid as a co-catalytic additive [28,29]. Herewith,
using acetic acid, AcOH, as an additive (14 equiv. vs. chalcone) and sodium percarbonate
(2 equiv. vs. chalcone, added in one portion) as an oxidant resulted in a nearly quantitative
formation of chalcone epoxide having 82% ee (Table 1, entry 1). To improve the enantiose-
lectivity of the reaction, a more sterically demanding 2-ethylbuthanoic acid (EBA) [20,29]
was probed (Table 1, entry 2). Indeed, the enantioselectivity increased up to 94% ee, albeit
with a reduced conversion of 83%. Raising the amount of oxidant to 2.5 equiv. vs. substrate
led to only a minor increase in epoxide yield (92%, Table 1, entry 3). Adding sodium
percarbonate in three portions within 30 min intervals was revealed as the most practical
protocol, furnishing nearly quantitative conversion of chalcone to the epoxide having 94%
ee (Table 1, entry 4).

Table 1. Asymmetric epoxidation of chalcone with sodium percarbonate in the presence of catalyst 1 1.
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Having these optimized conditions in hand, we carried out the asymmetric epoxida-
tion of a series of substrates (Figure 2) in the presence of Mn complex 1 (Table 2). The epox-
idation of unfunctionalized alkenes 3b–e (Table 2, entries 1–4) afforded the corresponding
epoxides with high yields (95–100%) and moderate to good enantioselectivity (51–79% ee).
The epoxidation of 2,2-dimethyl-2H-chromene-6-carbonitrile 3f to the corresponding epox-
ide (a precursor for the antihypertensive agent levcromakalim [39]) was accomplished in
99% yield and 95% ee (Table 2, entry 5). Substrate 3g, bearing α,β-unsaturated ketone
functionality, was epoxidized with moderate conversion under these conditions (47% yield,
Table 2, entry 6). Nonetheless, the enantioselectivity was high (87% ee). The epoxidation
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of trans-α,β-unsaturated esters 3h and 3i demonstrated the dependence of asymmetric
induction on the steric demand of alkyl substituents in the ester group (cf. 87% ee for –OiPr
vs. 80% ee for –OMe, Table 2, entries 7,8), in full accordance with previous observations [30].
Highly enantioselective epoxidation (99% ee) of trans-enamide 3j was documented (Table 2,
entry 9), although it required increased catalyst loading of 0.5 mol. % and was accomplished
in moderate yield (60%). The same amount of the catalyst was enough to mediate the
asymmetric epoxidation of cis-enamide 3m with 81% yield and 79% ee (Table 2, entry 12).
The esters of cis-cinnamic acid 3k and 3l were converted to corresponding epoxides with
high yields (100 and 96%, respectively); the enantioselectivity was higher for the bulkier
–OiPr ester (94% ee, Table 2, entry 11), cf. 86% ee for the–OEt ester (Table 2, entry 10).
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Entry Substrate Cat. Loadings,
%

Conversion/Yield,
% ee, %

1 3b 0.2 100/100 62
2 3c 0.2 100/99 79
3 3d 0.2 95/95 63
4 3e 0.2 98/84 51
5 3f 0.2 99/99 95

6 2 3g 0.2 47/47 87
7 3h 0.2 83/83 80
8 3i 0.2 83/83 87

9 3 3j 0.5 60/60 99
10 3k 0.2 100/100 86
11 3l 0.2 96/96 94
12 3m 0.5 86/69 79

1 Reaction conditions: −40 ◦C, [Mn]/[oxidant]/[substrate]/[additive] = 0.2 µmol:200 µmol:100 µmol:1.4 mmol in
CH3CN (0.4 mL), oxidant was added in 3 portions within 30 min intervals. 2 Mixed CH3CN/CH2Cl2 (0.4 mL/
0.4 mL) solvent was used. 3 Mixed CH3CN/CH2Cl2 (0.4 mL/0.6 mL) solvent was used.

Based on earlier data [32], one could expect that increasing the electron-donating
ability of the ligands of the Mn-based catalysts should enhance the epoxidation enan-
tioselectivity. Indeed, catalyst 2 [30], bearing stronger electron-donating NMe2 groups
at the pyridylmethyl moieties of the ligand (Figure 1), in all cases but 3j, showed higher
enantioselectivities (Table 3), which improvement was most significant in the case of unfunc-
tionalized alkenes 3b–e (Table 3, entries 2–5). For the epoxidation of trans-α,β-unsaturated
esters 3h and 3i, the steric hindrance did not affect the asymmetric induction (86 and 87%
ee, respectively, Table 3, entries 8, 9; cf. entries 6, 7 of Table 2). cis-Cinnamic acid derivatives
3k-m were epoxidized in high yields (84–98%) and enantioselectivities (82–95% ee, Table 3,
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entries 11–13). Olefins 3a, 3f, and 3j were converted to the corresponding epoxides almost
quantitatively, with excellent enantioselectivity (95–97% ee, Table 3, entries 1, 6, 10).

Table 3. Asymmetric epoxidation of olefins with sodium percarbonate in the presence of 2 1.
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1 3a 0.2 99/96 96
2 3b 0.2 75/75 67
3 3c 0.2 71/71 82
4 3d 0.2 100/98 71
5 3e 0.2 100/100 60
6 3f 0.2 100/100 95

7 2 3g 0.2 77/77 82
8 3h 0.2 61/61 86
9 3i 0.2 46/46 87

10 3 3j 0.5 100/100 97
11 3k 0.2 98/98 84
12 3l 0.2 84/84 95
13 3m 0.5 90/90 82

1 Reaction conditions: −40 ◦C, [Mn]/[oxidant]/[substrate]/[additive] = 0.2 µmol:200 µmol:100 µmol:1.4 mmol
in CH3CN (0.4 mL), oxidant was added in 3 portions within 30 min intervals. 2 Mixed CH3CN/CH2Cl2
(0.4 mL/0.4 mL) solvent was used. 3 Mixed CH3CN/CH2Cl2 (0.4 mL/0.6 mL) solvent was used.

It was reported previously [38] that sodium percarbonate is prone to deliver hydrogen
peroxide in the reaction medium. The intermediate formation of peroxycarboxylic acid can
be ruled out as far as under near-anhydrous conditions it is possible only from carboxylic
acid anhydrides or chloroanhydrides rather than the acid itself [37]. Therefore, one can sug-
gest that the slowly liberated H2O2 acts as a true oxidant. We have established that for bis-
amino-bis-pyridine manganese complexes-catalyzed asymmetric epoxidation with H2O2,
the addition of carboxylic acid is required to achieve reasonable conversions [29,30]. The
latter is assumed to promote the heterolytic cleavage of the O-O bond in the (L)MnIIIOOH
intermediate to generate the (L)MnV = O active species, responsible for the enantioselective
oxygen transfer [30,31].

3. Materials and Methods
3.1. Materials

All chemicals and solvents were purchased from Aldrich, Acros Organics, or Alfa
Aesar and were used without additional purification unless noted otherwise. For catalytic
epoxidation experiments, technical grade sodium percarbonate (Na2CO3 1.5H2O2) was
used. Chiral Mn catalysts 1 and 2 were prepared as described [30] and were recrystallized
from acetonitrile/diethyl ether. Substrates 3a–f were purchased and used without further
purification; others were prepared as described [12,32].

3.2. Instrumentation
1H NMR spectra were measured on Bruker Avance 400 spectrometer at 400.13 MHz

and on Bruker DPX-250 spectrometer at 250.13 MHz, respectively. Chemical shifts were
internally referenced to the residual proton signal of CDCl3 (7.26 ppm) for 1H NMR spectra.
The enantiomeric excess values of chiral epoxides were measured by HPLC (Shimadzu LC-
20 chromatograph,) equipped with a set of chiral columns (Daicel) as described [12,30,32].
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3.3. General Procedure for the Catalytic Epoxidation of Olefins with Sodium Percarbonate

In a typical experiment, substrate (100 µmol) and carboxylic acid (1.4 mmol) were
added to the solution of the manganese catalyst (0.2 µmol) in CH3CN (0.4 mL), and
the mixture was thermostated at −40 ◦C. Then, 200 µmol of mortar-grounded sodium
percarbonate was added to the reaction mixture in 3 roughly equal portions, with 30 min
intervals between the additions (66.7 µmol in each portion). The resulting mixture was
stirred for 2 h at −40 ◦C (total reaction time: 3 h). The reaction was quenched with
a saturated aqueous solution of Na2CO3, and the products were extracted with Et2O
(3 × 4 mL). The solvent was evaporated, and the residue was analyzed by 1H NMR
spectroscopy (Table S1, Figure S1, SI) to determine conversions and yields and by HPLC on
chiral stationary phases (Table S2, Figure S2, SI) to measure the enantiomeric excess values
of the chiral epoxides as previously described [12,30,32].

4. Conclusions

In conclusion, we have demonstrated that sodium percarbonate can be a convenient
oxidant in the asymmetric epoxidation of olefins catalyzed by bis-amino-bis-pyridine man-
ganese complexes. The epoxidation of various types of substrates, including unfunctional-
ized alkenes, α,β-unsaturated ketones, esters (cis- and trans-), and amides (cis- and trans-),
proceeded with good to high yields (up to 100%) and high enantioselectivities (up to 99% ee)
using as low as 0.2 mol. % of catalyst loadings. It is assumed that sodium percarbonate
releases hydrogen peroxide in the catalytic epoxidation leading to the formation of the
reputed manganese(V)-oxo oxygen transferring species. The advantage of the designed
epoxidation protocol is the absence of necessity for syringe pump addition of the oxidant.
We foresee further studies involving sodium percarbonate oxidant in other manganese
catalyzed chemo- and stereoselective oxidations.

Supplementary Materials: The following supporting information (SI) can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27082538/s1, Table S1: 1H NMR data for the epoxides;
Table S2: HPLC data for the epoxides; Figure S1: Selected examples of 1H NMR spectra of reaction
mixtures; Figure S2: Selected examples of chiral HPLC chromatograms of reaction mixtures.
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