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iMiRNA-SSF: Improving the 
Identification of MicroRNA 
Precursors by Combining Negative 
Sets with Different Distributions
Junjie Chen1, Xiaolong Wang1,2 & Bin Liu1,2

The identification of microRNA precursors (pre-miRNAs) helps in understanding regulator in biological 
processes. The performance of computational predictors depends on their training sets, in which 
the negative sets play an important role. In this regard, we investigated the influence of benchmark 
datasets on the predictive performance of computational predictors in the field of miRNA identification, 
and found that the negative samples have significant impact on the predictive results of various 
methods. We constructed a new benchmark set with different data distributions of negative samples. 
Trained with this high quality benchmark dataset, a new computational predictor called iMiRNA-SSF 
was proposed, which employed various features extracted from RNA sequences. Experimental results 
showed that iMiRNA-SSF outperforms three state-of-the-art computational methods. For practical 
applications, a web-server of iMiRNA-SSF was established at the website http://bioinformatics.hitsz.
edu.cn/iMiRNA-SSF/.

MicroRNAs (miRNAs) are a class of evolutionally conserved, single-stranded, small (approximately 19–23 nucle-
otides), endogenously expressed and non-protein-coding RNAs that act as post-transcriptional regulators of gene 
expression in a broad range of animals, plants and viruses1–4. MiRNAs play an important role as a regulator in 
biological process5. The aberrant expressions have been observed in many cancers6–9 and several miRNAs have 
been convincingly proved to play important roles in carcinogenesis10. The protein architecture in different pro-
grammed cell death (PCD) subroutines has been explored, but the global network organization of the noncoding 
RNA (ncRNA)-mediated cell death system is limited and ambiguous11,12. Thus, the discovery of human miRNAs 
regulation is an important task.

As traditional experimental methods for miRNA identification are time and money consuming, recently more 
attention has been paid to the development of computational approaches. Because miRNAs are short, the tra-
ditional feature engineering approaches13–15 are usually failed to extract features based on their sequences and 
structures, and therefore, computational approaches usually identify the precursors of miRNAs (pre-miRNAs) 
instead of miRNA. A variety of software tools for this purpose have been proposed. As shown in previous stud-
ies, extracting useful features are important for constructing a computational predictor16. Various features and 
machine learning techniques have been proposed to predict miRNAs. Triplet-SVM17 incorporated a local con-
tiguous sequence-structure composition feature and utilized SVM to construct the predictor. MiPred18 identi-
fied the human pre-miRNAs by using an RF classifier with a combined feature set, including local contiguous 
sequence-structure (Triplet-SS), minimum of free energy feature (MFE) and P-value of randomization test 
feature (P-value). Compared with Triplet-SVM, MiPred improved the performance by nearly 10% in terms of 
accuracy. MiRanalyzer19 employed an RF classifier trained with a variety of features associated with nucleotide 
sequence, structure and energy. Wei, L. et al.20 proposed a SVM-based method called miRNApre using the local 
contiguous structure-sequence composition feature, primary sequence composition feature, and MFE. Recently 
some predictors have been proposed based on the predicted secondary structure of RNA sequences, such as 
iMiRNA-PseDPC21, iMcRNA-PseSSC22, miRNA-dis23, deKmer24, etc. These methods using different features and 
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classifiers treat the pre-miRNA identification problem as a binary classification problem. Currently, the widely 
used classification algorithms include Support Vector Machine (SVM)17,25 , Hidden Markov Model (HMM)26, 
Random Forest (RF)18, and Naive Bayes (NB)27. The widely used features of characterizing pre-miRNAs include 
stem-loop hairpin structures28,29, MFE of the pre-miRNAs, and P-value of randomization test18–20,30. Because the 
importance of the features for constructing a predictor, recently, some web-servers or stand-alone tools were pro-
posed to extract the features from RNA sequences, such as Pse-in-One31, and repRNA32. MiPred18 identified the 
human pre-miRNAs by combining Triplet-SS, MFE and P-value, in which MFE and P-value were the top 2 most 
important features. MiRanalyzer19 was trained with a variety of features, in which MFE was the secondary most 
important feature. miRNApre was built based on Triplet-SS, primary sequence composition feature, and MFE. 
However, based on the feature analysis of miRNApre, MFE feature cannot improve the performance. Therefore, it 
is interesting to explore the reasons for the different discriminative power of the same feature in different predic-
tors. Furthermore, there are several other challenging problems should be solved in this filed:

(1) Many features have been proposed to characterize the pre-miRNAs, but their discriminative power is not 
investigated. Some features showed strong discriminative power in some predictors, while in other predictors, 
they only showed limited discriminative power, for example MFE played an important role in Triplet-SVM, 
but it almost had no contribution to the discriminative power of miRNApre. Therefore, the most discrimina-
tive features and their combinations for miRNA identification should be investigated.

(2) The existing benchmark datasets are too small to reflect the statistical profile. Most of these datasets only 
contain several hundreds of real pre-miRNA samples and pseudo pre-miRNA samples. It is necessary to 
construct an updated benchmark dataset to fairly evaluate the performance of different methods.

(3) Most of these methods performed well in cross validation test, but they showed much lower performance 
on independent testing sets. This is because the samples in the training set are not representative enough, 
especially for the pseudo pre-miRNA samples (negative samples). There is no golden standard to select or 
construct the negative samples33,34.

To solve these problems, we investigated the distributions of various benchmark datasets, and found that they 
had large variance, especially for the distributions of negative samples. A series of controlled experiments were 
conducted to find out how the performance were impacted on different distributions of negative samples. The 
results showed the negative samples were not representative enough. Therefore, the key to improve predictive 
performance was to construct an high quality benchmark dataset for miRNA identification. In this regard, a new 
benchmark dataset was constructed, in which the positive samples were extracted from the miRBase35–37, and 
the negative samples were selected from existing datasets with different data distributions. Finally, we proposed a 
new computational method for pre-miRNA identification, called iMiRNA-SSF, which employed the sequence and 
structure features trained with the updated benchmark dataset. The web-server of iMiRNA-SSF can be accessed 
at http://bioinformatics.hitsz.edu.cn/iMiRNA-SSF/.

Results
Negative samples have significant impact on the discriminative power of features. As reported 
in literatures, MFE and P-value were the top 2 most important features in MiPred18, but they were not so impor-
tant in miRNApre20 (out of top 10 features). The main difference between these two methods was their negative 
samples in benchmark datasets. The negative samples of MiPred were collected from the protein coding regions 
with parameter filtering method, while the negative samples of miRNApre were collected by multi-level process. 
For more details, please refer to17,20.

Our hypothesis was that the different discriminative power of the same method was caused by the negative 
samples. In order to validate this hypothesis, two datasets Sxue and Szou were constructed with the same positive set 
and the different negative sets:

∪= ( )+ −S S S 1xue xue

∪= ( )+ −S S S 2zou zou

where the +S , −Sxue and −Szou are the same as the subsets in Equation (4). The dataset Sxue is union of +S  and −Sxue; Szou 
is union of +S  and −Szou.

We investigated the discriminative power of all features mentioned in Method section on datasets Sxue and Szou 
by assessing their information gain related to the classes. The higher information gain value38 means the related 
feature is more powerful. The top 20 most important features on the two datasets were shown in Table 1(A,B), 
respectively.

MFE and P-value were the top 2 most important features on Sxue. However, P-value was only ranked at 20th on 
Szou and MFE was ranked out of top 20. We also found that 14 of the top 20 most important features on Sxue 
belonged to local triplet sequence-structure features (Triplet-SS) category, but only 4 features belonged to primary 
sequence features (3-gram) category. In contrast, for Szou, only 5 of the top 20 most important features belonged 
to Triplet-SS category, and 14 features belonged to 3-gram category. The structure features are more powerful 
than sequence features on Sxue database, but it is not the case on Szou database. The results showed that the negative 
samples have significant impact on the discriminative power of features.

We took MFE and P-value as examples to analyse the reasons. Their distributions on positive and negative 
samples of Sxue and Szou were calculated, and the results were shown in Fig. 1. The distributions of MFE and 
P-value are very similar between −Szou and +S , but they are different between −Sxue and +S . A feature has more dis-
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criminative power if its distribution has variance on positive and negative sets. This is why MFE and P-value show 
powerful discriminability on Sxue database, but it is not the case on Szou database.

Importance of negative samples for training a classifier. The different distributions of negative sam-
ples have significant impact on the performance of a trained classifier. However, how does it come into being and 
how to avoid this problem?

We conducted the controlled experiments, employing all features (Triplet-SS, MFE, P-value and N-gram). The 
training sets and testing sets were constructed:
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where +Strain and +Stest are disjoint subsets of +S , in which respectively contain 1312 and 300 human pre-miRNAs; 
_

−Sxue train and _
−Sxue test are disjoint subsets of −Sxue, in which respectively contain 1312 and 300 Xue pseudo 

pre-miRNAs; _
−Szou train and _

−Szou test are disjoint subsets of −Szou, in which respectively contain 1142 and 300 Zou 
pseudo pre-miRNAs. The numbers of samples in each dataset were carefully chosen to avoid bias.

The prediction results were listed in Table 2. The cross validation results were achieved by leave-one-out strat-
egy on Sxue

train and Szou
train, whereas the independent testing results were achieved by testing on Szou

test and Sxue
test . In term of 

Table 2, both two predictors performed well in cross validation test, achieved 87.69% and 98.57% accuracies, 
respectively. But they showed much lower performance on the independent testing dataset, especially the perfor-
mance of the classifier trained on Szou

train and tested on Sxue
test  dropped to 51.17% from 98.57% in term of accuracy.

For a SVM-based method, it generates a decision boundary that separates the positive samples from the neg-
ative ones. The generated decision boundaries based on different datasets are significant difference. As shown in 
Fig. 2(A,B), the two generated decision boundaries built on two datasets with different distributions are different. 
When using a decision boundary to classify samples in another dataset, the majority of samples can’t fall on their 
own categories. As shown in Fig. 2(C), if samples in Szou

test as test samples, the decision boundary Bxue performs 
badly to classify them into two classes. If samples in Sxue

train as test sample, the same is to Bzou. But if we merge Sxue
train 

and Szou
train into one dataset, the generated new decision boundary BNew based on the new dataset can improve the 

predictive performance significantly. As shown in Fig. 2(D), the new decision boundary BNew can separate all 
samples correctly. It indicates that new decision boundary BNew is more general and outperforms Bxue and Bzou.

(A) (B)

Features IG(c, x)a Rank Features IG(c, x)a Rank

P-value 313.37 1 CGA 127.01 1

MFE 148.71 2 GCU 99.65 2

A((( 82.41 3 ACC 89.44 3

U((( 56.77 4 UGC 88.69 4

A… 47.77 5 GAC 72.01 5

C… 47.01 6 ACG 62.12 6

U… 39.56 7 CUG 60.67 7

C((( 29.03 8 UGG 60.03 8

G((( 26.95 9 A… 56.71 9

A..( 22.20 10 U((( 50.33 10

A(.( 20.68 11 CCG 50.26 11

G… 20.06 12 UCG 37.43 12

GGG 18.62 13 G((( 34.71 13

C(.( 17.66 14 GCA 34.62 14

U..( 15.29 15 CGU 34.27 15

CUA 14.15 16 GGC 30.87 16

G.(( 13.37 17 C… 30.81 17

G(.. 13.16 18 C..( 25.43 18

UAG 13.11 19 AGC 24.63 19

CCG 13.10 20 P-value 24.16 20

Table 1.  The importance of top 20 features. (A) and (B) are the ranking of top 20 most important features on 
Sxue and Szou, respectively. aIG(c, x): The information gain of features is a feature selection method used in many 
fields. In general terms, the expected information gain is the change in information entropy H from a prior state 
to a state that takes some information. The higher the information gain value means the feature is more 
discriminative.
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A new predictor built on updated benchmark dataset. We constructed a new benchmark set with 
different data distributions of negative samples, including real human pre-miRNAs as positive set, Xue pseudo 
pre-miRNAs −Sxue and Zou pseudo pre-miRNAs −Szou as negative sets. Trained with this high quality benchmark 
dataset, a new computational predictor called iMiRNA-SSF was proposed. Four kinds of features were employed 
to investigate that if they could be combined to improve performance of iMiRNA-SSF, including Triplet-SS, MFE, 
P-value and N-gram. The performance was obtained by using LibSVM algorithm with leave-one-out crossing 
validation on updated benchmark dataset. As shown in Table 3, the best performance (ACC =  90.42%, 
MCC =  0.79) was achieved with the combination of the four kinds of features. Triplet-SS is a local triplet 
sequence-structure-based feature; MFE and P-value are features based on the on minimum of free energy of the 
secondary structure; N-gram is a sequence-based feature considering the local sequence composition informa-
tion. These features describe the characteristics of pre-miRNA from different aspects. Therefore the predictive 
performance of iMiRNA-SS can be further enhanced by combining all of features.

Furthermore, the importance of all features was also investigated. P-value and MFE features are the most 
discriminative, followed by the local triplet sequence-structure features and the primary sequence based features. 
The results were shown in Table 4.

Comparison with other methods. Three state-of-the-art methods Triplet-SVM17, MiPred18 and miR-
NApre20 were selected to compare with the proposed iMiRNA-SSF. MiPred is a classifier using Random Forest 
algorithm combined with Triplet-SS, MFE, and P-value features. miRNApre employed the SVM algorithm with 
Triplet-SS, N-gram, MFE features. As mentioned in the introduction section, the reported accuracy of these 
methods were based on small datasets containing only several hundreds of samples without removing redundant 
sequences, thus, their performance might be overestimated. In order to make a fair comparison among these 
methods, all these methods were evaluated on the same updated benchmark dataset via leave-one-out crossing 
validation. Their predictive results were shown in Table 5.

Figure 1. The distributions of MFE and P-value in the positive set and two negative sets. (A), (B) and (C) 
are the comparison of distributions of MFE on +S , −Sxue and −Szou, respectively. (D, E) and (F) are the comparison 
of distributions of P-value on +S , −Sxue and −Szou, respectively.

Training 
dataset

Testing 
dataset

ACC MCC

cross 
validationa

independent 
testingb

cross 
validationa

independent 
testingb

Sxue
train Szou

test 87.69% 77.83% 0.75 0.59

Szou
train Sxue

test 98.57% 51.17% 0.97 0.07

Table 2.  The comparison with cross validation and independent testing in controlled experiments with 
two datasets that have different distributions of negative samples. aThe results were computed with leave-
one-out cross validation strategy. bThe results were computed on independent test dataset.
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To further illustrate the comparison, receiver operating characteristic (ROC) scores of different methods were 
provided in Fig. 3. The ROC scores of Triplet-SVM, MiPred, miRNApre and iMiRNA-SSF are 0.90, 0.92, 0.94 and 
0.96, respectively. iMiRNA-SSF outperforms the other three state-of-the-art methods.

Web-server description. For the convenience of the vast majority of experimental scientists, we provided 
a simple guide on how to use the iMiRNA-SSF web-server. It is available at http://bioinformatics.hitsz.edu.cn/
iMiRNA-SSF/.

Step 1: The homepage was shown in Fig. 4. The users can input their test data through two ways. One way 
is to copy pre-miRNA sequences in FASTA format into text area. The other way is to upload test file. Example 
sequences can be found by clicking on the Example link.

Step 2: Click on the prediction button to submit. iMiRNA-SSF will decide whether the test sequences are real 
human pre-miRNA sequences or not. Note that the computational cost of P-value feature is expensive, because 
for each query sequence we need to predict the secondary structures of its random shuffled sequences for 1000 
times via running Vienna RNA software.

Step 3: An output example was shown in Fig. 5. If the classification is predicted to Real pre-miRNA, it indi-
cates the query most probably is a pre-miRNA. Besides the predictive classification, we output other useful infor-
mation, including the secondary structure, MFE and P-value.

Discussion
By exploring two datasets that were constructed with the same positive set and different negative sets, we found 
that negative samples have significant impact on the predictive results of various methods. Therefore, we con-
structed an updated benchmark set with different data distributions of negative samples. A new predictor 
called iMiRNA-SSF was proposed, which was trained with this high quality benchmark dataset. Experimental 

Figure 2. Importance of negative sample distribution for a SVM classifier decision boundary. Bxue is the 
generated decision boundary based on +Strain and _

−Sxue train; Bzou is the generated decision boundary based on +Strain 
and _

−Szou train; BNew is the generated decision boundary based on +Strain, _
−Sxue train and _

−Szou train.

Features ACC Sn Sp MCC

Triplet-SS 83.99% 79.09% 86.28% 0.64

Triplet-SS, MFE, P-value 86.05% 81.55% 88.23% 0.69

Triplet-SS, MFE,P-value, N-gram 90.42% 85.89% 92.84% 0.79

Table 3.  The performance of iMiRNA-SSF on an updated benchmark S with different features 
combination. Note: The performance was assessed by leave-one-out crossing validation.

http://bioinformatics.hitsz.edu.cn/iMiRNA-SSF/
http://bioinformatics.hitsz.edu.cn/iMiRNA-SSF/
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results showed that iMiRNA-SSF achieved an accuracy of 90.42%, an MCC of 0.79 and an ROC score of 0.96, 
outperforming three state-of-the-art computational methods, including Triplet-SVM, MiPred, and miRNA-
pre. Furthermore, the discriminative power of employed features was investigated on an updated benchmark. 

Features IG(c, x)a Rank

P-value 166.6647 1

MFE 110.099 2

U((( 93.73114 3

A… 76.72718 4

A((( 62.0189 5

C… 55.73455 6

CGA 53.6649 7

G((( 42.86916 8

A..( 35.29512 9

CCG 30.7314 10

U… 28.18673 11

C((( 26.42756 12

A(.. 25.07459 13

GGG 24.51414 14

UCG 24.0945 15

ACC 22.93585 16

CUG 21.95057 17

GAC 21.93206 18

UGC 21.79752 19

C(.. 21.2629 20

Table 4.  The ranking of top 20 important features in the updated benchmark dataset. aIG(c, x): The 
information gain of features is a feature selection method used in many fields. In general terms, the expected 
information gain is the change in information entropy H from a prior state to a state that takes some 
information. The higher the information gain value means the feature is more discriminative.

Method Acc(%) Sn(%) Sp(%) MCC ROC

Triplet-SVM 83.99% 79.09% 86.28% 0.64 0.90

MiPred 86.05% 81.55% 88.23% 0.69 0.92

miRNApre 88.36% 84.82% 90.10% 0.74 0.94

iMiRNA-SSF 90.42% 85.89% 92.84% 0.79 0.96

Table 5.  The performance comparison of different methods. All the methods were evaluated on the same 
updated benchmark dataset via leave-one-out crossing validation. Note: Since the number of positive samples is 
not equal to the number of negative samples, we set the penalty factors that positive samples weight is 2 and the 
negative samples weight is 1.

Figure 3. A graphical illustration to show the performance of different methods by the receiver operating 
characteristic (ROC) curves. 
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The results showed that structure features are more discriminative than the sequence features for pre-miRNA 
identification.

As shown in this study, the quality of the training samples is very important for improving the predictive 
performance of a computational predictor. The proposed framework of combining samples with different distri-
butions can be applied to other important tasks in the field of bioinformatics, such as DNA binding protein iden-
tification39,40, protein remote homology detection41,42, enhancers and their strength prediction43, etc. Therefore, 
in our future studies, we will focus on applying the proposed framework to improve the performance of these 
problems.

Method
Datasets. Our benchmark dataset for pre-miRNA identification (see the Supplementary information) 
consists of real human pre-miRNAs as positive set and two pseudo pre-miRNAs subsets as negative set. The 
pre-miRNAs sharing sequence similarity more than 80% were removed using the CD-HIT software44 to get rid of 
redundancy and avoid bias. The benchmark dataset can be formulated as:

∪= ( )+ −S S S 4

∪= ( )− − −S S S 5xue zou

where the positive samples set +S  contains 1612 human miRNA precursors, which were selected from the 1872 
reported Homo sapiens pre-miRNA entries downloaded from the miRBase36,37; the negative samples set −S is the 
union of −Sxue  and −Szou; the −Sxue  contains 1612 Xue pseudo miRNAs, which were selected from the 8494 

Figure 4. The homepage of iMiRNA-SSF webserver. The users can input their test data through two ways. 
One way is to copy their query to the text area, and the other is to upload their test file in FASTA format.

Figure 5. An example of prediction result. If the classification is predicted to Real pre-miRNA, it indicates the 
query most probably is a pre-miRNA. Some useful information is also provided, including second structure, 
MFE and P-value.
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pre-miRNA-like hairpins17; the −Szou contains 1442 Zou pseudo miRNAs20. As miRNAs locate in the untranslated 
regions or intragenic regions, both −Sxue and −Szou were collected from the protein coding regions. The main differ-
ence between them is that they were constructed based on different techniques. The −Sxue was collected by the 
widely accepted characteristics and the −Szou was collected by a multi-level negative sample selection technique. For 
more information, please refer to17,20.

Features for characterizing microRNA precursors. Various sequence-based features were used in this 
study, including primary sequence features, minimum free energy feature, P-value randomization test feature and 
local triplet sequence-structure features, which were described as followings:

Primary sequence features (N-gram). For a given RNA sequence R:

= … ( )R S S S S 6L1 2 3

where Si ∈ {Adenine (A), Cytosine (C), Guanine (G), Uracil (U)}; S1 denotes the nucleic acid residue at sequence 
position 1, S2 denotes the nucleic acid residue at position 2, and so on. The sequence pattern Si + 1Si + 2Si + 3…Si + N 
is called N-gram. N-grams refer to all the possible sub-sequences. The different kinds of N-grams are 4n (n is the 
length of the N-gram). Following previous studies17, we set n as 3 and the number of different 3-grams is 64 (43).

Minimum of free energy feature (MFE). The MFE describes the stability of a RNA secondary structure. Some 
evidences showed that miRNAs have lower folding free energies than random sequences45. The MFE of the sec-
ondary structure was predicted by the Vienna RNA software package (released 2.1.6)46 with default parameters.

P-value of randomization test feature (P-value). In order to determine if the MFE value is significantly different 
from that of random sequences, a Monte Carlo randomization test was used47. The process can be summarized 
as follow:

(1) Infer MFE value of the original sequence.
(2) Randomize the order of the nucleotides of the original sequence while keeping the dinucleotide distribution 

(or frequencies) constant48. Then infer the MFE value of the shuffled sequence.
(3) Repeat step 2 for 999 times to build the distribution of random sequence MFE values.
(4) Denote Num as the number of shuffled sequences that their MFE value is not greater than the original 

sequence MFE value, then P-value can be computed based on:

=
+ ( )

P Num
1 999 7

Local triplet sequence-structure features (Triplet-SS). In the predicted secondary structure, there are only two 
statuses for each nucleotide, paired or unpaired, represented as brackets “(” or “)” and dots “.”, respectively. The 
left bracket “(” means that the paired nucleotide is located near the 5′ -end and the right bracket “)” means one 
nucleotide can be paired with another at the 3′ -end. When the sequences were represented as vectors, we didn’t 
distinguish these two situations and used “(” for both situations. For any 3 adjacent nucleotides, there are 8 (23) 
possible structure compositions: “(((”, “((.”, “(..”, “(.(”, “.((”, “.(.”, “..(” and “…”. Considering the middle nucleotide 
among the three adjacent nucleotides, there are 32 (4 ×  8) possible sequence-structure combinations, which they 
can be denoted as “U(((”, “A((.”, etc.. The occurrence frequencies of all 32 possible triplet elements were counted 
along the stem portions of a hairpin segment. Details of the 32 sequence-structure features can be found in17.

Support Vector Machine. Support Vector Machine (SVM) is a supervised machine learning technique 
based on statistical theory for classification task49. Given a set of fixed length vectors with positive or negative 
labels, SVM can learn an optimal hyper plane to discriminate the two classes. New test samples can be classified 
based on the learned classification rule. SVM has exhibited excellent performance in practice and has a strong 
theoretical foundation of statistical learning.

In this study, the LibSVM algorithm was employed, which is an integrated software tool for SVM classification 
and regression. The kernel function was set as Radial Basis Function (RBF). The two parameters C and τ were set 
as 11 and − 9 respectively, which were optimized by using the grid tool in LibSVM package49.

Leave one out cross validation. Three test validation methods, including independent dataset test, 
sub-sampling (or K-fold cross-validation) test and leave-one-out test, are often used to evaluate the performance 
of a predictor. Among these three methods, the leave-one-out test is deemed the least arbitrary and most objective 
as elucidated in49–51. It has been widely recognized and adopted by investigators to examine the quality of various 
predictors. In the leave-one-out test, each sequence in the benchmark dataset is in turn singled out as an inde-
pendent test sample and all the rule-parameters are calculated with the whole benchmark dataset.

Measurement. For a prediction problem, a classifier can predict an individual instance into the following 
four categories: false positive (FP), true positive (TP), false negative (FN) and true negative (TN). As shown in 
previous studies52,53, the total prediction accuracy (ACC), Specificity (Sp), Sensitivity (Sn) and Mathew’s correla-
tion coefficient (MCC) for assessment of the prediction system are given by:
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=
+

+ + + ( )
ACC TP TN

TP TN FP FN 8

=
+ ( )

Sp TN
TN FP 9

=
+ ( )

Sn TP
TP FN 10

=
× − ×

( + ) × ( + ) × ( + ) × ( + ) ( )
MCC TP TN FP FN

TP FP TN FN TP FN TN FP 11

The receiver operating characteristic (ROC) score54 was also employed to evaluate the performance of different 
methods. Because it can evaluate the trade-off between specificity and sensitivity. An ROC score is the normal-
ized area under a curve that is plotted with true positives as a function of false positives for varying classification 
thresholds. An ROC score of 1 indicates a perfect separation of positive samples from negative samples, whereas 
an ROC score of 0.5 denotes that random separation.
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