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Combining Positive Matrix 
Factorization and Radiocarbon 
Measurements for Source 
Apportionment of PM2.5 from a 
National Background Site in North 
China
Xiaoping Wang1,2, Zheng Zong2, Chongguo Tian2, Yingjun Chen3, Chunling Luo1, Jun Li   1, 
Gan Zhang1 & Yongming Luo2

To explore the utility of combining positive matrix factorization (PMF) with radiocarbon (14C) 
measurements for source apportionment, we applied PM2.5 data collected for 14 months at a national 
background station in North China to PMF models. The solutions were compared to 14C results of four 
seasonally averaged samples and three outlier samples. Comparing the most readily interpretable 
PMF solutions and 14C results revealed that PMF modeling was well able to capture the source patterns 
of PM2.5 with two and three irrelevant source classifications for the seasonal and outlier samples. 
The contribution of sources that could not be classified as either fossil or non-fossil sources in the 
PMF solution, and the errors between the modeled and measured concentrations weakened the 
effectiveness of the comparison. Based on these two factors, we developed an index for selecting the 
most suitable 14C measurement samples for combining with the PMF model. Then we examined the 
potential for coupling PMF modeling and 14C data with a constrained PMF run using the 14C data as a 
priori information. The restricted run could provide a more reliable solution; however, the PMF model 
must provide a flexible dialog to input the priori restrictions for executing the constraint simulation.

Atmospheric fine particles with aerodynamic diameters <2.5 μm (PM2.5) are recognized as key pollutants associ-
ated with increased rates of mortality and morbidity for respiratory and cardiovascular diseases1. Reliable source 
apportionment of PM2.5 is vital to design effective programs and strategies to reduce PM2.5 concentrations in 
ambient air. However, source apportionment is complicated, because source identification and quantification 
generally cannot be directly measured or monitored2. These limitations have encouraged the development of 
novel approaches for the source apportionment of PM2.5

3.
Receptor modeling is one method used for the source apportionment of PM2.5

4. Widely used receptor models 
include principal component analysis/multiple linear regression, unmix, positive matrix factorization (PMF), and 
chemical mass balance3–5. These models apportion PM2.5 to sources by decomposing a matrix of speciated PM2.5 
sample data collected from one or more receptor sites. In general, these models provide interpretable results, but 
the reliability of the results is not guaranteed3. To enhance the confidence level of the source apportionments 
or evaluate model uncertainties, receptor models can be combined with other methods. There are two main 
types of combinations. The first type uses a dataset of PM2.5 speciation measurements to drive different receptor 
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models (or other types of models) for the source apportionment. For example, Song et al. used two receptor 
models and Bove et al. used one receptor model and a chemical transport model to apportion PM2.5 to sources6, 7. 
Balachandran et al. developed specific source profiles using Bayesian-based ensemble averaging of source impacts 
from three receptor models and one chemical transport model to apportion PM2.5 to sources2. The second type 
of combination employs a suite of different PM2.5 datasets to drive a receptor model. For example, Xie et al. used 
a PMF model with four different PM2.5 speciation datasets to evaluate the utility and consistency of the source 
apportionments8. Tao et al. loaded a single or combination of three biomass tracers with other species within 
PM2.5 into a PMF model to apportion PM2.5 to sources and to assess the uncertainties of the source contributions9. 
It should be noted that these combinations could be used to compare the coherence and uncertainty among dif-
ferent results, but cannot guarantee their reliability.

Carbon, nitrogen, and sulfur isotope measurements have been used to identify the sources of the respec-
tive PM2.5 components10–12, which could provide more reliable source signatures than the methods mentioned 
above. Radiocarbon (14C) measurements can be used to unambiguously quantify the contribution of fossil and 
non-fossil sources to carbonaceous components of PM2.5 because 14C becomes depleted in fossil sources due to 
their aging (half-life, 5,730 years), whereas non-fossil sources contain similar 14C levels as atmospheric carbon 
dioxide (CO2)13–17. However, there have been few attempts to combine 14C-derived source signatures with recep-
tor models for the source apportionment of PM2.5

18, 19.
We recently performed a preliminary exploration of combining PMF modeling and 14C measurements for 

the source apportionment of wintertime PM2.5
18. To gain further insight into this method, we collected PM2.5 

samples for 14 months at a national background atmospheric monitoring station on Tuoji Island, North China. 
Performing source apportionment at a background site could offer the opportunity to identify regional sources of 
PM2.5 in North China, where the adverse effects of PM2.5 on public health have triggered both public alarm and 
official concern20. Moreover, these sample data are appropriate for assessing PMF performance and the utility of 
combining PMF and 14C data to apportion PM2.5 to sources, because there are no obvious source emissions near 
the sampling site, and airborne pollutants are mixed and transformed well before reaching the sampling site. The 
main objectives of this study were: (1) to assess the capability of using PMF modeling for the source apportion-
ment of PM2.5 by comparing PMF and 14C results; (2) to develop an index to select suitable 14C measurement 
samples for the most effective combination of 14C measurements with PMF to apportion PM2.5 to sources due to 
the high cost and complex pretreatment of 14C measurements; and (3) to propose additional improvements to 
PMF modeling software for coupling PMF and 14C data to increase the reliability of PM2.5 source apportionments.

Results and Discussion
General characteristics of PM2.5.  During the entire sampling period, the mean ± standard deviation of 
the PM2.5 mass concentration was 57.7 ± 36.9 μg m−3 (range, 8.93–144 μg m−3). The dominant PM2.5 species were 
SO4

2−, NO3
−, OC, NH4

+, EC, K+, and Fe, accounting for 17.3 ± 7.96%, 10.3 ± 6.48%, 7.98 ± 3.08%, 4.81 ± 2.27%, 
4.12 ± 3.61%, 1.13 ± 0.617%, and 0.89 ± 0.64%, respectively, of the PM2.5 mass concentration. The seasonal aver-
ages of PM2.5 and most species concentrations were markedly higher in the spring of 2012 than the other four 
seasons (Supporting Information [SI] Text S1, Table S1, and Figures S1–S3).

PMF modeling.  In the BMRs with six to nine factors, all of the BS-DISP estimations showed that the largest 
decreases in Q(robust) were <1% of the Q(robust) of the corresponding BMR (SI Figure S4), suggesting that the 
results of the four BMRs could be considered the global optimum solutions for the corresponding number of 
factors. The Fpeak model runs with strengths of −1.0, 1.0, and 1.5 showed increases in Q > 5% of Q(robust) from 
the four respective BMRs (SI Figure S5), indicating that these Fpeak solutions should be removed from further 
consideration. However, the Fpeak runs with strengths of −0.5 and 0.5 showed increases in Q < 5% of Q(robust) of 
the corresponding BMRs (SI Figure S5), suggesting that these Fpeak solutions were acceptable for further analysis. 
Positive/negative Fpeak strengths sharpened/smeared and smeared/sharpened the two solution matrices, respec-
tively21. The comparable increases in Q values and opposite transformations of the two matrices suggested that 
there were no significant rotational effects of the two strengths of the BMR solutions. Among the four model 
experiments, the BMR with eight factors (BMR-8) showed the most significant declines in Q(true), Q(robust), 
and the ratio of Q(true)/Q(exp) (SI Figures S6 and S7). These declines suggested that the source apportionments 
of BMR-8 were more appropriate than those of BMR-6, BMR-7, and BMR-9.

The eight source factors in BMR-8 were identified based on the dominant species and prominent contri-
butions of a source to each species on a specified sampling day. SI Text S2 and Figures S8–S14 elaborate on the 
recognition processes used in this study. The eight identified sources were traffic dust, shipping emissions, min-
eral dust, sea salt, vehicle emissions, industrial processes, coal combustion, and biomass burning. The total and 
seasonal contributions (%) of the eight sources to PM2.5 were calculated, and results are shown in SI Figure S15. 
Among these sources, biomass burning, shipping emissions, and coal combustion had the largest contributions, 
accounting for 27.5%, 17.5%, and 16.5%, respectively, of the PM2.5 mass concentration during the entire sampling 
period. These sources were followed by mineral dust (14.8%), vehicle emissions (10.4%), sea salt (4.8%), traffic 
dust (4.6%), and industrial processes (3.9%). The back trajectory, fire counts, and navigation activity information 
supported these identified sources. Details are presented in SI Text S3 and Figures S11–S19.

To quickly identify the sources modeled by BMR-7 and BMR-9, the distances between their source profiles 
and that of BMR-8, and the Pearson correlations of their contribution time series with those of BMR-8 were 
calculated. Overall, most of the sources in BMR-8 matched the factors in BMR-7 and BMR-9 well. Six sources 
in BMR-7 were closely related to six sources identified by BMR-8, while one factor merged the two remaining 
sources (coal combustion and biomass burning) in BMR-8, characterized by their shortest distances and highest 
correlation coefficients (Fig. 1, detailed data are listed in SI Tables S2 and S3). This combined source had a lower 
contribution fraction to PM2.5 than the sum of the two separate sources (coal combustion and biomass burning) 
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in BMR-8 (SI Figure S18). Among the eight sources identified by BMR-8, traffic dust, shipping emissions, vehicle 
emissions, and industrial processes matched the factors in BMR-9 well, characterized by their shortest distances 
and high correlation coefficients (Fig. 1, detailed data are listed in SI Tables S4 and S5). Both mineral dust and 
sea salt had the shortest distances and highest correlation coefficients with one factor in BMR-9, indicating that 
these two sources were combined in BMR-9 (Fig. 1). Also, coal combustion and biomass burning identified by 
BMR-8 each matched two separate factors in BMR-9. The two factors in BMR-9 related to coal combustion were 
industrial coal and domestic coal because their contribution time series correlated more with those of industrial 
processes and biomass burning, respectively (SI Table S5). Similarly, the two factors in BMR-9 associated with 
biomass burning were domestic biofuel and open biomass burning (SI Table S5). This source separation resulted 
in significant increases in the contribution of biomass burning and marked decreases in the contribution of coal 
combustion (SI Figure S19). We did not use the differences in the source contributions modeled by the three 
BMRs to determine the best solution among the three models. In BMR-7, coal combustion and biomass burning 
were inappropriately combined as a hybrid source, because they represent different types of emission sources and 
different primary contributors of PM2.5, suggesting that BMR-7 did not provide the optimal solution. This was 
supported by the initial mathematical analysis, which showed that BMR-8 provided the most physically inter-
pretable results.

PMF performance assessment.  The model capacity was assessed by comparing the source contributions 
modeled by BMR-8 and BMR-9 with the 14C results. We did not consider BMR-7 for this evaluation, because the 
model included a source that combined fossil carbon (coal combustion) and non-fossil carbon (biomass burn-
ing) sources. According to the source types identified by BMR-8, coal combustion, industrial processes, vehicle 
emissions, and shipping emissions were ranked as fossil carbon sources, while sea salt as a marine biogenic source 
was merged with biomass burning as a non-fossil source. Mineral dust and traffic dust were not considered in this 
classification, because they could not be apportioned quantitatively into fossil and non-fossil sources. Figure 2 
shows the contributions of the non-fossil and fossil sources categorized from the BMR-8 results and the corre-
sponding 14C results for the seven samples. The source contribution from the BMR-8 results was calculated based 
on Equation (7) in the section of methods. For the four seasonal samples, from the winter of 2011 to autumn of 
2012, the results of the non-fossil sources classified from BMR-8 accounted for 44.0%, 40.9%, 54.2%, and 57.0% 
of OC concentrations and 11.3%, 32.8%, 45.3%, and 46.2% of EC concentrations, respectively. Correspondingly, 
the categorized BMR-8 results showed that 34.3%, 25.6%, 28.6%, and 24.7% of OC and 18.4%, 44.7%, 57.4%, and 
45.4% of EC were attributed to fossil sources, respectively. Most of the source contributions were lower than the 
corresponding 14C fractions. The underestimations were not considered to indicate inadequate capacity of the 
PMF model, because mineral dust and traffic dust were not taken into account for the comparison. In contrast, 
the overestimation of the source contributions classified from the PMF results could be considered irrelevant 
source apportionments of the PMF model. There were two source contribution overestimations of 8.9% and 
1.3% for a fossil source of EC in summer and a non-fossil source of EC in autumn, respectively. This indicated 

Figure 1.  Ratios of the shortest distance between the standardized seven-factor (top panel) and nine-factor 
(bottom panel) source profiles from BMR-7 and BMR-9 and those from BMR-8 to the averages of their 
respective distance, and the Pearson correlation coefficients of the contribution time series related to the source 
profile with the shortest distance (labeled with the same color as that for the distance). For BMR-9, the source 
profile shows the shortest distance with two source profiles from BMR-8 (F3). Coal combustion and biomass 
burning identified in BMR-8 were each related to two different source profiles BMR-9.
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that non-fossil sources were irrelevantly classified as fossil sources in the former case and fossil sources were cat-
egorized inappropriately as non-fossil sources in the latter. Traffic dust is thought to contain a higher fraction of 
fossil carbon than mineral dust22. Therefore, to further estimate PMF performance, we classified traffic dust as an 
additional fossil carbon source and re-compared the source contributions. The contribution of vehicle dust was 
added to the stack columns in Fig. 2. After this addition, the gaps in the source contributions of BMR-8 and 14C 
results decreased significantly, while the irrelevant source classifications increased non-significantly, indicating 
that the PMF model captured the primary source patterns of PM2.5 well. SI Figure S20 displays the comparison 
of the14C and PMF results calculated based on Equation (6) in the section of methods. The comparison shows a 
similar pattern as that in Fig. 2. This similarity indicated that the PMF model reproduced the seasonally measured 
concentrations well, and the differences in the source contributions modeled by BMR-8 and the 14C results were 
attributed to the effects of mineral dust rather than errors between the modeled and measured concentrations.

A similar comparison to that described above was performed for OC and EC in the outlier samples. Regardless 
of whether traffic dust was considered a fossil source, only three overestimations were observed, among which 
the two most marked overestimations were the contribution of fossil sources to OC (33.7% and 34.3% without 
and with consideration of vehicle dust as a fossil source) in the sample with the highest EC concentration and the 
contribution of non-fossil sources to EC (14.8%) in the sample with the highest OC concentration. In addition, a 
slight overestimation was observed for the contribution of fossil fuel combustion to EC (2.2% and 3.4% without 
and with consideration of vehicle dust as a fossil carbon source) in the sample with the highest OC concentration 
(Fig. 2). The comparison based on Equations (6) and (7) showed that the differences in source contributions for 
the samples with the highest OC and EC concentrations were the result of the contributions of both mineral dust 
and model error, while the difference in the sample with the highest PM2.5 concentration was mainly driven by 
mineral dust.

We compared the source contributions modeled by BMR-9 with the 14C results. For this comparison, domes-
tic coal, industrial coal, industrial processes, vehicle emissions, and shipping emissions identified from BMR-9 
were ranked as fossil sources, whereas domestic biomass burning and open biomass burning were classified as 
non-fossil sources. Traffic dust and the hybrid mineral dust–sea salt source were not considered. There were more 
overestimations in this comparison than that of BMR-8 (SI Figure S21), suggesting that the BMR-8 model pro-
vided a more reliable source apportionment than BMR-9.

Index development.  We calculated the contribution fractions of non-fossil and fossil sources classified from 
the BMRs based on the corresponding measured concentrations, as shown in Equation (7) in the section of meth-
ods. The measured concentration can be replaced by the corresponding modeled concentration, and Equation 
(7) can be rewritten as:

∑ ∑=





+

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Figure 2.  Comparison of the source apportionment of OC and EC classified from the PMF results and 
determined from the 14C measurements. Biomass burning and sea salt identified by PMF were combined as a 
non-fossil source, while coal combustion, industrial processes, vehicle emissions, and shipping emissions were 
merged as fossil sources for the comparison. Mineral dust was not included because it was considered a hybrid 
of non-fossil and fossil sources, and traffic dust was included as an additional fossil source in the comparison.
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where e is the error between the modeled and measured concentrations, and the other parameters are the same 
as those in Equation (6). According to the source classification of non-fossil and fossil sources, the sum of the two 
types of source contributions can be expressed as:

= + + + +( ) ( )R Cnf Cff Cnf Cff Cnc e/ , (2)ij ij ij ij ij ij ij

where Cnf, Cff, and Cnc are the concentrations of the non-fossil, fossil, and unclassified source contributions, 
respectively. e indicates the modeled error similar to that in Equation (1). Unlike the 14C results, the contribution 
fractions of non-fossil and fossil sources categorized from the PMF solution cannot add up to 1 because of the 
effects of unclassified sources and the error between the modeled and measured concentrations of OC and EC. 
The effects (eff) can be considered the fraction of the sum of concentrations from unclassified source contribu-
tions and the error between the modeled and measured concentrations as:

= + + + + = +( )( ) ( )eff Cnc e Cnf Cff Cnc e Cnc e X/ / , (3)ij ij ij ij ij ij ij ij ij ij

where the symbols have the same definitions as those in Equations (3) and (5).
Large eff values generally resulted in greater underestimations of the contributions of sources categorized from 

the PMF results. These underestimations cannot be directly used to assess PMF model performance, but suggest 
a reduction in the comparison effectiveness. 14C is usually measured for only a few independent samples due to 
the high cost and complicated pretreatment. This raises the question of how to select 14C measurement samples 
to yield a more valid assessment of model performance and better combination of the PMF model with 14C 
measurements. One feasible method is to develop an index to select the most efficient 14C measurement samples 
for the PMF assessment. Based on the analysis as mentioned earlier, we developed the following index, which is 
dimensionless:
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where the symbols have the same definitions as those in Equations (1), (2) and (7), and n and m represent the 
number of all species used for the PMF model and the number of carbonaceous species, respectively.

We calculated the index and total gaps in source contributions between the PMF and 14C results for each 
sample shown in Fig. 2, and results are presented in Fig. 3. Among the seven samples, that with the highest PM2.5 
concentration had the largest total gap, which was attributed to the dominant contributions of mineral dust to 
PM2.5 (69% for OC and 66% for EC). Its irrelevance was characterized well by its high index value. The average 
summer sample had the smallest total gap, which was in agreement with its lowest index value, indicating that it 
was the best option among the seven samples. In addition, the index values of each sample were calculated using 
the data from BMR-7, BMR-8, and BMR-9. The variation in the indices presented similar trends as shown in SI 
Figure S22, indicating the stability of the developed index. This suggested that 14C measurement samples could be 
selected after several pre-simulations, rather than the final simulation, allowing for excellent performance of the 
assessment of the model’s capacity and the combination of the PMF model with 14C measurements. The stability 
of the index was attributed to similar trends in the errors between the modeled and measured PM2.5, OC, and EC 
concentrations and the modeled PM2.5 concentrations contributed by mineral dust and traffic dust among BMR-
7, BMR-8, and BMR-9 (SI Figures S23–S25).

Potential coupling between PMF and 14C measurement.  The relationship between the PMF and 14C 
measurements discussed above was determined by a comparison, and suggested their independence. Further 

Figure 3.  The developed index (dimensionless) used to select for 14C measurement and the total gap between 
the source contributions from the PMF and 14C results (%).
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exploration focused on whether the 14C results could be coupled to the PMF as a priori information to provide 
more reliable model results using a constrained PMF model. According to the previous knowledge, the 14C results 
can be used to build constraint equations that specify a range of the total contribution of several sources (factors) 
to either OC or EC (species) in an individual or incorporative samples. For instance, the total contribution of coal 
combustion, industrial processes, vehicle emissions, and shipping emissions to OC in the sample with the highest 
EC concentration was less than 45.4%.

The EPA’s PMF 5.0 model uses the ME-2 program to identify the most optimal factor contributions and pro-
files. In ME-2, source contribution and composition knowledge as a priori information can be included as aux-
iliary terms of the object function to constrain a model run21, 23. Three types of constraints are included in the 
model. There are termed as Ratio, Mass Balance, and Custom. Users can select the Ratio option and use a constant 
ratio between two different species of a factor to constrain a model run. Users can build an equation by adding 
one or multiple factor-species on both sides of the equation to constrain a model run under the Mass Balance 
option. In the Custom option, users can specify a constraint by creating a customized equation to constrain a 
model run. The customized equation can be built based on either profile (with species as element) or contribu-
tion (with sample as element). All the three optional conversations cannot be used to build constraint equations 
based on the 14C results as mentioned above, indicating that the 14C results could not be coupled to EPA PMF 5.0 
properly as a priori information to constrain a model run and to provide more reliable model results. There are 
two possibilities: the model software has not provided an appropriate conversation for coupling the 14C results, or 
the ME-2 algorithm cannot handle the constraint equations based on the 14C results. If the ME-2 algorithm can 
handle the constraint equations, it is vitality and recommended that the model software provides an appropriate 
conversation.

In order to assess the capacity of the ME-2 algorithm, we performed a preliminary constraint simulation 
based on BMR-8 to assess the variability of source contributions and availability of 14C results in the simulation. 
The preliminary constraint simulation used two additional constraint types (termed Pull Down Maximally and 
Pull Up Maximally) included in the model. Users can use the two options to pull down maximally and pull up 
maximally the contributions of one or multiple factors to all species for one or several samples. It should be noted 
that such a constrained modeling has incapable to provide a more reliable solution. Our concern was whether the 
range of source contributions from BMR-8 and the constrained modeling based on BMR-8 covers the 14C results. 
The coverage indicates that the ME-2 algorithm is able to handle the constraint modeling if the model software 
provides an appropriate conversation to build constraint equations.

As found above, the largest overestimations were observed in the samples with the highest EC and OC con-
centrations over the entire sampling period, and the largest overestimations of fossil sources to OC (33.7% and 
34.3% without and with consideration of vehicle dust as a fossil source) were observed in the sample with the 
highest EC concentration. This sample had been collected on January 16, 2012. According to the overestimation, 
the contribution of two main fossil sources, coal combustion, and vehicle emission on the sampling day were 
pulled down maximally. Similarly, on June 6, 2012, when the OC concentration reached a maximum during the 
entire sampling period, biomass burning and sea salt were pulled up maximally. The results of the constrained 
run showed that Q(robust) and Q(true) increased by 0.51% and 0.63%, respectively, compared to those of BMR-8. 
Correspondingly, the source profiles and source contributions varied non-significantly compared to those in the 
base run (SI Figures S26 and S27).

The source contributions to OC and EC modeled by the BMR and the constrained model run were compared 
to the 14C results using the two samples with the highest OC and EC concentrations (Fig. 4). Most of the 14C 
results fell within the range between those modeled by the base and constrained model runs, suggesting that 
this model has the potential capacity to provide a reliable source assessment on PM2.5 in simulations when con-
strained by powerful a priori information, such as 14C data. However, to exploit this capability, the model must be 

Figure 4.  Contributions of fossil and non-fossil sources to OC and EC in the base model run (BR), constrained 
model run (CR), and 14C measurements (14 C).
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able to provide more flexible conversations than those that currently exist. For instance, the sum contributions of 
several sources to one or several components measured in a sample or some samples collected for a period of time 
can be defined as a value or range. Once developed, this will provide a powerful tool for using PMF to apportion 
PM2.5 to sources, because knowledge on the sources of not only carbon-containing matter but also nitrogen- and 
sulfur-containing matter, in PM2.5 determined by their respective stable isotope measurements can be considered 
a priori information to constrain PMF models10–12, 24, 25. Nitrogen-, sulfur-, and carbon-containing matter account 
for the majority of PM2.5 mass concentrations18, 26. Therefore, if these three types of matter are handled as a pri-
ori information, the resulting constrained PMF models could provide highly reliable source apportionments of 
PM2.5, which is vital for designing PM2.5 control strategies.

Conclusion
The utility of combining PMF with 14C for source apportionment was assessed using PM2.5 data collected for 14 
months at a national atmospheric background station in North China. Four model experiments with six to nine 
factors were run and the most physically interpretable PMF solutions were determined by the comparison of 
their results. The best solutions were compared to the 14C results of four seasonally averaged samples and three 
outlier samples with the highest PM2.5, OC and EC concentrations. The comparison showed that PMF modeling 
can capture effectively the PM2.5 source patterns with two (8.9% and 1.3%) and three (33.7%, 14.8%, and 2.2%) 
inappropriate source apportionments for the seasonal and outlier samples. The contribution of sources that could 
not be classified as either fossil or non-fossil sources in the PMF solution and the errors between the modeled and 
measured concentrations weakened the validity of the comparison. Based on the two factors, an index was devel-
oped for choosing appropriate 14C measurement samples for coupling with PMF simulation. Potential coupling 
between PMF and 14C was examined by a constrained PMF run using 14C results as prior information. Results 
show that such a constrained run can obtain a more reliable solution, but PMF should provide a flexible dialog 
to execute the constraint. For instance, the sum contributions of several sources to one or several components 
measured in a sample or some samples collected for a period of time can be defined as a value or range. The 
design can be used to combine PMF models with prior information on nitrogen- and sulfur- containing material 
in PM2.5 determined by their respective stable isotope measurements, and exhibits the promising prospect for 
source apportionment.

Methods
Site description and sample collection.  Tuoji Island is a small island with an area of 7.1 km2 located 
at the demarcation line between the Bohai Sea and the Yellow Sea. It is located 40 km north of the Shandong 
Peninsula, 300 km east of the Beijing-Tianjin-Hebei region, and 70 km south of the Liaodong Peninsula (SI, 
Figure S28). There is no industrial activity on the island, and the inhabitants support themselves by fishing. 
A national station for background atmospheric monitoring is located on the northwestern tip of Tuoji Island 
(38.188°N, 120.741°E) (SI Figure S29). The sampling platform at this station is about 10 m above ground level27.

At the sampling platform, PM2.5 samples were collected at the sampling platform every three days from 
December 2011 to January 2013. The sampling time started at 10:00 local standard time and sampling continued 
for 24 h. Samples were collected on quartz fiber filters (QM-A, 20.3 × 25.4 cm2, Whatman, heated at 500 °C for 8 h 
before use) using a high-volume sampler (Hi-Vol 3000; Ecotech, Australia) at a flow rate of 1.13 m3 min−1 27. We 
selected samples from each month distributed evenly throughout the month and analyzed a total of 70 samples 
in this study.

Chemical speciation and 14C measurements.  The mass concentrations of PM2.5 were analyzed gravi-
metrically using a Sartorius MC5 electronic microbalance. Organic carbon (OC) and elemental carbon (EC) 
were analyzed with a Desert Research Institute Model 2001 carbon analyzer (Atmoslytic Inc., Calabasas, CA, 
USA). Water-soluble ions (i.e., sodium [Na+], ammonium [NH4

+], potassium [K+], magnesium [Mg2+], calcium 
[Ca2+], chloride [Cl−], nitrate [NO3

−], and sulfate [SO4
2−]) were determined with ion chromatography (ICS-

3000; Dionex Ltd., Sunnyvale, CA, USA). Metals (i.e., vanadium [V], manganese [Mn], iron [Fe], chromium [Cr], 
nickel [Ni], copper [Cu], zinc [Zn], arsenic [As], cadmium [Cd], and lead [Pb]) were measured with inductively 
coupled plasma mass spectrometry (ELAN DRC II; Perkin Elmer Ltd., Hong Kong). The methods have previously 
been described28–30 and details are provided in SI Text S4.

OC was split into the water-soluble organic carbon (WSOC) and water-insoluble organic carbon (WIOC) 
fractions. 14C was measured in WSOC, WIOC, and EC, respectively17. Briefly, WSOC and WIOC were sepa-
rated with Milli-Q water, along with EC, and each fraction was subsequently converted into carbon dioxide 
(CO2). The CO2 from the three fractions was cryogenically trapped and reduced to graphite for accelerator mass 
spectrometry (AMS) target preparation31–33. The graphite targets were prepared using the graphitization line 
at the Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, and the modern carbon fractions 
(ƒm) in the graphite samples were determined with a compact accelerator mass spectrometry (AMS, National 
Electrostatics Corp., Middleton, WI, USA) at Peking University. To take the impact of the nuclear bomb in the 
1950s and 1960s into account, the non-fossil carbon fraction (ƒc) in the samples was defined as ƒc = ƒm/1.10 for 
EC and ƒc = ƒm/1.06 for OC and the fossil carbon fraction (ƒƒ) was defined as ƒƒ = 1–ƒc

34, 35. This method was 
previously described in detail18 and is presented in SI Text S4.

Source apportionment model and capacity assessment.  We used the Environmental Protection 
Agency’s (EPA’s) PMF 5.0 model to explore combining PMF with 14C measurements for the source apportionment 
of PM2.5. The model decomposes a matrix into two matrices using multiple iterations of the Multilinear Engine 
(ME-2)23. The optimal solutions for a model run are identified as those with the smallest sums of the squared 
residuals between the products of the two matrices minus the original matrix divided by the corresponding 

http://S28
http://S29
http://S4
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uncertainty matrix. During the iteration, two random matrices are generated, and then modified systematically 
along the direction provided by the conjugate gradient algorithm to find the best-fitting solution23. The squared 
residuals are indicated as Q(true) and Q(robust) in the model. Q(true) is the goodness-of-fit parameter calcu-
lated from all of the points. Q(robust) is the goodness-of-fit parameter calculated after excluding points with an 
uncertainty-scaled residual >4 not fit by the model. The best-fitting solution from a set of random matrices is 
considered a local minimum, rather than the global minimum, for a decomposed matrix. To maximize the chance 
of reaching the global minimum, the model should be run many times with different starting points, and the solu-
tion with the smallest Q values among the runs is used as the optimal solution and is often called the base model 
run (BMR). The model’s guide suggests that the most optimal solution among 100 model runs can be considered 
the global minimum for the final source apportionment36. The ratio of Q(true)/Q(exp) is an effective param-
eter for assessing the PMF solution. In the model, the bootstrap enhanced by displacement of factor elements 
(BS-DISP) method is used to estimate the errors associated with both random and rotational ambiguity. If the 
change in Q of the BS-DISP estimation is <1% of the Q(robust) from the corresponding BMR, the BMR results 
are considered to have non-significant rotational ambiguity36, 37. Fpeak can be used to assess whether the model 
results fill the solution space by rotating a given solution. If the increase in the Q value due to the Fpeak rotation 
is >5% of the Q(robust) from the corresponding BMR, the BMR solution can be perceived as covering the full 
solution spaces36, 37. Details of these processes are described in the user guide of the model31.

In this study, 21 chemical species (OC, EC, NO3
−, SO4

2−, Cl−, NH4
+, K+, Mg2+, Ca2+, Na+, As, Cr, Cd, Cu, 

Fe, Mn, Ni, Zn, Pb, V, and unrecognized components) were loaded into the model to quantitatively apportion 
PM2.5 to sources. The species method detection limits shown in SI Text S4 were used to calculate uncertainties 
for each sample according to the equation-based uncertainty method. Four model experiments with six to nine 
factors were each run 100 times. The best solution of each model experiment (i.e., the BMR) was identified as 
that with the minimum Q(robust) value. The errors associated with both random and rotational ambiguity of the 
four model experiments were examined from the respective BS-DISP estimations based on the respective BMRs. 
The solutions of the four BMRs were examined from the Fpeak model run with strengths of −1.0, −0.5, 0.5, 1.0, 
and 1.5.

To combine PMF with 14C measurements for the source apportionment of PM2.5, we first focused on the PMF 
model performance by comparing fossil and non-fossil source contributions determined from the 14C analy-
sis, classified as OC and EC from the PMF results using several specific samples. For the comparison, we used 
four samples merged seasonally and three outlier samples of 14C measurements. The seasonally merged sam-
ples were made by pooling sample punches of equal sizes cut from samples collected in the first four seasons 
of the study period. For the outlier samples, we selected the samples with the highest OC, EC, and PM2.5 con-
centrations in the entire sampling period. For the comparison, the 14C fraction of OC was calculated from the 
concentration-weighted WSOC and WIOC fractions as:

= × + × +f f C f C C C( )/( ), (5)OC WSOC WSOC W OC WIOC WSOC WIOCI

where ƒOC, ƒWSOC, and ƒWIOC are the non-fossil carbon fractions of OC, WSOC, and WIOC, respectively, and 
CWSOC and CWIOC are the WSOC and WIOC concentrations, respectively. The modeled source contributions were 
classified into two groups according to their fossil and non-fossil carbon sources. The contribution fractions of 
fossil or non-fossil carbon sources to OC and EC were subsequently compared to the 14C results of the seven sam-
ples. In our previous study18, the contribution fractions (R) of non-fossil or fossil sources to OC or EC classified 
from the PMF results were determined by:

∑ ∑=
= =

R g f g f/ ,
(6)ij

k
ik kj

k

p

ik kj
1

n

1

where g and f are the factor contributions and factor profiles, respectively, i represents the OC or EC species, j is a 
specified sample, n is the number of fossil or non-fossil carbon sources, and p is the number of all of the sources. 
The calculation is based on the total OC or EC concentrations based on the PMF model rather than the measured 
concentrations, indicating that the errors between the modeled and measured concentrations are ignored in these 
comparisons18. For a more reasonable comparison and assessment, in this study we replaced the modeled total 
concentration in Equation (6) with the corresponding measured concentration:

∑=
=

R g f X/ ,
(7)ij

k
ik kj ij

1

n

where Xij is the measured OC or EC concentration and the other parameters are the same as those in Equation 
(6). Furthermore, we used backward trajectories (http://www.arl.noaa.gov/ready.html)38 and fire counts (https://
firms.modaps.eosdis.nasa.gov/firemap/) to assess the potential sources of PM2.5. A distance analysis and Pearson 
correlation were used to quickly identify the source types and their contributions to PM2.5. Detailed methods are 
described in SI Text 5.
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