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Abstract

Scientists should be able to provide support for the absence of a meaningful effect. Currently, researchers often incorrectly
conclude an effect is absent based a nonsignificant result. A widely recommended approach within a frequentist framework is to
test for equivalence. In equivalence tests, such as the two one-sided tests (TOST) procedure discussed in this article, an upper and
lower equivalence bound is specified based on the smallest effect size of interest. The TOST procedure can be used to statistically
reject the presence of effects large enough to be considered worthwhile. This practical primer with accompanying spreadsheet
and R package enables psychologists to easily perform equivalence tests (and power analyses) by setting equivalence bounds based
on standardized effect sizes and provides recommendations to prespecify equivalence bounds. Extending your statistical tool kit
with equivalence tests is an easy way to improve your statistical and theoretical inferences.
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Scientists should be able to provide support for the null

hypothesis. A limitation of the widespread use of traditional

significance tests, where the null hypothesis is that the true

effect size is zero, is that the absence of an effect can be

rejected, but not statistically supported. When you perform

a statistical test, and the outcome is a p value larger than the

a level (e.g., p > .05), the only formally correct conclusion is

that the data are not surprising, assuming the null hypothesis

is true. It is not possible to conclude there is no effect when

p > a—our test might simply have lacked the statistical power

to detect a true effect.

It is statistically impossible to support the hypothesis that a

true effect size is exactly zero. What is possible in a frequentist

hypothesis testing framework is to statistically reject effects

large enough to be deemed worthwhile. When researchers want

to argue for the absence of an effect that is large enough to be

worthwhile to examine, they can test for equivalence (Wellek,

2010). By rejecting an effect (indicated in this article by D)

more extreme than predetermined lower and upper equivalence

bounds (�DL and DU, e.g., effect sizes of Cohen’s d ¼ �.3 and

d ¼ .3), we can act as if the true effect is close enough to zero

for our practical purposes. Equivalence testing originates from

the field of pharmacokinetics (Hauck & Anderson, 1984),

where researchers sometimes want to show that a new cheaper

drug works just as well as an existing drug (for an overview, see

Senn, 2007, Chapters 15 and 22). A very simple equivalence

testing approach is the “two one-sided tests” (TOST) procedure

(Schuirmann, 1987). In the TOST procedure, an upper (DU) and

lower (�DL) equivalence bound is specified based on the

smallest effect size of interest (SESOI; e.g., a positive or neg-

ative difference of d ¼ .3). Two composite null hypotheses are

tested: H01: D � �DL and H02: D � DU. When both these one-

sided tests can be statistically rejected, we can conclude that

�DL < D < DU or that the observed effect falls within the

equivalence bounds and is close enough to zero to be practi-

cally equivalent (Seaman & Serlin, 1998).

Psychologists often incorrectly conclude there is no effect

based on a nonsignificant test result. For example, the words

“no effect” had been used in 108 articles published in Social

Psychological and Personality Science up to August 2016.

Manual inspection revealed that in almost all of these articles,

the conclusion of “no effect” was based on statistical nonsigni-

ficance. Finch, Cumming, and Thomason (2001) reported that

in the Journal of Applied Psychology, a stable average of

around 38% of articles with nonsignificant results accept the

null hypothesis. This practice is problematic. With small sam-

ple sizes, nonsignificant test results are hardly indicative of

the absence of a true effect, and with huge sample sizes,

effects can be statistically significant but practically and theo-

retically irrelevant. Equivalence tests, which are conceptually
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straightforward, easy to perform, and highly similar to widely

used hypothesis significance tests that aim to reject a null

effect, are a simple but underused approach to reject the possi-

bility that an effect more extreme than the SESOI exists

(Anderson & Maxwell, 2016).

Psychologists would gain a lot by embracing equivalence

tests. First, researchers often incorrectly use nonsignificance

to claim the absence of an effect (e.g., “there were no gender

effects, p > .10”). This incorrect interpretation of p values

would be more easily recognized and should become less

common in the scientific literature if equivalence tests were

better known and more widely used. Second, where tradi-

tional significance test only allows researchers to reject the

null hypothesis, science needs statistical approaches that

allow us to conclude meaningful effects are absent (Dienes,

2016). Finally, the strong reliance on hypothesis significance

tests that merely aim to reject a null effect does not require

researchers to think about the effect size under the alternative

hypothesis. Exclusively focusing on rejecting a null effect has

been argued to lead to imprecise hypotheses (Gigerenzer,

1998). Equivalence testing invites researchers to make more

specific predictions about the effect size they find worthwhile

to examine. Bayesian methods can also be used to test a null

effect (e.g., Dienes, 2014), but equivalence tests do not

require researchers to switch between statistical philosophies

to test the absence of a meaningful effect, and the availability

of power analyses for equivalence tests allows researchers to

easily design informative experiments.

There have been previous attempts to introduce equivalence

testing to psychology (Quertemont, 2011; Rogers, Howard, &

Vessey, 1993; Seaman & Serlin, 1998). I believe there are four

reasons why previous attempts have largely failed. First, there

is a lack of easily accessible software to perform equivalence

tests. To solve this problem, I’ve created an easy to use spread-

sheet and R package to perform equivalence tests for indepen-

dent and dependent t tests, correlations, and meta-analyses (see

https://osf.io/q253c/) based on summary statistics. Second, in

pharmacokinetics, the equivalence bounds are often defined

in raw scores, whereas it might be more intuitive for research-

ers in psychology to express equivalence bounds in standar-

dized effect sizes. This makes it easier to perform power

analyses for equivalence tests (which can also be done with the

accompanying spreadsheet and R package) and to compare

equivalence bounds across studies in which different measures

are used. Third, there is no single article that discusses both

power analyses and statistical tests for one-sample, dependent

and independent t tests, correlations, and meta-analyses, which

are all common in psychology. Finally, guidance on how to set

equivalence boundaries has been absent for psychologists,

given that there are often no specific theoretical limitations

on how small effects are predicted to be (Morey & Lakens,

2017) nor cost–benefit boundaries of when effects are too small

to be practically meaningful. This is a chicken–egg problem,

since using equivalence tests will likely stimulate researchers

to specify which effect sizes are predicted by a theory (Weber

& Popova, 2012). To bootstrap the specification of equivalence

bounds in psychology, I propose that when theoretical or prac-

tical boundaries on meaningful effect sizes are absent,

researchers set the bounds to the smallest effect size they have

sufficient power to detect, which is determined by the resources

they have available to study an effect.

Testing for Equivalence

In this article, I will focus on the TOST procedure (Schuir-

mann, 1987) of testing for equivalence because of its simplicity

and widespread use in other scientific disciplines. The goal in

the TOST approach is to specify a lower and upper bound, such

that results falling within this range are deemed equivalent to

the absence of an effect that is worthwhile to examine (e.g.,

DL ¼ �.3 to DU ¼ .3, where D is a difference that can be

defined by either standardized differences such as Cohen’s d

or raw differences such as .3 scale point on a 5-point scale).

In the TOST procedure, the null hypothesis is the presence of

a true effect of DL or DU, and the alternative hypothesis is an

effect that falls within the equivalence bounds or the absence

of an effect that is worthwhile to examine. The observed data

are compared against DL and DU in two one-sided tests. If the

p value for both tests indicates the observed data are surpris-

ing, assuming DL or DU are true, we can follow a Neyman–

Pearson approach to statistical inferences and reject effect

sizes larger than the equivalence bounds. When making such

a statement, we will not be wrong more often, in the long run,

than our Type 1 error rate (e.g., 5%). It is also possible to test

for inferiority, or the hypothesis that the effect is smaller than

an upper equivalence bound, by setting the lower equivalence

bound to 1.1 Furthermore, equivalence bounds can be sym-

metric around zero (DL ¼ �.3 to DU ¼ .3) or asymmetric

(DL ¼ �.2 to DU ¼ .4).

When both null hypothesis significance tests (NHST) and

equivalence tests are used, there are four possible outcomes

of a study: The effect can be statistically equivalent (larger than

DL, smaller than DU) and not statistically different from zero,

statistically different from zero but not statistically equivalent,

statistically different from zero and statistically equivalent, or

undetermined (neither statistically different from zero nor sta-

tistically equivalent). In Figure 1, mean differences (black

squares) and their 90% (thick lines) and 95% confidence inter-

vals (CIs; thin lines) are illustrated for four scenarios. To con-

clude equivalence (Scenario A), the 90% CI around the

observed mean difference should exclude the DL and DU values

of �.5 and .5 (indicated by black vertical dashed lines).2

The traditional two-sided null hypothesis significance test

is rejected (Scenario B) when the CI around the mean differ-

ence does not include 0 (the vertical gray dotted line). Effects

can be statistically different from zero and statistically equiv-

alent (Scenario C) when the 90% CI exclude the equivalence

bounds and the 95% CI exclude zero. Finally, an effect can be

undetermined, or not statistically different from zero, and not

statistically equivalent (Scenario D) when the 90% CI

includes one of the equivalence bounds and the 95% CI

includes zero.
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In this article, the focus lies on the TOST procedure,

where two p values are calculated. Readers are free to

replace decisions based on p values by decisions based on

90% CIs if they wish. Formally, hypothesis testing and esti-

mation are distinct approaches (Cumming & Finch, 2001).

For example, while sample size planning based on CIs

focusses on the width of CIs, sample size planning for

hypothesis testing uses power analysis to estimate the prob-

ability of observing a significant result (Maxwell, Kelley, &

Rausch, 2008). Since the TOST procedure is based on a

Neyman–Pearson hypothesis testing approach to statistics,

and I’ll explain how to calculate the tests as well as how

to perform power analysis, I’ll focus on the calculation of

p values for conceptual consistency.

Equivalence Tests for Differences Between
Two Independent Means

The TOST procedure entails performing two one-sided tests to

examine whether the observed data are surprisingly larger than

an equivalence boundary lower than zero (DL) or surprisingly

smaller than an equivalence boundary larger than zero (DU).

The equivalence test assuming equal variances is based on:

tL ¼
�M1 � �M2 � DL

s
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n1
þ 1

n2

q and tU ¼
�M1 � �M2 � DU

s
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n1
þ 1

n2

q ; ð1Þ

where M1 and M2 indicate the means of each sample, n1 and n2

are the sample size in each group, and s is the pooled standard

deviation (SD):

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1 � 1ÞSD2

1 þ ðn2 � 1ÞSD2
2

n1 þ n2 � 2

s
: ð2Þ

Even though Student’s t test is by far the most popular t test

in psychology, there is general agreement that whenever the

number of observations are unequal across both conditions,

Welch’s t test (1947), which does not rely on the assumption

of equal variances, should be performed by default (Delacre,

Lakens, & Leys, 2017; Ruxton, 2006). The equivalence test not

assuming equal variances is based on:

tL ¼
�M1 � �M2 � DLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SD2
1

n1
þ SD2

2

n2

q and tU ¼
�M1 � �M2 � DUffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SD2
1

n1
þ SD2

2

n2

q ; ð3Þ

where the degrees of freedom (df) for Welch’s t test are based

on the Sattherthwaite (1946) correction:

dfw ¼
SD2

1

n1
þ SD2

2

n2

� �2

SD2
1

n1

� �2

n1�1
þ

SD2
2

n2

� �2

n2�1

: ð4Þ

These equations are highly similar to the Student’s and

Welch’s t-statistic for traditional significance tests. The only

difference is that the lower equivalence bound DL and the upper

equivalence bound DU are subtracted from the mean difference

between groups. These bounds can be defined in raw scores or

in a standardized difference, where D ¼ Cohen’s d � s or

Cohen’s d ¼ D/s. The two one-sided tests are rejected if

tU � �t(df, a), and tL � t(df, a), where t(a, df) is the upper 100a
percentile of a t-distribution (Berger & Hsu, 1996). The spread-

sheet and R package can be used to perform this test, but some

commercial software such as Minitab (Minitab 17 Statistical

Software, 2010) also include the option to perform equivalence

tests for t tests.

As an example, Eskine (2013) showed that participants who

had been exposed to organic food were substantially harsher in

their moral judgments relative to those in the control condition

(d ¼ .81, 95% CI [0.19, 1.45]). A replication by Moery and

Calin-Jageman (2016, study 2) did not observe a significant effect

(control: n ¼ 95, M ¼ 5.25, SD ¼ .95, organic food: n ¼ 89,

M ¼ 5.22, SD ¼ .83). The authors followed Simonsohn’s

(2015) recommendation so set the equivalence bound to the effect

size the original study had 33% power to detect. With n ¼ 21 in

each condition of the original study, this means the equivalence

bound is d ¼ .48, which equals a difference of .384 on a 7-point

scale given the sample sizes and a pooled SD of .894. We can cal-

culate the TOST equivalence test t-values:

5:25� 5:22� ð�0:384Þ
0:894

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
95
þ 1

89

q ¼ tL ¼ 3:14 and

5:25� 5:22� 0:384

0:894
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

95
þ 1

89

q ¼ tU ¼ �2:69;

which correspond to p values of .001 and .004. If a ¼ .05, and

assuming equal variances, the equivalence test is significant,

t(182) ¼ �2.69, p ¼ .004. We can reject effects larger than

.384 scale points. Note that both one-sided tests need to be sig-

nificant to declare equivalence; but for efficiency, only the one-

sided test with the highest p value is reported in TOST results

(given that if this test is significant, so is the other). Alterna-

tively, because Moery and Calin-Jageman’s (2016) main

Figure 1. Mean differences (black squares) and 90% confidence
intervals (CIs; thick horizontal lines) and 95% CIs (thin horizontal
lines) with equivalence bounds DL ¼ �.5 and DU ¼ .5 for four
combinations of test results that are statistically equivalent or not
and statistically different from zero or not.
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prediction seems to be whether the effect is smaller than the

upper equivalence bound (a test for inferiority), only the one-

sided t test against the upper equivalence bound could be per-

formed and reported. Note that the spreadsheet and R package

allow you to either directly specify the equivalence bounds in

Cohen’s d or set the equivalence bound in raw units.

An a priori power analysis for equivalence tests can be per-

formed by calculating the required sample sizes to declare

equivalence for two one-sided tests based on the lower equiva-

lence bound and upper equivalence bound. When equivalence

bounds are symmetric around zero (e.g., DL ¼ �.5 and

DU ¼ .5), the required sample sizes (referred to as nL and nU

in Equation 5) will be identical. Following Chow, Shao, and

Wang (2002), the normal approximation of the power equation

for equivalence tests (for each independent group of an inde-

pendent t test) given a specific a level and desired level of sta-

tistical power (1 � b) is:

nL ¼
2ðza þ zb=2Þ2

DL
2

; nU ¼
2ðza þ zb=2Þ2

DU
2

; ð5Þ

where DL and DU are the standardized mean difference equiva-

lence bounds (in Cohen’s d). This equation calculates the

required sample sizes based on the assumption that the true

effect size is zero (see Table 1). If a nonzero true effect size

is expected, an iterative procedure must be used. A highly

accessible overview of power analysis for equivalence, super-

iority, and noninferiority designs with power tables for a wide

range of standardized mean differences and expected true mean

differences that can be used to decide upon the sample size in

your study is available in Julious’s (2004) study.

The narrower the equivalence bounds, or the smaller the

effect sizes one tries to reject, the larger the sample size that

is required. Large sample sizes are required to achieve high

power when equivalence bounds are close to zero. This is com-

parable to the large sample sizes that are required to reject a

true but small effect when the null hypothesis is a null effect.

Equivalence tests require slightly larger sample sizes than tra-

ditional null hypothesis tests.

Equivalence Tests for Differences Between
Dependent Means

When comparing dependent means, the correlation between the

observations has to be taken into account, and the effect size

directly related to the statistical significance of the test (and

thus used in power analysis) is Cohen’s dz (see Lakens,

2013). The t-values for the two one-sided tests statistics are:

tL ¼
�M1 � �M2 � DLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SD2
1
þ SD2

2
� 2 � r � SD1 � SD2

p ffiffiffi
N
p

and

tU ¼
�M1 � �M2 � DUffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SD2
1
þ SD2

2
� 2 � r � SD1� SD2

p ffiffiffi
N
p

: ð6Þ

The bounds DL and DU can be defined in raw scores, or in

a standardized bound based on Cohen’s dz, where D ¼ dz �
SDdiff, or dz ¼ D/SDdiff. Equation 3 can be used for a priori

power analyses by inserting Cohen’s dz instead of Cohen’s

d. The number of pairs needed to achieve a desired level

of power when using Cohen’s dz is half the number of

observations needed in each between subject condition spec-

ified in Table 1.

There are no suggested benchmarks of small, medium, and

large effects for Cohen’s dz. We can consider two approaches

to determining benchmarks. The first is to use the same

benchmarks for Cohen’s d as for Cohen’s dz. This assumes

r ¼ .5, when Cohen’s d and Cohen’s dz are identical.3 A sec-

ond approach is to scale the benchmarks for Cohen’s dz based

on the sample size we need to reliably detect an effect. For

example, in an independent t test, 176 participants are

required in each condition to achieve 80% power for d ¼ .3

and a ¼ .05. With 176 pairs of observations and a ¼ .05,

a study has 80% power for a Cohen’s dz of .212. The relation-

ship between d and dz is a factor of
ffiffiffi
2
p

, which means we can

translate the benchmarks for Cohen’s d for small (.2), medium

(.5), and large (.8) effects into benchmarks for Cohen’s dz of

small (.14), medium (.35), and large (.57). There is no objec-

tively correct way to set benchmarks for Cohen’s dz. I leave it

Table 1. Sample Sizes (for the Number of Observations in Each Group) for Equivalence Tests for Independent Means, as a Function of the
Desired Power, a Level, and Equivalence Bound D (in Cohen’s d), Based on Exact Calculations and the Approximation.

Bound (D)

Approximation Exact

80% Power 90% Power 80% Power 90% Power

a ¼ .05 a ¼ .01 a ¼ .05 a ¼ .01 a ¼ .05 a ¼ .01 a ¼ .05 a ¼ .01

0.1 1,713 2,604 2,165 3,155 1,713 2,604 2,165 3,155
0.2 429 651 542 789 429 652 542 789
0.3 191 290 241 351 191 291 242 351
0.4 108 163 136 198 108 165 136 199
0.5 69 105 87 127 70 106 88 128
0.6 48 73 61 88 49 74 61 89
0.7 35 54 45 65 36 55 45 66
0.8 27 41 34 50 28 43 35 51
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up to the reader to determine whether either of these

approaches is useful.

Equivalence Tests for One-Sample t Tests

The t-values for the two one-sided tests for a one-sample

t tests are:

tL ¼
M � m� DL

SDffiffiffi
N
p

and tU ¼
M � m� DU

SDffiffiffi
N
p

; ð7Þ

where M is the observed mean, SD is the observed standard

deviation, N is the sample size, DL and DU are lower and upper

equivalence bounds, and m is the value that the mean is

tested against.

Equivalence Tests for Correlations

Equivalence tests can also be performed on correlations, where

the two one-sided tests aim to reject correlations larger than a

lower equivalence bound (rL) and smaller than an upper

equivalence bound (rU). I follow Goertzen and Cribbie

(2010), who use Fisher’s z transformation on the correlations,

after which critical values are calculated that can be compared

against the normal distribution:

ZL ¼
LN 1þr

1�rð Þ
2
�

LN
1þrL
1�rL

� �
2

1ffiffiffiffiffiffiffi
N�3
p

; ZU ¼
LN 1þr

1�rð Þ
2
�

LN
1þrU
1�rU

� �
2

1ffiffiffiffiffiffiffi
N�3
p

: ð8Þ

The two one-sided tests are rejected if ZL � �Za and ZU �
Za. Benchmarks for small, medium, and large effects, which

can be used to set equivalence bounds, are r ¼ .1, r ¼ .3, and

r ¼ .5. Power analysis for correlations can be performed by

converting r to Cohen’s d using:

d ¼ 2rffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2
p ; ð9Þ

after which Equation 5 can be used. This approach is used by,

for example, G*Power (Faul, Erdfelder, Lang, & Buchner,

2007).

Equivalence Test for Meta-Analyses

Rejecting small effects in an equivalence test requires large

samples. If researchers want to perform an equivalence test

with narrow equivalence bounds (e.g., DL ¼ �.1 and

DU ¼ .1), in most cases, only a meta-analysis will have suffi-

cient statistical power. Rogers, Howard, and Vessey (1993)

explain the straightforward approach to performing equiva-

lence tests for meta-analyses:

ZL ¼
Dþ DL

SE
; ZU ¼

Dþ DU

SE
: ð10Þ

where D is the meta-analytic effect size (Cohen’s d or Hedges’

g), and SE is the meta-analytic standard error (or
ffiffiffiffiffiffiffi
var
p

). These

values can be calculated with meta-analysis software such as

metafor (Viechtbauer, 2010). The two one-sided tests are

rejected if ZL � �Za and ZU � Za. Alternatively, the 90%
CI can be reported. If the 90% CI falls within the equivalence

bounds, the observed meta-analytic effect is statistically

equivalent.

Setting Equivalence Bounds

In psychology, most theories do not state which effects are too

small to be interpreted as support for the proposed underlying

mechanism. Instead, feasibility considerations are often the

strongest determinant of the effect sizes a researcher can reli-

ably examine. In daily practice, researchers have a maximum

sample size they are willing to collect in a single study (e.g.,

100 participants in each between-subject condition). Given a

desired level of statistical power (e.g., 80%) and a specific a
(e.g., .05), this implies a smallest effect size they find worth-

while to examine or a SESOI (Lakens, 2014) they can reliably

examine. Based on a sensitivity analysis in power analysis soft-

ware (such as G*Power), we can calculate that with 100 parti-

cipants in each condition, 80% desired power, and an a of .05,

the SESOI in a null effect significance test is D ¼ 0.389; and

using the power analysis calculation for an equivalence test for

independent samples, assuming a true effect size of 0, 80%
power is achieved when DL ¼ �0.414 and DU ¼ 0.414. As

such, without practical boundaries or theoretical boundaries

that indicate which effect size is meaningful, the maximum

sample size you are willing to collect implicitly determines

your SESOI. Therefore, setting equivalence boundaries to your

SESOI in an equivalence test allows you to reject effect sizes

larger than you find worthwhile to examine, given available

resources. When researchers are not willing (or not able) to col-

lect a decent sample size, the extremely large equivalence

bounds will make it clear they can at best reject extremely large

effects, but that their data are not informative about the pres-

ence or absence of a wide range of plausible and interesting

effect sizes.

This recommendation differs from practices in drug devel-

opment, where equivalence bounds are often set by regulations

(e.g., differences up to 20% are not considered to be clinically

relevant). In psychology, such general regulations about what

constitutes a meaningful effect seem unlikely to emerge and

perhaps even undesirable. Using equivalence bounds based

on effect sizes a researcher finds worthwhile to examine do not

allow psychologists to conclude an effect is too small to be

meaningless for anyone. When other researchers believe a

smaller effect size is plausible and theoretically interesting,

they can design a study with a larger sample size to examine

the effect. In randomized controlled trials, it is expected that

equivalence bounds are prespecified (e.g., see CONSORT

guidelines; Piaggio et al., 2006), and this should also be consid-

ered best practice in psychology. When in the abstract of an

article, authors conclude an effect is “statistically equivalent,”

the abstract should also include the equivalence bounds that are

used to draw this conclusion.
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Simonsohn (2015) proposes to test for inferiority for replica-

tion studies (an equivalence test where the lower bound is set to

infinity). He suggests to set the upper equivalence bound in a

replication study to the effect size that would have given an

original study 33% power. For example, an original study with

60 participants divided equally across two independent groups

has 33% power to detect an effect of d ¼ .4, so DU is set to

d ¼ .4. This approach limits the sample size required to test for

equivalence to 2.5 times the sample size of the original study.

The goal is not to show the effect is too small to be feasible to

study but too small to have been reliably detected by the orig-

inal experiment, thus casting doubt on the original observation.

If feasibility constraints are practically absent (e.g., in

online studies), another starting point to set equivalence

bounds is by setting bounds based on benchmarks for small,

medium, and large effects. Although using these benchmarks

to interpret effect sizes is typically recommended as a last

resort (e.g., Lakens, 2013), their use in setting equivalence

bounds seems warranted by the lack of other clear-cut recom-

mendations. By far the best solution would be for researchers

to specify their SESOI when they publish an original result or

describe a theoretical idea (Morey & Lakens, 2017). The use

of equivalence testing will no doubt lead to a discussion about

which effect sizes are too small to be worthwhile to examine

in specific research lines in psychology, which in itself is

progress.

Discussion

Equivalence tests are a simple adaptation of traditional sig-

nificance tests that allow researchers to design studies that

reject effects larger than prespecified equivalence bounds.

It allows researchers to reject effects large enough to be

considered worthwhile. Adopting equivalence tests will pre-

vent the common misinterpretations of nonsignificant p val-

ues as the absence of an effect and nudge researchers

toward specifying which effects they find worthwhile. By

providing a simple spreadsheet and R package to perform

power calculations and equivalence tests for common statis-

tical tests in psychology, researchers should be able to eas-

ily improve their research practices.

Rejecting effects more extreme than the equivalence bounds

implies that we can conclude equivalence for a specific opera-

tionalization of a hypothesis. It is possible that a meaningful

effect would be observed with a different manipulation or mea-

sure. Confounds can underlie observed equivalent effects. An

additional nonstatistical challenge in interpreting equivalence

concerns the issue of whether an experiment was performed

competently (Senn, 2007). Complete transparency (sharing all

materials) is a partial solution since it allows peers to evaluate

whether the experiment was well designed (Morey et al., 2016),

but this issue is not easily resolved when the actions of an

experimenter might influence the data. In such experiments,

even blinding the experimenter to conditions is no solution

since an experimenter can interfere with the data quality of all

conditions. This is an inherent asymmetry between

demonstrating an effect and demonstrating the absence of a

worthwhile effect. The only solution for anyone skeptical about

studies demonstrating equivalence is to perform an indepen-

dent replication.

Equivalence testing is based on a Neyman–Pearson hypoth-

esis testing approach that allows researchers to control error

rates in the long run and design studies based on a desired level

of statistical power. Error rates in equivalence tests are con-

trolled at the a level when the true effect equals the equivalence

bound. When the true effect is more extreme than the equiva-

lence bounds, error rates are smaller than the a level. It is

important to take statistical power into account when determin-

ing the equivalence bounds because, in small samples (where

CIs are wide), a study might have no statistical power (i.e., the

CI will always be so wide that it is necessarily wider than the

equivalence bounds).

There are alternative approaches to the TOST procedure.

Updated versions of equivalence tests exist, but their added

complexity does not seem to be justified by the small gain in

power (for a discussion, see Meyners, 2012). There are also

alternative approaches to providing statistical support for a

small or null effect, such as estimation (calculating effect sizes

and CIs), specifying a region of practical equivalence

(Kruschke, 2010), or calculating Bayes factors (Dienes, 2014;

Rouder, Speckman, Sun, Morey, & Iverson, 2009). Research-

ers should report effect size estimates in addition to hypothesis

tests. Since Bayesian and frequentist tests answer complemen-

tary questions, with Bayesian statistics quantifying posterior

beliefs, and Frequentist statistics controlling Type 1 and Type

2 error rates, these tests can be reported side by side.

Other fields are able to use raw measures due to the wide-

spread use of identical measurements (e.g., the number of

deaths, the amount of money spent), but in some subfields in

psychology the variability in the measures that are collected

require standardized effect sizes to make comparisons across

studies (Cumming & Fidler, 2009). A consideration of using

standardized effect sizes as equivalence bounds is that in two

studies with the same mean difference and CIs in raw scale

units (e.g., a difference of 0.2 on a 7-point scale with 90% CI

[�0.13;0.17]), the same standardized equivalence bounds can

lead to different significance levels in a equivalence test. The

reason for this is that the pooled SD can differ across the stud-

ies, and as a consequence, the same equivalence bounds in stan-

dardized scores imply different equivalence bounds in raw

scores. If this is undesirable, researchers should specify equiva-

lence bounds in raw scores instead.

Ideally, psychologists could specify equivalence bounds in

raw mean differences based on theoretical predictions or

cost–benefit analyses, instead of setting equivalence bounds

based on standardized benchmarks. My hope is that as equiva-

lence tests become more common in psychology, researchers

will start to discuss which effect sizes are theoretically

expected while setting equivalence bounds. When theories do

not specify which effect sizes are too small to be meaningful,

theories can’t be falsified. Whenever a study yields no statisti-

cally significant effect, one can always argue that there is a true
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effect that is smaller than the study could reliably detect

(Morey & Lakens, 2017). Maxwell, Lau, and Howard (2015)

suggest that replication studies demonstrate the absence of an

effect by using equivalence bounds of DL ¼ �.1 and DU ¼ .1

or even DL ¼ �.05 and DU ¼ .05. I believe this creates an

imbalance where we condone original studies that fail to make

specific predictions, while replication studies are expected to

test extremely specific predictions that can only be confirmed

by collecting huge numbers of observations.

Extending your statistical tool kit with equivalence tests is

an easy way to improve your statistical and theoretical infer-

ences. The TOST procedure provides a straightforward

approach to reject effect sizes that one considers large enough

to be worthwhile to examine.

Author’s Note

The TOSTER spreadsheet is available from https://osf.io/q253c/. The

TOSTER R package can be installed from CRAN using install.

packages (TOSTER). Detailed example vignettes are available from:

https://cran.rstudio.com/web/packages/TOSTER/vignettes/

IntroductionToTOSTER.html
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Notes

1. As Wellek (2010, p. 30) notes, for all practical purposes, one can

simply specify a very large value for the infinite equivalence

bound.

2. A 90% confidence interval (CI; 1� 2a) is used instead of a 95% CI

(1 � a) because two one-sided tests (each with an a of 5%) are

performed.

3. The author would like to thank Jake Westfall for this suggestion.
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