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Differential gene expression and 
SNP association between fast- and 
slow-growing turbot (Scophthalmus 
maximus)
Diego Robledo1,2, Juan A. Rubiolo1, Santiago Cabaleiro   3, Paulino Martínez1 &  
Carmen Bouza1

Growth is among the most important traits for animal breeding. Understanding the mechanisms 
underlying growth differences between individuals can contribute to improving growth rates through 
more efficient breeding schemes. Here, we report a transcriptomic study in muscle and brain of fast- and 
slow-growing turbot (Scophthalmus maximus), a relevant flatfish in European and Asian aquaculture. 
Gene expression and allelic association between the two groups were explored. Up-regulation of the 
anaerobic glycolytic pathway in the muscle of fast-growing fish was observed, indicating a higher 
metabolic rate of white muscle. Brain expression differences were smaller and not associated with 
major growth-related genes, but with regulation of feeding-related sensory pathways. Further, SNP 
variants showing frequency differences between fast- and slow-growing fish pointed to genomic 
regions likely involved in growth regulation, and three of them were individually validated through 
SNP typing. Although different mechanisms appear to explain growth differences among families, 
general mechanisms seem also to be involved, and thus, results provide a set of useful candidate genes 
and markers to be evaluated for more efficient growth breeding programs and to perform comparative 
genomic studies of growth in fish and vertebrates.

Growth, the main target of aquaculture breeding programs1, is a complex polygenic trait with high environmental 
influence. Fast and efficient growth shortens the time required to reach market size, increases food conversion 
efficiency, and, in sum, leads to higher profitability and food safety. Aquaculture is currently the fastest growing 
food industry2; however, despite its importance, genetic breeding programs are applied in no more than 10% of 
cultured species1,3.

Growth is a trait of moderate to high heritability3 that displays a complex development and physiology. It 
involves both the increase of muscle cell number (hyperplasia) and cell size (hypertrophy), and the balance 
between both processes depends on the developmental stage, but it is also influenced by the environment. 
Growth is regulated by the hypothalamic-pituitary axis hormones which also control feeding behaviour4, yet 
local interactions between different muscle cell types and with other nearby tissues also condition muscle growth. 
Additionally, growth rate is regulated by other physiological and environmental factors, such as food intake, tem-
perature, diet composition, age or sex5. Furthermore, identifying key growth-related genes is more complex in 
teleost than in other vertebrates, since this group of fish has undergone an additional round of genomic duplica-
tion6 involving neo- or sub-functionalization processes. Yet, although a complex task, understanding the genetic 
basis of growth variation might aid to achieve more efficient breeding programs. Despite its good response to 
traditional selection, the sole application of phenotypic and relatedness information to improve growth rate might 
determine the loss of relevant genetic variation affecting the medium- and long-term performance of breeding 
programs7,8. In this sense, knowing the molecular mechanisms, genes and pathways involved in growth can have 
multiple benefits. Beyond increasing our basic knowledge with important implications in different research areas 
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related to growth, identification of allelic variants of moderate to large effect could be useful in marker-assisted 
selection (MAS), provided a cost-benefit balance. Finally, genome-editing techniques may allow recovering or 
even introducing variants not present in the population of interest, increasing genetic gain9. As such, different 
studies have been focused on understanding growth differences in different fish species in the last decade10–15.

Turbot is the flatfish with highest aquaculture production, mainly held by Spain and China. Females reach sex-
ual maturity at ~3 years (~50 cM length) and can spawn between 5 and 10 million eggs per season. Reproduction 
can be achieved along the whole year under a variable controlled photoperiod16. Thus, production can benefit 
from the high fecundity of a single selected couple over a relatively long period. Several studies have been carried 
out in this species to identify quantitative trait loci (QTL) associated with growth17–19, but the information pro-
vided, though useful, is still of limited application. Knowing the genes or even the allelic variants behind growth 
differences is important, not only for a more efficient selection, but also to guide future studies in turbot and other 
fish species. However, functional studies on differential growth have not been performed in turbot yet.

To gain knowledge on the key genes involved in growth, we carried out a transcriptomic study in fast- and 
slow-growing turbot to identify differential expression profiles and genetic markers between extreme growth phe-
notypes. Samples of muscle and brain tissues were taken from family-matched fast- and slow-growth fish selected 
from eight unrelated full-sib families, and their transcriptomes compared by RNA-Seq. These organs play a key 
role in the regulation of somatic growth, and muscle also represents the main edible part of fish5,20. In order to 
evaluate a high number of individuals and to avoid family bias, a pooling strategy was followed. Differential gene 
expression and marker association between high- and low-growth turbot were obtained. The detected candidate 
genes and markers were mapped using the recently assembled genome of the species and their positions were 
compared with previously reported QTLs21. The most interesting genes and markers were validated using indi-
vidual Real-Time PCR (qPCR) and SNP genotyping to disentangle general and family-specific factors involved 
in turbot growth.

Results
RNA sequencing output.  A total of ~183 million paired-end (PE) reads were generated, for an average 
of ~15 million reads for each of the twelve samples analyzed. After filtering, ~171 million reads were retained 
(93.44%; >13 million reads per sample). On average, 88.4% of the PE filtered reads aligned to the turbot genome 
at unique (83.9%) or multiple (4.5%) genomic positions, whereas the remaining 11.6% did not match. The result-
ing muscle and brain transcriptomes revealed a total of 30,674 and 49,034 transcripts, respectively, belonging to 
17,173 and 23,104 genes (Table 1), which included some non-annotated genes in the turbot genome21. Annotation 
against NCBI’s non redundant protein database was successful for 87.2% and 86.7% of the muscle and brain tran-
scriptomes, respectively.

Differential gene expression.  A total of 17 and 4 differentially expressed (DE) genes were detected in 
muscle and brain, respectively, when comparing fast- (FG) and slow- (SG) growing pooled samples using the 
log2 FG/SG fold change (FC) (Table 2). FC values were moderate, ranging from 1.18 to −0.86 FC values, positive 
FC corresponding to higher expression in FG compared to SG (up-regulated onwards), and negative FC to lower 
expression in FG compared to SG (down-regulated onwards). Since the number of DE genes was low, an extended 
list of those genes with FDR < 0.3 was also explored (Supplementary Dataset 1). Overall expression patterns were 
consistent across the three biological pools tested (Fig. 1), especially considering that FG and SG pools belong to 
eight different families and that the mechanisms driving growth differences are not necessarily the same for all the 
families. No significant sex-ratio differences between pools and families were found, supporting that sex was not a 
confounding factor in this study. KEGG enrichment analysis revealed the prevalence of certain pathways among 
the extended list of DE genes. The pathways consistently enriched were “Glycolysis/Gluconeogenesis” and “Starch 
and sucrose metabolism” (log2 fold enrichment of 5.3 and 4.8, respectively) (Supplementary Figure 1), involving 
a set of 16 up-regulated genes coding for enzymes of the glycolytic pathway.

Among other interesting up-regulated genes in muscle, we detected six myosin heavy chain genes (FDR 
p-values ranging from 0.016 to 0.295 and FC from 1.00 to 0.48), strongly related to muscle growth; and the elon-
gation factor 1-alpha (p-val = 0.099, FC = 0,70), which suggests enhanced protein synthesis for muscle growth. 
Interestingly, growth hormone receptor 2 (GHR2) was down-regulated (p-val = 0.063, FC = −1.01), showing 
an opposite pattern to that expected according to the function of the growth hormone receptor in mammals. 
Furthermore, the cytosolic creatine kinase (CKs) was up-regulated (p-val = 0.081, FC = 0.59), while its mitochon-
drial counterpart (CKm) was down-regulated (p-val = 0.170, FC = −0.67), in agreement with the higher produc-
tion of cytosolic ATP due to the activation of the glycolysis pathway in FG fish. Accordingly, the mitochondrial 
oxidative phosphorylation showed a lower activity in FG turbot as suggested by down-regulation of ADP-ATP 

Muscle Brain

Number of transcripts 30,674 49,034

Number of genes 17,173 23,104

N50 3,734 bp 5,062 bp

N90 1,517 bp 2,122 bp

Total transcripts >500 bp 29,901 (97.5%) 47,517 (96.9%)

Average transcript length 2,859 bp 3,788 bp

Table 1.  Muscle and brain transcriptome statistics.
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translocase 2 (p-val = 0.051, FC = −0.64), which codes for a membrane protein responsible for transporting ATP 
from the mitochondria to the cytosol.

The most interesting genes detected in the family pools were evaluated in individual samples by qPCR: 
CKs, CKm, GHR2, lactate dehydrogenase (LDH), muscle glycogen phosphorylase (PYGM) and transforming 
growth factor β1 (TGFβ1). Although a notable concordance was observed between individual qPCR and pooled 
RNA-Seq data when comparing the expression pattern of FG and SG fish, some discrepancies were detected 
(Fig. 2), suggesting that some mechanisms driving growth might be different among families. Specifically CKm 
and TGFβ1 showed important variation among families. In fact, when individual qPCR data were pooled follow-
ing the same distribution of individuals as for RNA-Seq, correlation was positive and significant between both 
datasets, except for CKm and TGFβ1 (Supplementary Table 1).

A lower number of DE genes were detected in the brain and not so straightforwardly related to growth as in 
the case of muscle. Among these, we observed down-regulation of phosphorilase kinase alpha 2 (p-val = 0.172, 
FC = −0.49) encoding for a subunit of the phosphorylase b enzyme, which is expressed in liver and brain. This 
gene modulates glycogen catabolism and plays an important role in supplying cell energy22. Also, we detected sev-
eral up-regulated genes associated with sensory control, such as t-box brain protein 1 (p-val = 0.088, FC = 0.61), 
a transcription factor required for normal brain development and expressed in the olfactory bulb among other 
brain regions23; synaptoporin (p-val = 0.039, FC = 0.66), a vesicular transport protein involved in synaptic vesi-
cles and plasticity24; and olfactomedin (p-val = 0.190, FC = 0.46), a secreted glycoprotein involved in regulating 
chemosensory cilia in olfactory neurons and optic nerve extension25. KEGG pathway and GO enrichment did 
not reveal any significant term.

Differential SNP allelic frequencies (DAfreq).  A total of 146,217 SNPs were called using both muscle 
and brain reads. The sequences containing these SNPs were annotated according to the turbot genome informa-
tion21. A total of 45,348 SNPs (31%) were found in coding regions, and among these, 16,133 corresponded to 
non-synonymous mutations, representing an overall Ka/Ks ratio of 0.55. Allelic frequencies were estimated for 
FG and SG fish and the significance of allelic divergence tested (DAfreq onwards). Significant DAfreq between 
FG and SG were detected for 75 SNPs in muscle and for 358 in brain (Supplementary Dataset 2). These 435 
DAfreq SNPs identified were located in 326 genes: i) 43% in untranslated regions (3′ and 5′ UTR); ii) 49.2% in 
coding regions of annotated genes, including mostly synonymous (74%), but also missense variants (24%), and 
2% located in splicing regions; iii) 3.4% in introns, and iv) 4.4% in non-annotated genes. The genomic position of 
these SNPs in the turbot genome21 and their co-localization with previously described growth-associated mark-
ers17,18 was evaluated (Fig. 3). DAfreq SNPs were widespread throughout the genome, although some specific 
regions at particular linkage groups (LG) of the turbot genetic map showed a higher concentration (i.e. LG02, 
LG05 or LG13), and some of them co-localized with previously reported growth associated markers. We also 

Gene
FDR 
p-val FC LG Position

Muscle

Triosephosphate isomerase 0.001 0.79 LG02 13,361,150

Glucose-6-phosphate isomerase 0.004 0.77 LG04 21,441,582

Beta-enolase 0.008 0.77 LG16 147,95,147

C-binding protein 0.015 1.13 LG10 17,180,345

Glyceraldehyde-3-phosphate dehydrogenase 0.016 0.72 LG02 13,180,325

Phosphoglycerate kinase 1 0.016 0.72 LG08 14,493,171

Fish-egg lectin 0.016 0.99 UN UN

Myosin heavy fast skeletal muscle 0.016 0.75 LG06 19,857,385

Extensin-2 0.017 1.18 LG09 14,700,577

Mesothelin 0.023 1.10 LG03 14,490,203

Fructose-bisphosphate aldolase a 0.024 0.67 LG21 9,095,011

Flocculation protein flo11 0.027 0.80 LG01 3,075,171

Type ii cytoskeletal 8 0.037 0.95 LG10 18,632,403

Gelsolin 0.037 0.96 LG05 15,564,429

Protein-glutamine gamma-glutamyltransferase e 0.037 0.98 LG05 10,093,262

Thymosin beta-a 0.044 0.87 LG07 7,429,705

Chitin synthase 2 0.044 1.03 LG22 917,070

Brain

Non annotated transcript 0.000 −0.86 LG03 12,013,135

Histone-lysine n-methyltransferase 0.005 0.60 LG22 1,690,914

Hyaluronan and proteoglycan link protein 1 0.039 0.60 LG12 959,526

Synaptoporin 0.039 0.66 LG11 5,169,652

Table 2.  Differentially expressed genes between fast- and slow-growing turbot. FDR p-val: false discovery rate 
corrected p-value; FC: log2 fold change; LG: linkage group; UN: gene located in a scaffold not assigned to a LG 
of the turbot genetic map.
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checked for the correspondence between DAfreq SNPs and DE genes in the turbot map (Fig. 3). A selection of 
the most suggestive SNPs is shown in Table 3. Several DAfreq SNPs co-localized in a narrow region of LG2, with 
two glycolysis up-regulated genes in muscle, glyceraldehyde-3-phosphate dehydrogenase and triosephosphate 
isomerase, including a synonymous SNP variant of the gene glycogen synthase kinase 3, which is involved in the 
negative regulation of skeletal muscle growth (Table 3; Supplementary Dataset 2). Highly significant SNPs show-
ing a large DAfreq (>0.4) were also observed in two expressed genes in brain coding for sensory-related vesicle 
proteins, synaptotagmin 1 and synaptophysin, mapping at LG11 and LG16, respectively. Further, the muscle 
up-regulated deoxynucleoside triphosphate SAMHD1 gene showed a missense mutation located at LG10.

Except for the SNP corresponding to fast myosin heavy chain protein, all the SNPs assayed were technically 
feasible and could be characterized using the SNaPshot methodology (8 out of 9). These SNPs were successfully 
genotyped in all FG and SG samples, and significant frequency differences for three novel candidate genes were 
individually validated (Table 3; Supplementary Table 2). Worth noting is the DAfreq observed for SAMHD1, 
which also presented differential expression between extreme growth phenotypes in this study.

Discussion
Transcriptomes of fast- (FG) and slow- (SG) growing turbot involving eight different families from a breeding 
population of Atlantic origin were compared in this study. Several genes showing differential gene expression 
(DE) and/or divergent allelic frequencies at SNP markers (DAfreq) were found when comparing both pheno-
typic groups. The use of pools of families represents a cost-effective strategy for a preliminary exploration of 
the most important factors involved in differential growth. This approach enables identifying candidate genes, 
pathways and genomic regions associated with differential growth rates, as recently reported in other aquaculture 
species26–29. This strategy was here applied for the first time in the turbot, the most important farmed flatfish 
worldwide30. We identified relevant candidate genes and genomic regions associated with differential growth in 

Figure 1.  Muscle and brain heatmaps. Heatmaps of genes showing FDR corrected p-values < 0.3 for fast- 
(FG) and slow- (SG) growing turbot in: (a) muscle and (b) brain. Displayed are DESeq. 2 v.3.2 (Love et al.59) 
normalized counts for each sample and gene scaled by gene. Genes were hierarchically clustered according to 
their gene expression using Pearson correlation as a distance measure.
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Figure 2.  Family expression differences for six candidate genes. Log2 fold change differences between fast- and 
slow-growing fish in each family for six candidate genes studied by qPCR. Positive fold changes indicate over 
expression in fast-growing fish. The genes are lactate dehydrogenase (LDH), muscle glycogen phosphorylase 
(PYGM), growth hormone receptor 2 (GHR2), cytosolic creatine kinase (CKs), mitochondrial creatine kinase 
(CKm), and transforming growth factor β1 (TGFb1).

Figure 3.  SNPs with differential frequencies along the turbot genome. SNPs showing allelic frequency 
differences between fast- and slow-growing turbot are shown in red (non-synonymous mutations) or orange 
(any other type of mutation) in the different chromosomes of the turbot genome. The fold change of those genes 
with FDR corrected p-values <0.3 are shown in blue and the position of genetic markers previously found 
associated with growth traits are shown in green.
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this species, essential for understanding the mechanisms underlying phenotypic variation of this complex trait 
and useful for genetic assistance in breeding programs. The transcriptome profiles at 270 dpf here obtained also 
contribute key information to be further compared with other life-cycle stages with different weight of hyperpla-
sia and hypertrophy into myogenesis5. Some candidate genes were individually validated using qPCR in FG and 
SG fish in turbot families. Aggregated individual qPCR results were mostly in agreement with RNA-Seq pools; 
however, some genes showed inter-family transcriptomic differences, suggesting that functional strategies asso-
ciated with growth rate in turbot may be diverse among families, as previously reported for other complex traits 
in teleosts31. Our results are consistent with previous growth-association studies in turbot and other fish, where 
some genomic regions showed association across families, while others were family specific17,18,32. Furthermore, 
SNaPshot assays validated the association of some growth-related SNP variants identified through differential 
allele frequencies between FG and SG pools in the transcriptomic analysis. These gene markers could be useful 
for studies in other families and/or populations, or even for genome editing approaches for those potentially 
functional variants.

Up-regulation of all glycolytic enzymes along with lactate dehydrogenase was consistently observed in our 
study, which supports a higher oxidation rate of glucose by fermentation in muscle to increase growth rate. Unlike 
other vertebrates, fish muscle is separated in discrete layers of different fibre types. Vertebrates have two main 
types of striated muscle fibres, red and white, which in fish specialize in low speed swimming and bursts of 
maximum speed, respectively33. Red muscle fibres (less than 10% of the myotomal musculature) mainly depend 
mainly on aerobic, mitochondria driven, energy metabolism34. On the contrary, the metabolism of white muscle 
fibres (never less than 70% of fish skeletal muscle) relies mainly on anaerobic glycolysis, aided by the intracellular 
energy shuttle of cytosolic creatine kinase (CKs)35. The higher expression of glycolytic enzymes, lactate dehydro-
genase (LDH) and CKs in fast-growing turbot strongly suggests a higher white muscle metabolic activity, which 
would presumably explain their higher growth. Glycolysis has also been found up-regulated in the muscle of 
domestic rainbow trout compared to their wild counterparts36, and also in faster-growing fish of the same spe-
cies; this up-regulation has been associated with an increased muscle energy demand in fast-growing animals29. 
However, we cannot discriminate cause and consequence from our results. Either high growth rate demands an 
increasing anaerobic energy metabolism or, conversely, higher activity of glycolytic enzymes, LDH and CKs, 
results in higher growth rate. Further work is needed to clarify this issue.

Two suggestive candidates for follow-up experiments are the glycolytic enzymes triosephosphate isomerase 1 
(TPI) and glyceraldehyde-3-phosphate dehydrogenase (G3PDH). Both genes were up-regulated in turbot muscle 
and they are closely linked in LG2 (181 kb; ~0.3 cM21). Further, these two genes lie within the confidence interval 
of a growth-related QTL in turbot17,19, in the vicinity (<500 kb; ~1 cM18) of several DAfreq SNPs. TPI markers 
have been found associated with length variation in other fish37, and its expression has also been correlated with 
body size, muscle fat content and growth potential in bulls38, as also observed for G3PDH in fast-growing rainbow 
trout29. Other clusters of a few DE genes in short genomic stretches (<1 Mb) were observed in our study, suggest-
ing positional clustering of co-expressed genes of related pathways as reported for Arctic char31. The integration 
of structural and functional data provides clues for understanding the genetic architecture underlying growth in 
turbot and fish in general. The co-localization of several DE genes with DAfreq SNPs and growth-related QTL 
suggests that multiple genes could be underneath these growth-related genomic regions in turbot, as observed for 
complex traits in other fish31.

A higher activity of the glycolytic pathway was also supported by the up- and down-regulation of cytosolic 
(CKs) and mitochondrial (CKm) creatine kinase, respectively, in the muscle of turbot. Creatine is used as an 
energy reservoir in its phosphorylated form, and CK is responsible for creatine phosphorylation, capturing 

Chr Pos
V1/
V2 DAfreq RNA-seq (−log p-val) DAfreq SNaPshot Gene Annotation

LG01 12,679,184 G/A 0.51 (6.8) 0.11 insulin receptor Synon

LG02 13,982,806 T/C 0.32 (8.2) 0.15**/s glycogen synthase kinase 3 Synon

LG02 15,305,418 A/T 0.44 (6.9) 0.13 glutamate receptor 2 Missense: Tyr453Phe

LG04 11,572,319 T/A 0.70 (7.8) 0.08
Cklf-like marvel 
transmembrane domain-
containing protein 3

3′UTR

LG06 19,857,348 T/A 0.45 (9.5) — myosin heavy chain, fast 
skeletal muscle Missense: Thr40Ser

LG10 8,837,360 T/G 0.39 (9,7) 0.30*/** deoxynucleoside 
triphosphate SAMHD1 Missense: Lys151Gln

LG11 14,899,119 A/G 0.52 (7.2) 0.21*/s synaptotagmin 1 Intron

LG16 9,519,616 C/A 0.39 (7.9) 0.05 synaptophysin protein 1 5′UTR

LG24 2,244,489 A/G 0.37 (7.8) 0.07 glucose-6-phosphatase 3 Synon

Table 3.  Selection of SNPs showing divergent allelic frequencies between high and low growth turbot. For 
each SNP the chromosome (Chr), the position in the chromosome (Pos), the major variant (V1), the minor 
variant (V2), the allelic frequency difference (DAfreq) and Fisher’s test −log10 p-value (−log pval) obtained 
from the RNA-seq, the DAfreq and significance of genotypic/allelic divergence (G-tests; s: p < 0.10, *p < 0.05, 
**p < 0.01) obtained from SNaPshot, the gene the SNP belongs to (Gene) and the SNP annotation regarding the 
gene (Annotation; Synon: synonimous) are shown.
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available cellular energy; but it can also catalyse the reverse reaction, using phosphocreatine to regenerate ATP, 
acting as a metabolic regulator39. While CKs activates glycolysis by removing the ATP generated, CKm is cou-
pled to the mitochondrial oxidative phosphorylation capturing the ATP generated40,41. In this context, the 
up-regulation of CKs observed in FG turbot is likely consistent with the higher anaerobic metabolism in the 
white muscle. Both CKs and CKm genes have been reported to be highly regulated in muscle between large and 
small rainbow trout, associated with reactive oxygen stress imbalance29.

Growth hormone receptor 2 (GHR2), a fish-specific paralogous gene, was found down-regulated in the muscle 
of six out of eight turbot families, a similar expression pattern to that observed in fast-growing rainbow trout29,41. 
Growth hormone pathways are crucial for vertebrate growth, and specifically the variation at GHR2 has been 
also associated with growth in different tilapia species42. GHR2 is involved in fish myogenesis and compensatory 
growth43, although further functional analyses are required to understand its signal transduction mechanisms. 
Interestingly, GHR2 is located within the confidence intervals of a QTL explaining up to 18% of the phenotypic 
variance for body weight and length at LG14 in turbot17.

Unlike muscle, only a few DE genes were detected in brain when comparing FG and SG turbot. Detection of 
DE genes could be hindered by sampling the whole brain instead of dissecting specifically the hypothalamus or 
hypophysis, a very difficult task before the onset of sex growth dimorphism in turbot. Even so, to our knowledge, 
this is the first transcriptomic study showing brain differences between FG and SG in turbot. Interestingly, some 
up-regulated genes had been previously related to sensory control, including t-box brain protein 1, synaptoporin 
and olfactomedin, the latter two associated with domestication behaviour and feeding preference in other fish, 
and related to higher growth rate44,45. DAfreq SNPs were also found in two relevant genes coding for vesicle pro-
teins, synaptophysin, associated with behavioural variation in domesticated zebrafish44, and synaptotagmin 1, 
related to memory formation and retention, and feeding response in fish46. Moreover, these SNPs mapped within 
the intervals of growth QTL explaining more than 10% of observed variance17, where major candidate genes are 
also located (lumican at LG16 and myogenin at LG11, respectively)19. Synaptotagmin 1 SNP was validated using 
SNaPshot, showing significant and suggestive differences between FG and SG fish at genotypic and allelic level, 
respectively. All these data suggest that sensory-related genes and pathways regulating learning and memory in 
brain might explain differences in feeding behaviour and, thus, be involved in turbot growth rate.

Numerous DAfreq SNPs were detected in muscle and brain transcriptomes distributed across all chromo-
somes of the turbot genome, even in linkage groups such as LG9 and LG22, where growth QTLs have not been 
previously reported21. Although many of them may reflect linkage disequilibrium with causal polymorphisms or 
be false positives, others may explain growth differences in turbot, especially if they co-localize with previously 
reported QTL, or better, if they are within candidate genes showing differential expression. Thus, this list repre-
sents a catalog of candidate markers affecting gene expression and/or protein function with small to moderate 
effects associated with growth. Some differential SNPs concentrated in genomic regions co-localizing with pre-
vious growth markers reported in turbot21, particularly focused on those found across different families, which 
may represent the QTL variation in the wild Atlantic population of origin17,18. For example, a cluster of differential 
variants were detected in LG12, close to 3/9CA15 explaining up to 9% of length variance; or in LG16, close to 
Sma-USC-E11, explaining up to 25% of Fulton’s factor variance17, and apparently conserved in different fish spe-
cies21. The largest accumulation of DAfreq SNPs is observed in LG2 where, as previously mentioned, there are also 
two glycolitic enzymes showing differential expression. One of the SNPs in these regions is located in glycogen 
synthase kinase 3 (GSK3). This SNP has been validated individually and shows significant genotypic frequency 
differences between FG and SG fish. GSK3 is involved in the negative regulation of muscle growth and differen-
tiation47. A decrease in the activity of this protein is positively related to muscle growth. Further molecular and 
biochemical analysis are needed to determine if the identified SNP has an impact on GSK3 and consequently on 
the differential growth rates.

DAfreq SNPs within DE genes represent the most robust evidence for causality. In this study, DAfreq SNPs 
were often found in the vicinity of DE genes, but rarely mapped within DE genes. Two noteworthy exceptions 
were missense variants in the gene SAM and HD domain containing deoxynucleoside triphosphate (SAMHD1) 
located in linkage group LG10 and the myosin heavy fast skeletal gene located at turbot LG6. SAMHD1 was found 
to be up-regulated and its non-synonymous SNP individually validated, being significant at allelic (p = 0.034) and 
genotypic (p = 0.008) level. This gene encodes a major regulator of dNTP reservoir in the cell, playing an essential 
role in cell-cycle progression and cell proliferation, with impact on viral replication and cellular DNA polymer-
ization48,49. SAMHD1 dNTP reduction has been associated with a reduction of the number of mitochondria per 
cell by impeding mtDNA replication49. This is consistent with down-regulation of CKm in fast-growing turbot. 
Furthermore, this gene mapped within the confidence interval of a suggestive QTL for growth in turbot18. On the 
other side, the myosin heavy fast skeletal gene was in the vicinity (<500 kb; ~1 cM) of a growth QTL marker18 and 
was up-regulated together with other myofibrillar component genes, as also reported in fast-growing rainbow 
trout29. These observations support their interest as growth candidates for future studies.

Conclusion
The transcriptome comparison of fast- and slow-growing turbot from eight full-sib unrelated families enabled 
the identification of genes showing differential expression and SNP association with growth across the turbot 
genome. Sound candidate genes and genomic regions emerged as potential biomarkers of differential growth in 
turbot. Up-regulation of the glycolytic pathway in fast-growing turbot was consistent with a lower mitochondrial 
activity presumably related to higher proportion of white muscle fibres. A handful of sensory-related genes show-
ing differential brain expression or divergent allelic frequencies suggest differential behaviour related to feed-
ing between growth phenotypes. Nevertheless, family transcriptome variability of particular genes suggests that 
heterogeneous mechanisms might also be involved in differential growth rate, in accordance with the polygenic 
nature of this complex trait. Future studies should aim to expand these findings in other developmental stages 
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to better comprehend growth differences in turbot. Nonetheless, all genomic resources gathered here have been 
useful for validating differential genetic variation between growth phenotypes and will aid in further compara-
tive studies of growth in fish, providing a set of markers with an effect in turbot growth to be evaluated in future 
studies.

Methods
Families and sampling.  Turbot from eight unrelated full-sib families coming from a pedigreed breeding 
strain of Atlantic origin were reared in tanks at 18 °C in the facilities of CETGA (Aquaculture cluster of Galicia; 
Ribeira, Spain). Fish were weighed at 270 days post fertilization (dpf), before significant differences in growth 
rate between males and females occured50. The 3–4 largest and smallest fishes from each family were sampled, 
rendering a total of 26 individuals for each phenotype: Fast- (FG; average weight = 402 g, SD = 51.38) and slow 
(SG; average weight = 180 g, SD = 35.65) growing turbot (Fig. 4; Supplementary Dataset 3). We genotyped all 
animals using a sex-linked molecular tool51,52 to identify putative sex-associated growth differences using contin-
gency chi-square tests (p < 0.05). Muscle and brain tissues were collected and individually conserved in RNAlater 
(Qiagen, Valencia, CA). Animals were treated according to the Directive 2010/63/UE of the European Parliament 
and of the Council of 22 September 2010 on the protection of animals used for experimentation and other scien-
tific purposes. Experimental protocols were approved by the Institutional Animal Care and Use Committee of the 
University of Santiago de Compostela (Spain).

RNA sequencing.  RNA extraction was performed using the RNeasy mini kit (Qiagen) with DNase treat-
ment following manufacturer’s instructions. RNA quality and quantity were evaluated in a Bioanalyzer (Agilent 
Technologies, USA) and in a NanoDrop® ND-1000 spectrophotometer (Nanodrop Technologies, USA), respec-
tively. Three libraries were constructed for each growth group (FG and SG) and tissue (muscle and brain), totaling 
12 libraries. Eight to nine individuals from 2–3 different families were pooled in each library: 3 FG and 3 SG 
libraries for each tissue (Supplementary Dataset 3), every family being present in both FG and SG groups. Pooled 
samples were barcoded and prepared for sequencing at the Wellcome Trust Centre for Human Genetics, Oxford, 
where 100 bp paired-end (PE) reads were obtained on an Illumina HiSeq. 2000. The quality of the sequencing 
output was assessed using FastQC v.0.11.2 (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Quality 
filtering and removal of residual adaptor sequences was conducted on read pairs using Trimmomatic v.0.3253. 
Specifically, Illumina adaptors were clipped from the reads, leading and trailing bases with a Phred score <15 
were removed and the read trimmed if a sliding window average Phred score over four bases was less than 20. 
Only reads where both PE reads encompassed a length greater than 32 bp post-filtering were retained. Filtered 
reads were mapped to the recently assembled turbot genome18 using Tophat2 v.2.0.1254 that leverages the short 
read aligner Bowtie2 v.2.2.355 with default parameters. Cufflinks v.2.2.156 was used to build gene transfer format 
(GTF) files and cufflinks gffread utility was employed to obtain final fasta files for both muscle and brain tran-
scriptomes. Both transcriptomes were annotated against the NCBI non-redundant protein database (nr) using 
BLAST v.2.2.28+57.

RNA-Seq differential expression.  Uniquely mapped PE-reads were counted and assigned to genes using 
FeatureCounts58 included in the SourceForge Subread package v.1.5.0. Count data were used to estimate dif-
ferential gene expression between FG and SG samples using the Bioconductor package DESeq. 2 v.3.259 in R 
v.3.2.260. Genes with Benjamini-Hochberg false discovery rate (FDR) corrected p-values < 0.05 were considered 
differentially expressed (DE) genes. Due to the low amount of significant DE genes, those showing FDR corrected 
p-values < 0.3 (standard p-values < 0.005 and 0.0005 for muscle and brain, respectively) were also explored to 
identify a wider list of candidate genes for investigating enriched functions and pathways. Log2 library-size nor-
malized counts were used for generating heatmaps using “aheatmap” function in R/NMF61. Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathway enrichment was assessed using KOBAS 2.062 and Gene Ontology (GO) 
terms using Blast2GO63, the DE genes were compared to the whole muscle or brain transcriptomes and those 
terms or pathways showing FDR corrected P-values < 0.05 were considered enriched.

Figure 4.  Sampling design. Body-weight distribution of fast- (FG) and slow- (SG) growth sampled groups.

http://3
http://3
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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Differential allelic frequencies.  Pileup files describing the base-pair information at each genomic posi-
tion were generated from the alignment files using the mpileup function of Samtools64 discarding those aligned 
reads with a mapping quality < 20 and those bases with a Phred score < 20. SNP calling required a minimum 
read depth of 50 and a minimum of 5 reads for the least frequent allele. Differential allele frequency (DAfreq) 
between FG and SG samples were obtained using PoPoolation265 and the significance of DAfreq between the two 
groups was tested by Fisher’s exact test. Those SNPs showing Bonferroni corrected p-values < 0.05 and further 
DAfreq > 0.25 were considered significant. All the SNPs were functionally annotated using SnpEff v.4.266 and 
the turbot genome protein annotation21. SNP physical location was compared with that of previously reported 
growth-associated QTLs in turbot17,18, based on other farmed families sharing an Atlantic origin with the CETGA 
families here studied. All these families come from broodstocks derived from the turbot Atlantic area that shows 
very low genetic differentiation16.

Real-Time PCR.  The same RNA samples used for RNA-Seq were analysed individually by qPCR. Primers 
for selected genes (LDH, PYGM, GHR2, CKs, CKm, and TGFβ1) were designed using the Primer 3 soft-
ware67 (Supplementary Table 3). To determine DE between conditions the ΔΔCT method was used with the 
slow-growth (SG) condition set as normalizer, and the ribosomal protein S4 (RPS4) and ubiquitin (UBQ) as 
housekeeping genes. These two genes were previously validated for gene expression determination by qPCR in 
turbot68. Reactions were performed using a qPCR Master Mix Plus for SYBR Green I No ROX (Eurogenetec) 
following the manufacturer instructions, and qPCR was carried out on a MX3005 P (Agilent Technologies). 
Analyses were performed using the MxPro software. A t-test was used to determine significant differences 
between conditions. Two technical replicates of each sample were included.

SNP validation.  PCR and SNaPshot primers for SNPs included in selected candidate genes were designed 
using the NCBI primer designing tool and blast checked against the nr database69. Primer length was modi-
fied to allow multiplexing for nine SNPs showing DAfreq (Supplementary Table 4). Total DNA was purified 
after protein precipitation (5 M NaCl) with freezing cold absolute ethanol (1 mL). Motility rate for each potential 
single-base extension product was calculated using SnaPshot Primer Focus kit (Thermo Fisher Scientific) and 
samples were divided into two multiplex reactions and one singleplex (Supplementary Table 4). A sample of DNA 
from each individual was amplified and the SNaPshot minisequencing reaction was carried out using ABI Prism 
SNaPshot Multiplex kit (Applied Biosystems) in an ABI Prism 3730 DNA sequencer according to manufactur-
er’s instructions. The genotyping analysis was performed using GeneMapper ID software (Applied Biosystems). 
Exact G-tests were used to determine the significance of genotypic and genic differentiation between FG and SG 
population groups using Genepop 4.270.
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