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Abstract
Objective
To assess the association between daily moderate-to-vigorous physical activity (MVPA) and
dentate gyrus volume (DGv) in pediatric patients with acquired demyelinating syndromes
(ADSs) of the CNS.

Methods
Cross-sectional analysis of accelerometry (7 days) and research protocol MRI data from 12
pediatric MS and 18 children with monophasic ADS (monoADS). Total brain and DGv were
quantified using standardized methods. The association of daily minutes of MVPA with nor-
malized DGv (nDGv) was assessed using multivariable generalized linear models.

Results
Median (interquartile range) MVPA was lower in MS patients [9.5 (14)] and exhibited less
variation than in monoADS patients [24.5 (47)]. nDGv did not differ significantly between
groups [mean nDGv (SD) [cm3]: MS 0.34 (0.1); monoADS 0.4 (0.1); p = 0.100]. In the
monoADS group, every 1-minute increase in MVPA was associated with a 2.4-mm3 increase in
nDGv (p = 0.0017), an association that was independent of age at incident demyelination, time
from incident demyelination, sex, and brain white matter T2 lesion volume. No significant
association was found between MVPA and nDGv (−2.6 mm3/min, p = 0.16) in the MS group.

Conclusions
Higher MVPA associates with greater nDGv in children who have recovered from monophasic
demyelination. Larger studies are required to determine whether MVPA can promote regional
brain development, or limit tissue damage, in youth with MS.
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The hippocampus is responsible for memory and spatial
processing. Hippocampal atrophy is observed in adults and
children with MS and is associated with impaired visuospatial
and episodic memory.1 Recently, moderate-to-vigorous
physical activity (MVPA), via its pleotropic effects, has been
associated with improvedmemory performance and increased
hippocampal volume in healthy adults2,3 and adults with MS.4

Evidence in mice and humans further supports the notion that
physical activity selectively increases dentate gyrus (DG)
volume (DGv), perfusion, and neurogenesis.5 Currently, in-
formation is lacking regarding the association betweenMVPA
and DGv in children with acquired demyelinating syndromes
(ADSs), 20% of whom are diagnosed withMS. Accelerometry
is used widely in the pediatric population, including in chil-
dren as young as 3 years of age, for objective documentation
of physical activity.6,7 It is important to note that having
patients wear an accelerometer for 7 days has been shown to
be a reliable metric of usual physical activity in both healthy
children and children with various chronic conditions.8,9 We
investigated the association between MVPA levels, quantified
as average minutes per day of MVPA using 7-day accel-
erometry, and the DGv of pediatric patients with ADS, in-
cluding those ascertained as having MS and those who remain
as monophasic ADS (monoADS). We hypothesized that
higher levels of MVPA would be associated with greater DGv.
We also explored whether more modest physical activity in-
tensities (sedentary and light physical activity) were associated
with DGv in children withMS and monophasic demyelination.

Methods
Study population
This was a cross-sectional analysis of prospectively collected data
on MS or monoADS patients recruited between 2014 and 2015
attending a specialized Pediatric MS Center. Standard definitions
of MS and monophasic demyelinating disorders were followed.10

Patients with research MRI scan and accelerometry acquired
within 30 days of one each other that passed quality assurance,
and who had been followed up for a minimum of 2 years after
incident demyelination, were enrolled. Patients who experienced
a relapse or received corticosteroids within 30 days from study
start were excluded from the present analysis.

Clinical factors
Demographic and clinical variables were collected using a stan-
dardized case report form. Disability (ExpandedDisability Status
Scale [EDSS]) and depression status (Centre for Epidemio-
logical Studies Depression Scale for Children [CES-DC]),11 2

factors that may influence physical activity levels, were evaluated
within 30 days of the accelerometry measure. CES-DC scores
≥15 were considered suggestive of major depression.11

Physical activity measurement
Physical activity was measured according to a standardized 7-day
protocol with accelerometry (ActiGraph 7,164 accelerometer;
ActiGraph, Pensacola, FL) as described.12 Because physical ac-
tivity levels are fairly stable in children within the same
season,13,14 we assumed general stability of patterns of behavior
over a period of 30 days in the absence of a specific intervention.
To further mitigate concern regarding change in physical activity
in the interval between accelerometry and imaging, we performed
MRI scanning and accelerometry in close temporal relation.

Physical activity was classified based on the accelerometer
counts as sedentary to vigorous, depending on the rate of energy
consumption [1Metabolic Equivalent of Task (MET) = 3.5ml/
kg/min of O2 consumption] estimated for a given count, sex,
and age range. We followed validated accelerometry cutoff
points calibrated with energy expenditure in children and youth
aged 6 years and older.15 MVPA was measured in minutes per
day and defined as physical activity exceeding 3,199 counts per
minute (CPM).12 Sedentary and light physical activity were
defined as activities below 100 and 3,199 CPM, respectively.15

MRI
The MRI protocol included (1) a sagittal T1-weighted, 3D
spoiled gradient recalled echo sequence (1.5 × 1 × 1 mm;
repetition time (TR) = 22ms; echo time (TE) = 8ms; flip angle
= 30°); (2) a 2D axial dual-echo proton density-/T2-weighted
fast spin-echo sequence (1 × 1 × 2 mm; TR = 3,500 ms; TE1/
TE2 = 15/63 ms; echo train length = 8); and (3) an axial 2D
multislice fluid-attenuated turbo inversion recovery sequence
(1 × 1 × 5 mm; TR = 9,000 ms; TE = 100 ms; TI = 2,250 ms).
After a 9-parameter linear registration based on intensity, cross-
correlation was performed as a similarity measure between each
native T1-weighted volume and the ICBM152 template; a brain
mask was extracted using a multiresolution nonlocal segmen-
tation technique. Each brain mask was warped back onto each
T1-weighted native space using the inverse transformations and
used to compute the brain volume.16,17 T2 lesion volume (LV)
were measured according to established pipelines.17 The man-
ual tracing of the DG within the hippocampal body and tail was
performed according to a standardized protocol18 (itksnap.org)
by a single observer blinded to patients’ clinical data, with
computation of total (right + left) DGv normalized for brain
size (normalized DGv [nDGv]). To test intraobserver re-
producibility of DG segmentation, the scans of 10 randomly

Glossary
ADS = acquired demyelinating syndrome; CES-DC = Centre for Epidemiological Studies Depression Scale for Children;
CPM = counts per minute; DG = dentate gyrus; DGv = dentate gyrus volume; DMT = disease-modifying treatment; EDSS =
Expanded Disability Status Scale; LV = lesion volume;monoADS =monophasic ADS;MVPA =moderate-to-vigorous physical
activity; nDGv = normalized DGv.
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selected patients were evaluated twice, 2 weeks apart; the
intraclass correlation coefficient was 0.89.

Statistical analysis
SPSS (SPSS Inc, Release 23.0) was used to compute de-
scriptive statistics based on the Fisher exact test, independent
samples t test, or Mann-Whitney U test, where appropriate.
Modeling was performed using Python (python.org) and the
R (R Team, 2015) package lme4.

A general linear model was used to model the nDGv in each
group (monoADS or MS):

nDGv ; MVPA +Group p MVPA +Group + Sex

+ Age  at  incident  demyelination

+Time  from  incident  demyelination + LV

Our model takes into account multiple fixed factors and cova-
riates including the daily minutes of MVPA, group (MS and
monoADS), age at incident demyelination, time from incident
demyelination, sex, and T2-LV. In particular, the term MVPA
estimates the magnitude of the association betweenMVPA and
nDGv in theMS group, whereas the interactionGroup *MVPA
estimates the additional effect in monoADS vs MS. We also
tested separately the sum MVPA + Group * MVPA, which
estimates the magnitude of the association in the monoADS
group (table 1). We refit the model with the EDSS or de-
pression status replacing LV to assess the effect of these factors,
which are potentially correlated with each other. EDSS was
treated as a categorical variable. Depression status was coded as
a binary variable, equal to 1 if the CES-DC score was ≥15 and

0 otherwise. Finally, we refit the model with sedentary activity
or light physical activity replacing MVPA. Results were cor-
rected for multiple comparisons (Bonferroni correction for 5
independent tests: adjusted p = 0.01).

Standard protocol approvals, registrations,
and patient consents
Ethics approval was received from the Research Ethics Board at
the Hospital for Sick Children, Toronto, Canada (REB#
1000005356 and 1000042743). Written informed consent was
obtained from all guardians and informed assent from all patients.

Data availability
Anonymized data will be shared by request from any qualified
investigator.

Results
Eighteen patients with monoADS [acute disseminated en-
cephalomyelitis = 8, monofocal monoADS = 9, and poly-
focal monoADS = 1] and 12 with MS (phenotype of initial
presentation: transverse myelitis = 2, optic neuritis = 3,
hemispheric syndromes = 3, and brainstem syndromes = 4)
were included in the analysis. The median time between
MRI and accelerometry was 1 day (interquartile range 1.3).
Seven patients were excluded because of the elapsed time
between accelerometry and research MRI exceeding 30
days. Pediatric MS patients were older at the time of in-
cident demyelination, had a shorter elapsed time from in-
cident demyelination, higher LV (as measured at the time of
accelerometry), and lower daily MVPA with limited

Table 1 Results of the general linear model (reference group: MS)

nDGv

Model goodness of fit: F = 4.159; p = 0.0047; adj. R2 = 0.433

Effect Effect estimate (mm3) 95% CI p Value

Intercept 473 259–688

MVPA (MS) −2.6 −6.1 to 9.0 0.16

Group (monoADS) * MVPA 5.0 1.6–8.4 0.008

Group (monoADS) −117 −237 to 2.9 0.069

Sex (F) −24.5 −94 to 45 0.50

Age at incident demyelination [y] −4.0 −15 to 7.2 0.47

Time from incident demyelination [y] −0.9 −19 to 17 0.92

LV [cm3] −4.1 −12 to 3.7 0.31

MVPA + group (monoADS) * MVPA 2.4 1.1–3.8 0.0017

Abbreviations: CI = confidence interval; monoADS = monophasic acquired demyelinating syndrome; MS = multiple sclerosis; nDGv = total (left + right)
normalized dentate gyrus volume; F = female; MVPA = moderate-to-vigorous physical activity per day; LV = brain lesion volume.
The effect estimate is the amount inmm3 of additional nDGv expected with a 1-unit increase in the effect, and the pmeasures the significance of that change.
The “*” indicates an interaction. Patients with monoADS experienced an average 2.4 mm3 increase in nDGv with a 1-minute increase in MVPA [Group
(monoADS) *MVPA interaction]. The termMVPA gives the estimated effect on nDGv in theMS group, whereas the interaction Group *MVPA is the difference
between the MS and monoADS groups. The sum of these terms is the estimated effect in the monoADS group and is provided in the last row.
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variance compared with monoADS patients. nDGv did not
differ significantly between groups (table 2). Ten of the 11
MS patients were being treated with a first-line disease-
modifying treatment (DMT) at the time of the study (gla-
tiramer acetate = 4, interferon β-1a = 2, interferon β-1b = 1,
and dimethyl fumarate = 3). Three of them received pre-
vious treatment with another injectable DMT (glatiramer
acetate, interferon β-1a, or interferon β-1b). One MS pa-
tient, on natalizumab at the time of the study, previously
received cyclophosphamide pulses. Our general linear
model controlling for age at the time of incident de-
myelination, time from incident demyelination, sex, and LV
showed that in the monoADS group, each one-minute in-
crease in MVPA was associated with 2.4 mm3 larger nDGv
(p = 0.0017). The estimated mean effect in the MS group
was negative (−2.6 mm3/min increase in MVPA); however,
this association was not significant (R2 = 0.19, p = 0.16),
likely a result of the small sample size and one outlying value.
Consequently, our data do not allow the direction of an
effect, if any, to be confidently ascertained. However, when
we compared the magnitude of the association of MVPA
with nDGv between groups, patients with MS showed
significantly less increase in nDGv with increased MVPA
than did those with monoADS (5.0 mm3 smaller nDGv
increase per minute of MVPA in MS vs monoADS, p =
0.008) (table 1, figure).

Neither the EDSS (37 mm3/min of MVPA for the EDSS
score 1 vs 0, p = 0.25; −12.5 mm3/min of MVPA for the EDSS
score 2 vs 0, p = 0.83) nor the presence or absence of de-
pression (56 mm3/min of MVPA, p = 0.073) was associated
with the nDGv. None of the models for sedentary or light

physical activity was significant (sedentary physical activity:
model goodness of fit: F = 0.794; p = 0.60; adj. R2 = −0.052;
light physical activity: model goodness of fit: F = 1.194;
p = 0.35; adj. R2 = 0.045).

Discussion
Higher levels of MVPA in children with monophasic de-
myelination are associated with greater DG size, after
adjusting for age at the time of incident demyelination, time
from incident demyelination, sex, T2 lesion burden, physical
disability, and depression. Children with monophasic de-
myelination recover well neurologically, have a very low rate
of depression, and typically have a low burden of residual T2
lesions; thus, although these factors were considered, they did
not influence our findings.

Previous studies have documented an association between
MVPA and preservation of global hippocampal volume4,19–21

and improved memory function4,22 in adult MS patients. We
did not find a statistically significant association between
MVPA and nDGv in our pediatric MS patients (−2.6 mm3 for
each 1-min increase in MVPA, p = 0.16), likely in part due to
the limited amount and level of physical activity. This is
consistent with previous data indicating lower participation in
physical activity in children with MS compared with both
monoADS and healthy youth.12 However, our results leave
open the possibility that the correlation between MVPA and
DGv is, in fact, negative. Previous studies in adult relapsing-
remitting MS have shown hippocampal morphological
changes consistent with increased DGv; this effect was not
present in primary or secondary progressive MS.23 This

Table 2 Demographic and clinical characteristics

MS monoADS p Valuea

No. of patients 12 18 —

Median clinical follow-up (IQR) [y] 4.4 (2.2) 6 (2.5) 0.001

Females/males 9/3 7/11 0.072

Mean age at incident demyelination (SD) [y] 12.8 (2.3) 8 (3.3) 0.001

Median time from incident demyelination (IQR) [y] 2.5 (2) 4.1 (2.5) 0.001

Median no. of clinical attacks (IQR) 1.5 (2) 1 (0) 0.022

Median MVPA (IQR) [min/d] 9.5 (14) 24.5 (47) 0.017

Median EDSS (IQR) 1.3 (1.3) 1 (1.1) 0.346

Depressed/nondepressed 4/12 3/18 0.392

Mean nDGv (SD) [cm3] 0.34 (0.1) 0.4 (0.1) 0.100

Median LV (IQR) [cm3] 2.5 (10.8) 0.1 (0.01) 0.001

No. of patients with >1 gadolinium-enhancing lesions (%) 3/12 (25) — —b

Abbreviations:monoADS =monophasic acquired demyelinating syndrome; IQR = interquartile range;MVPA =moderate-to-vigorous physical activity per day;
nDGv = normalized dentate gyrus volume; LV = brain lesion volume; SD = standard deviation.
a Fisher exact test, independent samples t test, and Mann-Whitney U test, where appropriate.
b UnenhancedMRI scanswere performed in all except onemonoADS patients, who did not show any contrast enhancement after gadolinium administration.
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observation suggests that the volume of the DG might in-
crease in MS in response to inflammation. Our observation of
a nonsignificant negative correlation between MVPA and
nDGvmay thus hint to an anti-inflammatory effect of physical
activity within the DG of patients withMS.We computed that
a study with 37 patients with MS would be required to con-
firm a negative correlation between MVPA and nDGv of the
magnitude we observed (one-tailed t test, β = 0.8).24 In future
studies, more specificMRmeasures than DGvmay be required.
Possibilities include evaluation of changes in cellularity and
water content25 or tissue microstructure.26 Of note, the MS
group did not differ from the monoADS patients in terms of
physical disability (maximum EDSS score = 2 in both the MS
and monoADS groups). Thus, the limited amount of MVPA in
the MS group and, arguably, the lack of a statistically significant
association between MVPA and nDGv were not due to greater
physical disability. Flu-like symptoms are a common side effect
of beta interferons therapy, which may have limited physical
activity engagement in our MS patients. However, only three of
11 were receiving such treatment at the time of the study. A
study of 29 adult MS patients with depression demonstrated an
association between depression and smaller DG/Cornu
Ammonis 2–3 volume.27 We did not detect depression as
a significant contributing factor in our patients, probably be-
cause of the low sample size and the low frequency of de-
pression within our MS group. Other studies have shown an
association between depression and reduced participation in
physical activity in adolescents with MS.12 Future studies are
needed to sort out the complex relationship between de-
pression, physical activity, and DGv in this population.

In addition to consideration of patient-based experiential
factors, we also evaluated relationships between nDGv and
MS disease activity (LV). Both in adults28 and children,1

moderate direct correlations have been documented between
LV and morphological changes of the DG surface suggestive
for DG hypertrophy of uncertain significance.1,23 Our analysis
did not reveal a significant association between LV and DGv.
This may have been due to the different techniques applied
(DG segmentation and volumetry vs radial mapping analysis)
or the smaller sample size of our study.

The cross-sectional, observational nature of this study did not
allow us to draw a causal or mechanistic relationship between
increased MVPA and nDGv in children with monophasic de-
myelination. However, many studies support the biological
plausibility of this finding. On a histologic level, animal studies
have shown that voluntary wheel running selectively
increases neurogenesis,5,29,30 angiogenesis,5,31 and dendritic
complexity32,33 within the DG. Within the hippocampus, vol-
untary wheel running is also known to increase the secretion of
neurotrophic factors2,34 and anti-inflammatory cytokines.3 In-
creased MVPA levels may thus reduce inflammatory injury
and/or promote repair after acute demyelination. In children
with monophasic demyelination, the absence of ongoing in-
flammation may lead to a permissive environment for MVPA
to supply a trophic stimulus. In the context of MS, however, the
ability of MVPA to modulate inflammation-related injury may
be challenged by persistent pathologic processes, both in-
flammatory and degenerative. Our finding of significantly less
increase in nDGv with increased MVPA in the MS patients
compared with the monoADS group seems to support this
notion. In particular, recent work suggests a pattern of micro-
glial activation within the DG, which is associated with selective
neurodegeneration, alteration in synaptic transmission, and
memory impairment inmice with early experimentalMS.35 It is
thus possible that increasingly effective immune-modulating
therapies, which lead to a reduction inMRI and clinical burden
of inflammatory disease, may facilitate the benefit of physical
activity in patients with MS.

As an alternative explanation for the different strength of the
association of MVPA with nDGv between groups, the effect of
MVPAonDGvmay occur in the context of higher levels of daily
MVPA (similar to that observed in our monoADS group), or
increments in DGv may proceed in a nonlinear fashion, with
smaller increases for patients with lower daily MVPA. There-
fore, the limited participation in MVPA in our MS group may
have limited our ability to detect its relationship with nDGv.
Importantly, the hippocampus is involved in the complex cog-
nitive processing associated with certain kinds of physical ac-
tivity and exploratory behavior.36 To follow this argument, we
cannot exclude reverse causality—specifically, the possibility
that MS-related insult to hippocampal structure and function
led to reduced engagement in physical activity in ourMS group.

Hippocampal subfield segmentation is feasible in children and
adolescents using the 3D-T1 1.5T sequences acquired,37 but

Figure Comparison between minutes of MVPA/day and
nDGv in patients with MS (green) or monoADS
(blue)

Patients with monoADS demonstrated a range of MVPA levels that corre-
lated positively with nDGv (R2 = 0.32; p = 0.0016). Although the green line
suggests an adverse effect of MVPA on nDGv, this association was not sig-
nificant in theMSgroup (R2 = 0.19; p= 0.16), likely a result of the small sample
size and one outlying value. However, patients with MS showed significantly
less increase in nDGv with increased MVPA than did those with monoADS
(p = 0.008). monoADS = monophasic acquired demyelinating syndrome;
MVPA = moderate-to-vigorous physical activity; nDGv = normalized dentate
gyrus volume.
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our DG measures would have been enhanced by
hippocampal-targeted high-resolution sequences. Future
longitudinal studies should evaluate the effects of physical
activity levels on age-expected regional and whole brain
growth over time, which has been recently found to be af-
fected even in children with monophasic demyelination.38

We show that moderate to vigorous exercise associates with
increased size of the DG in children who have recovered from
monophasic demyelination. Our results also show that the re-
lationship between MVPA and DGv in MS may be more
complicated, possibly confounded by other factors, such as in-
flammation or therapy; more specific imaging techniques may
be required to quantify these factors. Longitudinal design with
controlled intervention would also reduce confounding factors.
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