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Image registration and segmentation are the two most studied problems in medical

image analysis. Deep learning algorithms have recently gained a lot of attention due

to their success and state-of-the-art results in variety of problems and communities.

In this paper, we propose a novel, efficient, and multi-task algorithm that addresses

the problems of image registration and brain tumor segmentation jointly. Our method

exploits the dependencies between these tasks through a natural coupling of their

interdependencies during inference. In particular, the similarity constraints are relaxed

within the tumor regions using an efficient and relatively simple formulation. We evaluated

the performance of our formulation both quantitatively and qualitatively for registration

and segmentation problems on two publicly available datasets (BraTS 2018 and OASIS

3), reporting competitive results with other recent state-of-the-art methods. Moreover,

our proposed framework reports significant amelioration (p < 0.005) for the registration

performance inside the tumor locations, providing a generic method that does not need

any predefined conditions (e.g., absence of abnormalities) about the volumes to be

registered. Our implementation is publicly available online at https://github.com/TheoEst/

joint_registration_tumor_segmentation.

Keywords: brain tumor segmentation, deformable registration, multi-task networks, deep learning, convolutional

neural networks

1. INTRODUCTION

Brain tumors and more specifically gliomas as one of the most frequent types, are across
the most dangerous and rapidly growing types of cancer (Holland, 2002). In clinical practice,
multi-modal magnetic resonance imaging (MRI) is the primary method of screening and
diagnosis of gliomas. While gliomas are commonly stratified into Low grade and High grade
due to different histology and imaging aspects, prognosis and treatment strategy, radiotherapy
is one of the mainstays of treatment (Stupp et al., 2014; Sepúlveda-Sánchez et al., 2018).
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However, radiotherapy treatment planning relies on tumor
manual segmentation by physicians, making the process tedious,
time-consuming, and sensitive to bias due to low inter-observer
agreement (Wee et al., 2015).

In order to overcome these limitations, numerous methods
have been proposed recently that try to provide tools and
algorithms that will make the process of gliomas segmentation
automatic and accurate (Parisot et al., 2016; Zhao et al., 2018).
Toward this direction, the multimodal brain tumor segmentation
challenge (BraTS) (Menze et al., 2015; Bakas et al., 2017a,b,c)
is annually organized, in order to highlight efficient approaches
and indicate the way toward this challenging problem. In recent
years, most of the approaches that exploit BraTS have been based
on deep learning architectures using 3D convolutional neural
networks (CNNs) similar to VNet (Milletari et al., 2016). In
particular, the best performing approaches use ensembles of deep
learning architectures (Kamnitsas et al., 2018; Zhou et al., 2018),
with autoencoder regularization (Myronenko, 2018) or they even
combine deep learning architectures together with algorithms,
such as conditional random fields (CRFs) (Chandra et al.,
2019). Other top-performing methods in the BraTS 2017 and
2018 challenges used cascaded networks, multi-view and multi-
scale approaches (Wang et al., 2017), generic UNet architecture
with data augmentation and post-processing (Isensee et al.,
2018), dilated convolutions and label uncertainty loss (McKinley
et al., 2018), and context aggregation and localization pathways
(Isensee et al., 2017). A more detailed comparison and
presentation of competing methods in recent BraTS challenges
is presented and summarized in Bakas et al. (2018).

Image registration is a challenging task for medical image
analysis in general and for rapidly evolving brain tumors
in particular, where longitudinal assessment is critical. Image
registration seeks to determine a transformation that will map
two volumes (source and reference) to the same coordinate
system. In practice, we seek a volume mapping function that
changes the coordinate system of the source volume into
the coordinate system of the reference volume. Among the
different types of methods employed in medical applications,
deformable or elastic registration is the most commonly
used (Sotiras et al., 2013). Linear methods are an alternative
but in that case a linear global transformation is sought for
the entire volume. Deformable registration has been addressed
with a variety of methods, including for example surface
matching (Postelnicu et al., 2009; Robinson et al., 2018) or graph
based approaches (Glocker et al., 2009). These methods have
been extended to address co-registration ofmultiple volumes (Ou
et al., 2011). Moreover, some of the most popular methods
traditionally used for the accurate deformable registration
include (Avants et al., 2008; Klein et al., 2009; Shi et al.,
2013). Recently a variety of deep learning based methods
have been proposed, reducing significantly the computational
time but maintaining the accuracy and robustness of the
registration (Christodoulidis et al., 2018; Dalca et al., 2018).
In particular, the authors in Dalca et al. (2018) presented a
deep learning framework trained for atlas-based registration of
brain MR images, while in Christodoulidis et al. (2018) the
authors present a scheme for a concurrent linear and deformable
registration of lung MR images. However, when it comes to

anatomies that contain abnormalities, such as tumoral areas,
thesemethods fail to register the volumes at certain locations, due
to lack of similarity between them. This often leads to distortions
in and around the tumor regions in the deformed image.

To overcome this problem, in this paper, we propose a dual
deep learning based architecture that addresses registration and
tumor segmentation simultaneously, relaxing the registration
constraints inside the predicted tumor areas, providing
displacements and segmentation maps at the same time. Our
framework bears concept similarities with the work presented
in Parisot et al. (2012) where a Markov Random Field (MRF)
framework has been proposed to address both of tumor
segmentation and image registration jointly. Their method
required ∼6 min for the registration of one pair and the
segmentation of one class tumor region was performed with
handcrafted features and classical machine learning techniques
using only one MRI modality. Moreover, there are methods
in the literature that try to address the problem of registration
of brain tumor MRI by registering on atlases or MRIs without
tumoral regions (Gooya et al., 2010, 2012). Here, we introduce
a highly scalable, modular, generic, and precise 3D-CNN
for both registration and segmentation tasks and provide a
computationally efficient and accurate method for registering
any arbitrary subject involving possible abnormalities. To
the best of our knowledge this is the first time that a joint deep
learning-based architecture is presented, showing very promising
results in two publicly available datasets for brain MRI. The
proposed framework provides a very powerful formulation by
introducing the means to elucidate clinical or functional trends
in the anatomy or physiology of the brain via the registration
branch. It further enables the modeling and the detection of brain
tumor areas due to the synergy with the segmentation branch.

2. MATERIALS AND METHODS

Consider a pair of medical volumes from two different patients—
a source S, and a reference R together with their annotations for
the tumor areas (Sseg and Rseg). The framework consists of a bi-
cephalic structure with shared parameters, depicted in Figure 1.
During training the network uses as input a source S and a
reference R volumes and outputs their brain tumor segmentation
masks Ŝseg and R̂seg and the optimal elastic transformation G
which will project or map the source volume to the reference
volume. The goal of the registration part is to find the optimal
transformation to transform the source S to the reference R
volume. In this section, we present the details for each of the
blocks as well as our final formulation for the optimization.

2.1. Shared Encoder
One of the main differences of the proposed formulation with
other registration approaches in the literature is the way that
the source and reference volumes are combined. In particular,
instead of concatenating the two initial volumes, these volumes
are independently forwarded in a unique encoder, yielding two
sets of features maps (called latent codes) Csource and Creference

for the source and the reference volumes, respectively. These two
codes are then independently forwarded into the segmentation
decoder, providing the predicted segmentation maps Ŝseg and
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FIGURE 1 | A schematic representation of the proposed framework. The framework is composed by two decoders, one which provides tumor segmentation masks

for both S and R images, and one the provides the optimal displacement grid G that will accurately map the S to the R image. The merge bloc will combine the

forward signal of the source input and the reference input (which are forwarded independently in the encoder).

R̂seg . Simultaneously, the two codes are merged before being
forwarded in the registration decoder—this operation is depicted
in the “Merge” block in Figure 1. The motivation behind
adopting this strategy is based on forcing the encoder to extract
meaningful representations from individual volumes instead of
a pair of volumes. This is equivalent to asking the encoder
discovering a template, “deformation-free” space for all volumes,
and encoding each volume against this space (Shu et al., 2018),
instead of decoding the deformation grid between every possible
pair of volumes. Besides, from the segmentation point of view,
there are no relationship between the tumor maps of the source
volume and the reference volume, so the codes to be forwarded
into the segmentation decoder should not depend on each other.

We tested two merging operators, namely concatenation and
subtraction. Both source and reference images are 4D volumes
whose first dimension corresponds to the 4 different MRI
modalities that are used per subject. After the forward to the
encoder, the codes Csource and Creference are also 4D volumes with
the first dimension corresponding to nf , which is the number
of convolutional filters of the last block of the encoder. Before
Csource and Creference are inserted into the registration decoder,
they are merged, outputting one 4D volume of size 2 × nf in
the case of the concatenation, and of size nf for the elementwise
subtraction operator, both leaving the rest of the dimensions
unchanged. In particular, the subtraction presents the following
natural properties for every coding image CI :

• ∀CI ∈ R
n
:Merge(CI ,CI) = 0

• ∀CI ,CJ ∈ R
n × R

n
:Merge(CI ,CJ) = −Merge(CJ ,CI)

2.2. Brain Tumor Segmentation Decoder
Inspired by the latest advances reported on the BraTS 2018
dataset, we adopt a powerful autoencoder architecture. The

segmentation and registration decoders share the same encoder
(section 2.1) for feature extraction and they provide brain tumor
segmentation masks (̂Sseg and R̂seg) for the source and the
reference images. These masks refer to valuable information
about the regions that cannot be registered properly as there
is no corresponding anatomical information on the pair. This
information is integrated into the optimization of the registration
component, relaxing the similarity constraints and preserving to
a certain extent the geometric properties of the tumor.

Variety of loss functions have been proposed in the literature
for the semantic segmentation of 3D medical volumes. In
this paper, we performed all our experiments using weighted
categorical cross-entropy loss and optimizing three different
segmentation classes for the tumor area as provided by the BraTS
dataset. In particular,

Lseg = CE(Sseg , Ŝseg)+ CE(Rseg , R̂seg) (1)

where CE denotes the weighted cross entropy loss. The cross
entropy is calculated for both the source and reference images
and the overall segmentation loss is the sum of the two. Here we
should note that different segmentation losses can be applicable
as for example the dice coefficient (Sudre et al., 2017), focal
loss (Lin et al., 2017), etc.

2.3. Elastic Registration Decoder
In this paper, the registration strategy is based on the
one presented in Christodoulidis et al. (2018), with the
main component being the 3D spatial transformer. A spatial
transformer deforms (or warps) a given image S with a
deformation grid G. It can be represented by the operation,

D = W(S,G),
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where W(·,G) indicates a sampling operation W under the
deformation G and D the deformed image. The deformation is
hence fed to the transformer layer as sampling coordinates for
a backward trilinear interpolation sampling, adapting a strategy
similar to Shu et al. (2018). The sampling process is then
described by

D(Ep) = W(S,G)(Ep) =
∑

Eq

S(Eq)
∏

d

max
(
0, 1−

∣∣[G(Ep)]d − Eqd
∣∣) ,

where Ep and Eq denote pixel locations, d ∈ {x, y, z} denotes an
axis, and [G(Ep)]d denotes the d-component of G(Ep). Moreover,
instead of regressing per-pixel displacements, we predict a matrix
9 of spatial gradients between consecutive pixels along each
axis. The actual grid G can then be obtained by applying an
integration operation on 9 along the x-, y-, and z-axes, which
is approximated by the cumulative sum in the discrete case.
Consequently, two pixels Ep and Ep + 1 will have moved closer,
maintained distance, or moved apart in the warped image, if 9Ep

is respectively < 1,= 1, or > 1.

2.4. Network Architecture
Our network architecture is a modified version of the fully
convolutional VNet (Milletari et al., 2016) for the underlying
encoder and decoders parts, maintaining the depth of the
model and the rest of the filter’s configuration unchanged. The
model, whose computational graph is displayed in Table 1,
comprises several sequential residual convolutional blocks made
of one to three convolutional layers, followed by downsampling
convolutions for the encoder part and upsampling convolutions
for the decoder part.We replaced the initial 5×5×5 convolutions
filter-size by 3 × 3 × 3 in order to reduce the number of
parameters without changing the depth of the model, and also
replace PReLu activations by ReLU ones. In order to speed up
its convergence, the model uses residual connections between
each encoding and corresponding decoding stage for both the
segmentation and the registration decoder. This allows every
layer of the network, particularly the first ones, to be trainedmore
efficiently since the gradient can flow easier from the last layers
to the first ones with less vanishing or exploding gradient issues.
The encoder part deals with 4-inputs per volume, representing
the four different MRI modalities that are available on the BraTS
dataset, an extra 1 × 1 × 1 convolution is added to fuse the
initial modalities. Moreover, the architecture contains 2 decoders
of identical blocks, 1 dedicated to the segmentation of tumors for
the source and reference image and 1 dedicated to the optimal
displacement that will map the source to the reference image.

2.5. Optimization
The network is trained to minimize the segmentation and
registration loss functions jointly. For the segmentation task the
loss function is summarized in Equation (1). For registration, the
classical optimization scheme is to minimize the Frobenius norm
between the R and D image intensities:

Lreg = ||(R− D)||2 + α ‖9 − 9I‖1 (2)

Here, in order to better achieve overall registration, the
Frobenius norm within the regions predicted to be tumors is
excluded from the loss function. We argue that by doing this, the
model does not focus on tumor regions, which might produce
very high norm due to their texture, but rather focuses on the
overall registration task by looking at regions outside the tumor
which contain information more pertinent to the alignment of
the volumes. Here we should mention that on Ŝseg we apply the
same displacement grid as on S, resulting in Dseg = W (̂Sseg ,G).
Further, let R̂0seg and D0

seg be binary volumes indicating the voxels
which are predicted to be outside any segmented regions. Then,
the registration loss can be written as

L
⋆
reg = ||(R− D) · D0

seg · R̂
0
seg ||

2 + α ‖9 − 9I‖1 (3)

where · is the element-wise multiplication, || · ||2 indicates
the Frobenius norm, 9I is the spatial gradient of the identity
deformation and α is the regularization hyperparameter. The
use of regularization on the displacements 9 is essential in
order to constrain the network to predict smooth deformation
grids that are anatomically more meaningful while at the
same time regularize the objective function toward avoiding
local minimum.

Finally the final optimization of the framework is performed
by the joint optimization of the segmentation and registration
loss functions

L = Lreg + βLseg

where β is a weight that indicates the influence of each of the
components on the joint optimization of the network and was
defined after grid search.

For the training process, the initial learning rate was 2 · 10−3

and subdued by a factor of 5 if the performance on the validation
set did not improve for 30 epochs. The training procedure stops
when there is no improvement for 50 epochs. The regularization
weights α and β were set to 10−10 and 1 after grid search. As
training samples, random pairs among all cases were selected
with a batch size limited to 2 due to the limitedmemory resources
on the GPU. The performance of the network was evaluated
every 100 batches, and both proposed models converged after
nearly 200 epochs. The overall training time was calculated to
∼20 h, while the time for inference of one pair, using four
different modalities was ∼3 s, using an NVIDIA GeForce GTX
1080 Ti GPU.

2.6. Datasets
We evaluated the performance of our method using two publicly
available datasets, namely the Brain Tumor Segmentation
(BraTS) (Bakas et al., 2018) and Open Access Series of Imaging
Studies (OASIS 3) (Marcus et al., 2010) datasets. BraTS contains
multi-institutional pre-operative MRI scans of whole brains with
visible gliomas, which are intrinsically heterogeneous in their
imaging phenotype (shape and appearance) and histology. The
MRIs are all pre-operative and consist of four modalities, i.e.,
4 3D volumes, namely (a) a native T1-weighted scan (T1),
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TABLE 1 | Layer architectures of the shared encoder, the segmentation decoder and the registration decoder.

Name Input Res. input Operations Output shape

ENCODER

Enc1 4D MRI Conv1,8, ReLU, (Conv3,8, ReLU), AddId, (144, 208, 144, 8)

Enc2 Enc1 Conv2,16, ReLU, (Conv3,16, ReLU)*2, AddId (72, 104, 72, 16)

Enc3 Enc2 Conv2,32, ReLU, (Conv3,32, ReLU)*3, AddId (36, 52, 36, 32)

Enc4 Enc3 Conv2,64, ReLU, (Conv3,64, ReLU)*3, AddId (18, 26, 18, 64)

Enc5 Enc4 Conv2,128, ReLU, (Conv3,128, ReLU)*3, AddId (9, 13, 9, 128)

SEGMENTATION DECODER

Dec4seg Enc5 Enc4 DeConv2,64,ReLU, ResConc, (Conv3,64, ReLU)*3, AddId (18, 26, 18, 64)

Dec3seg Dec4seg Enc3 DeConv2,32, ReLU, ResConc, (Conv3,32, ReLU)*3, AddId (36, 52, 36, 32)

Dec2seg Dec3seg Enc2 DeConv2,16, ReLU, ResConc, (Conv3,16, ReLU)*2, AddId (72, 104, 72, 16)

Dec1seg Dec2seg Enc1 DeConv2,8, ReLU, ResConc, (Conv3,8, ReLU), AddId (144, 208, 144, 8)

Dec0seg Dec1seg Conv1,4, Softmax (144, 208, 144, 4)

REGISTRATION DECODER

Merge EnciR, Enc
i
S

For all 1 ≤ i ≤ 5,MEnci = EnciR ⊕ Enci
S

Dec4reg MEnc5 MEnc4 DeConv2,64, ReLU, ResConc, (Conv3,64, ReLU)*3, AddId (18, 26, 18, 64)

Dec3reg Dec4reg MEnc3 DeConv2,32, ReLU, ResConc, (Conv3,32, ReLU)*3, AddId (36, 52, 36, 32)

Dec2reg Dec3reg MEnc2 DeConv2,16, ReLU, ResConc, (Conv3,16, ReLU)*2, AddId (72, 104, 72, 16)

Dec1reg Dec2reg MEnc1 DeConv2,8, ReLU, ResConc, (Conv3,8, ReLU), AddId (144, 208, 144, 8)

Dec0reg Dec1reg Conv1,3, Sigmoid (144, 208, 144, 3)

The sub-architectures are grouped into blocks, one per table line, whose names are indicated in the first column. Each block processed a forward signal as input identified by the second

column. Additionally, both decoders have residual connections from different stages of the encoder, identified by the third column. The blocks are made of a set of successive operations

where Convw,f (resp. DeConvw,f ) stands for a convolutional (resp. deconvolutional) layer with weight size w×w×w and f filters, ReLU—Rectified Linear Unit, AddId—intra-block residual

connection with the output of the first activated convolution of the corresponding block, ResConc—encoder to decoder residual connection from the output of the third column block

to the current signal, Softmax and Sigmoid—finale output activation. * indicates successive repetition of the previous operations in parenthesis. For convolutions and deconvolutions

layers, strides is 1× 1× 1 except for the Conv2,· which is 2× 2× 2. The first layer of the registration decoder indicates the merging operation of the source signal and the reference

signal, which are obtained by inferring them successively in the encoder; ⊕ Indicates elementwise subtraction or channelwise concatenation of the source and reference list of tensors

(forward network signal and four residual connection signals). The last column indicates each block output shape (channels last).

(b) a post-contrast Gadolinium T1-weighted scan (T1Gd), (c)
a native T2-weighted scan (T2), and (d) a native T2 Fluid
Attenuated Inversion Recovery scan (T2-FLAIR). The BraTS
MRIs are provided with voxelwise ground-truth annotations
for five disjoint classes denoting (a) the background, (b) the
necrotic and non-enhancing tumor core (NCR/NET), (c) the
GD-enhancing tumor (ET), (d) the peritumoral edema (ED) as
well as invaded tissue, and finally (e) the rest of the brain, i.e.,
brain with no abnormality nor invaded tissue. Each center was
responsible for annotating their MRIs, with a central validation
by domain experts. We use the original dataset split of BraTS
2018 which contains 285 training samples and 66 for validation.
In order to perform our experiments, we split this training set
into three parts, i.e., train, validation and test sets (199, 26, and
60 patients, respectively), while we used the 66 unseen cases on
the platform to report the performance of the proposed and
the benchmarked methods. Moreover, and especially for the
registration task, we evaluated the performance of the models
trained on BraTS on theOASIS 3 dataset to test the generalization
of the method. We extract from this dataset a subset of 150
subjects which were characterized as either non-demented or
with mild cases of Alzheimer’s disease (AD) using the Clinical
Dementia Rating (CDR). Each scan is made of 3–4 individual T1-
weighted MRIs, which has been intended to reduce the signal-to-
noise ratio visible with single images. The scans are also provided

with annotations for 47 different structures for left and right side
of the brain generated with FreeSurfer. Some samples of both
datasets can be seen in Figure 2.

The same pre-processing steps have been applied for both
datasets. MRIs were resampled to voxels of volume 1 mm3

using trilinear interpolation. Each scan is then centered by
automatically translating their barycenter to the center of
the volume. Ground-truth masks of training and validation
steps were accordingly translated. Each modality of each scan
has been standardized, i.e., the values of the voxels of the
3D subscans were of zero mean and of unit variance. This
normalization step is done independently for each patient and
for each channel in order to equally consider each channel since
modalities have voxels values in completely different ranges.
Finally, these consequent scans are cropped into (144, 208, 144)
sized volumes.

2.7. Statistical Evaluations
Our contributions in this study are three-fold: (i) a multi-
task scheme for joint segmentation and registration; (ii) an
encoding scheme followed by a fusion scheme in the latent
space to aggregate information from the pair of images; and
(iii) a loss formulation (Equation 3) that relaxes the registration
constraints in the tumoral regions. In this section, we present
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FIGURE 2 | Illustration of a slice extracted from two different subjects for both BraTS 2018 and OASIS 3 datasets. The BraTS dataset consists of four modalities (T1,

T1 gadolinium [T1 Gd], T2, T2 FLAIR [Flair]), along with voxelwise annotations for the three tumor tissue subclasses depicting the overall extent of tumors. OASIS 3

consists of a single T1 modality, and images are provided with voxelwise annotations for 47 different normal brain structures for patients without brain tumors.

our extensive experiments to demonstrate the soundness of
our method.

2.7.1. Comparison With Competing Methods
To demonstrate the importance of each component of our
method, we performed multiple experiments to evaluate
performance for both registration and segmentation tasks
by removing one or more components. In particular, we
evaluated 2 merging operators—subtraction and concatenation.
The resulting models are henceforth referred to as “Proposed
concatenation with L

⋆
reg” and “Proposed subtraction with L

⋆
reg ,”

respectively. We further evaluated the importance of the
proposed loss formulation, reporting the performance of the
models without including it in the total loss. This model is called
“w/o L

⋆
reg .” Finally, we also evaluated the performance of the

method without the segmentation decoder, which is reported as
“Proposed concatenation only reg.” and “Proposed subtraction
only reg.,” which again did not use L⋆

reg .
We also benchmark baseline methods, without any of the

proposed contributions. Since our deep learning architecture is
derived from the Vnet (Milletari et al., 2016), this model is
used as baseline for segmentation. This comparison seems fair
since the fully proposed approach can be seen as a Vnet for
the task of segmentation: the shared encoder and the proposed
loss are primarily designed for registration, and have no direct
impact on the segmentation apart from the features learnt in
the encoder. For completeness, the top performing results on
the BraTS (Bakas et al., 2018) challenge are reported, although
we argue that the comparison is unfair since our deep learning
architecture is entirely based on the Vnet (Milletari et al.,
2016), which is not specifically designed to perform well on the
BraTS segmentation task. Finally, we also report the performance
of Voxelmorph (Dalca et al., 2018), a well-performing brain
MRI registration neural network-based approach, although their

entire deep learning structure as well as their grid formulation
is different.

2.7.2. Performance Assessment
For performance assessment of the segmentation task, we
reported the Dice coefficient metric and Hausdorff distance to
measure the performance for the tumor classes Tumor Core
(TC), Enhancing Tumor (ET), and Whole Tumor (WT) as
computed and provided from the BraTS submission website.
These classes are the ones used in the BraTS challenge (Bakas
et al., 2018), but differ from the original ones provided
in the BraTS dataset: TC is the same as the one labeled
in the BraTS dataset for necrotic core (NCR/NET), ET is
the disjoint union of the original classes NCR/NET and
ET, while WT refers to the union of all tumoral and
invaded tissues.

For the registration, we evaluated the change on the
tumor area together with the Dice coefficient metric for the
following categories of the OASIS 3 dataset: brain stem (BS),
cerebrospinal fluid (CSF), 4th ventricle (4V), amygdala (Am),
caudate (Ca), cerebellum cortex (CblmC), cerebellum white
matter (CblmWM), cerebral cortex (CeblC), cerebral white
matter (CeblWM), hippocampus (Hi), lateral ventricle (LV),
pallidum (Pa), putamen (Pu), ventral DC (VDC), and 3rd
ventricle (3V) categories. Here we should mention that for the
experiments with the OASIS 3 dataset, we performed a training
only with the T1-weighted MRIs of the BraTS dataset, in order
to match the available modalities of the OASIS 3 dataset. This
evaluation is important as (i) BraTS does not provide anatomical
annotations in order to evaluate quantitatively the registration
performance and (ii) the generalization of the proposed method
on an unseen dataset is evaluated. For the registration of tumor
tissues, which might not exist in the source or reference MRIs,
we expect the model to register tumor areas while maintaining
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their geometric properties. In particular, we do not really expect
the tumor areas to stay completely unchanged. However, we
expect that the volume of the different tumor types would change
with a ratio similar to the one that the entire source to the
reference volume changes. We calculate this ratio by computing
D
j
seg

S
j
seg

where j = {0, 1, 2, 3} corresponds to the entire brain

and the different tumor classes (NCR/NET, ET, and ED). We
then assess the change of the tumor by calculating the absolute
value of the difference between j = 1 and every other tumor
class. Ideally, we expect a model which preserves the tumor
geometry and shape during inference to present a zero difference
between the entire brain and tumor class ratio.We independently
calculate this difference for each tumor class in order to monitor
the behavior of each class, but also after merging the entire
tumor area.

For statistical significance evaluations between any two
methods, we compute independent t-tests as presented in Rouder
et al. (2009), defining as null hypothesis the evaluation metrics of
the two populations to be equal. We then report the associated
p-value, and the Cohen’s d (Rice and Harris, 2005), which we use
to measure the effect size. Such statistical significance evaluation
is reported in the form (t(n); p; d) where n is the number of
samples for each population, t(n) is the t-value, p is the p-value
and d is Cohen’s d. We defined the difference of two population
means is statistically significant if the associated p-value is lower
than 0.005, and consider, as a rule of thumb, that a value of d
of 0.20 indicates small effect size, 0.50 for medium effect size
and 0.80 for large effect size. All of the results in this paper have
been computed on unseen testing sets, and the performance of all
benchmarked models has been assessed once.

For rigor and for each t-test conducted, we ensure the
following assumptions are met by the underlying distributions:
observations are independent and identically distributed, the
outcome variable follows a normal distribution in the population
(with Jarque and Bera, 1980), and the outcome variable has
equal standard deviations in two considered (sub)populations
[using Levene’s test (Schultz, 1985)]. Finally, when comparing
two populations, each made of several subpopulations, we merge
such subpopulations into a single set, then compute t-tests on the
obtained two gathered-populations.

3. RESULTS

3.1. Evaluation of the Segmentation
Segmentation results for the tumor regions are displayed in
Table 2 for the case of the same autoencoder architecture trained
only with a segmentation decoder (Baseline segmentation) and
the proposed method using different merging operations and
with or without L⋆

reg . One can observe that all evaluated methods
perform quite similarly with Dice higher than 0.66 for all the
classes and models. The baseline segmentation model reports

slightly better average Dice coefficient and average Haussdorf

distance measurements, with an average Dice 0.03 higher, and
an average Hausdorff95 distance 0.6 higher than the proposed

with concatenation merging operator, although none of these

differences are found statistically significant as indicated in

Table 3. In particular, for Dice, the minimum received p-value
was p = 0.24, reported between baseline segmentation and

proposed concatenation with L
⋆
reg together with an associated

Cohen’s d = 0.21 indicating a small size effect. Similarly, for
Hausdorff95, the minimum received p-value was p = 0.46,
reported this time between baseline segmentation and proposed
concatenation w/o L

⋆
reg with d = 0.13 also indicating a small

size effect. These numbers show that the means differences
between those two models and any other two models are not
statistically significant. This is very promising if we take into
account that our proposed model is learning a far more complex
architecture addressing both registration and segmentation, with
the same volume of training data without significant drop of the
segmentation performance.

The superiority of the baseline segmentation seems to be
presented mainly due to higher performance for the TC class
[baseline segmentation and proposed subtraction with L⋆

reg : t(66) =
1.41; p = 0.16; d = 0.24]. Moreover, the concatenation operation
seems to perform slightly better for the tumor segmentation
than the subtraction, with at least 0.02 improvement for
average Dice coefficient, although this improvement is
not statistically significant [proposed concatenation with
L

⋆
reg and proposed subtraction with L

⋆
reg : t(66) = 0.62;

p = 0.53; d = 0.11].
Moreover, even if one of the main goals of our paper is

the proper registration of the tumoral regions, we perform a

TABLE 2 | Quantitative results of the different methods on the segmentation task on the BraTS 2018 validation dataset.

Average Dice Hausdorff95

Method Dice Hausdorff95 ET WT TC ET WT TC

Baseline segmentation 0.79 ± 0.29 7.0 ± 9.6 0.73 ± 0.29 0.87 ± 0.13 0.75 ± 0.24 4.7 ± 8.2 7.2 ± 9.4 9.2 ± 8.9

Proposed

Concatenation w/o L
⋆
reg 0.74 ± 0.29 8.3 ± 10.4 0.70 ± 0.29 0.87 ± 0.11 0.65 ± 0.29 6.2 ± 9.8 7.8 ± 11.1 11.3 ± 7.1

Concatenation with L
⋆
reg 0.73 ± 0.29 7.6 ± 9.9 0.68 ± 0.30 0.87 ± 0.12 0.66 ± 0.28 6.3 ± 9.9 5.6 ± 4.2 10.8 ± 6.6

Subtraction w/o L
⋆
reg 0.76 ± 0.27 7.8 ± 10.3 0.71 ± 0.28 0.88 ± 0.10 0.70 ± 0.24 6.5 ± 10.8 7.4 ± 11.0 10.0 ± 7.4

Subtraction with L
⋆
reg 0.76 ± 0.27 7.9 ± 10.1 0.71 ± 0.29 0.88 ± 0.10 0.69 ± 0.25 5.8 ± 9.6 7.7 ± 11.5 11.1 ± 8.3

Dice and Hausdorff95 are reported for the three classes Whole Tumor (WT), Enhancing Tumor (ET), and Tumor Core (TC) together with their average values. Results are reported with

mean across patients (MRIs) along with the associated standard deviation. We upload our predictions on the official leaderboard of the validation set (66 patients).
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TABLE 3 | Statistical significance of the proposed methods with Milletari et al. (2016) on the BraTS segmentation task.

Average Dice Hausdorff95

Method Dice Hausdorff95 ET WT TC ET WT TC

Baseline segmentation 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Proposed

Concatenation w/o L
⋆
reg 0.32 0.46 0.55 1.00 0.03 0.34 0.74 0.14

Concatenation with L
⋆
reg 0.24 0.72 0.33 1.00 0.05 0.31 0.21 0.24

Subtraction w/o L
⋆
reg 0.55 0.65 0.69 0.62 0.24 0.28 0.91 0.58

Subtraction with L
⋆
reg 0.55 0.60 0.69 0.62 0.16 0.48 0.79 0.21

For each model (line) and each performance measure (column), the displayed value is the p-value, up to two significant figures, of the statistical significance between the model and

Milletari et al. (2016) for the corresponding measure (Dice or Hausdorff95) on the corresponding tumor class (ET, WT, TC, or the union of the three latter in the two columns Average)

on the 66 testing samples of BraTS. No p-values are statistically significant between all of the proposed variants and Milletari et al. (2016). Blue line represents the reference model, red

cells indicate no statistical significant p-values (cutoff 0.005).

FIGURE 3 | The segmentation maps produced by the different evaluated methods displayed on post-contrast Gadolinium T1-weighted modalities. We present the

provided segmentation maps both on our test dataset and on the BraTS 2018 validation dataset. NCR/NET, necrotic core; ET, GD-enhancing tumor; ED, peritumoral

edema.

comparison with the two best performing methods presented in
BraTS 2018 (Isensee et al., 2018; Myronenko, 2018) evaluated
on the validation dataset of BraTS 2018. In particular, the
Myronenko (2018) reports an average dice of 0.82, 0.91,
and 0.87 for ET, WT, and TC, respectively, while Isensee
et al. (2018) reports 0.81, 0.91, and 0.87. Both methods
outperform our proposed approach on the validation set
of BraTS 2018 by integrating novelties specifically designed
to the tumor segmentation task of BraTS 2018. In this
study, we based our architecture in a relatively simple and
widely used 3D fully convolutional network (Milletari et al.,
2016) although different architectures with tumor specific

components (trained on the evaluated tumor classes), trained
on more data (similar to the ones that are used from Isensee
et al., 2018), or even integrating post-processing steps can
be easily integrated boosting considerably the performance of
our method.

Finally, in Figure 3 we represent the ground truth and
predicted tumor segmentation maps comparing the baseline
segmentation and our proposed method using the different
components and merging operators. We present three different
cases, two from our custom test set, on which we have the
ground truth information and one from the validation set of the
BraTS submission page. One can observe that all the methods
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provide quite accurate segmentation maps for all the three
tumor classes.

3.2. Evaluation of the Registration
3.2.1. Evaluation on Anatomical Structures
The performance of the registration has been evaluated on an
unseen dataset with anatomical information, namely OASIS 3. In
Table 4 the mean and standard deviation of the Dice coefficient
for the different evaluated methods are presented. With rigid we
indicate the Dice coefficient after the translation of the volumes
such that the center of the brainmass is placed in the center of the
volume. It can be observed that the performance of the evaluated
methods are quite similar something which indicates that the
additional tumor segmentation decoder does not decrease the
performance of the registration. On the other hand, it provides
additional information about the areas of tumor in the image.
From our experiments, we show that the proposed formulation
can provide registration accuracy similar to the recent state-
of-the-art deep learning based methods (Dalca et al., 2018)
with approximately the same average Dice values, that is 0.50
for (Dalca et al., 2018) and 0.49 for all but one of the proposed
variants. Moreover, again this difference in the performance
between (Dalca et al., 2018) and the proposed method is not
statistically significant with t(150) = 0.64; p = 0.52; d =
0.07. From our comparisons, the only significant difference on
the evaluation of the registration task was reported between
the proposed method concatenation only reg. with an average
difference of dice reaching 0.05% and with maximum p-values
calculated with Proposed concatenation with L

⋆
reg [t(200) = 3, 33;

p < 10−3; d = 0, 38]. From our experiments, we saw that the
merging operation affects the performance of the only reg.model
a lot, with the concatenation reporting the worst average dice of
all the methods.

In Figure 4 we present some qualitative evaluation of the
registration component, by plotting three different pairs and
their registration from all the evaluated models. The first two
columns of the figure depict the source and reference volumes
together with their tissue annotations. The rest of the columns
present the deformed source volume together with the deformed
tissue annotations for each of the evaluates methods. Visually, all
methods perform well on the overall shape of the brain with the
higher errors in the deformed annotations being presented at the
cerebral write matter and cerebral cortex classes.

Finally, we should also mention that the subjects of the OASIS
3 dataset do not contain regions with tumors. However, our
proposed formulation provides tumor masks so that we could
evaluate the robustness of the segmentation part. Indeed, our
model for all the different combinations of merging operations
and loss functions, reported a precision score of more than 0.999,
indicating its robustness for the tumor segmentation task.

3.2.2. Evaluation on the Tumor Areas
Even if the proposed method reports very similar performance
with models that perform only registration, we argue that it
addresses better the registration of the tumor areas, maintaining
their geometric properties, as can be inferred in Table 5. This
statement is also supported by the statistical tests we performed T
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FIGURE 4 | Qualitative evaluation of the registration performance for the different evaluated methods, displayed on T1 modalities. For an easier visualization, we group

left and right categories and only display the following nine classes: caudate (Ca), cerebellum cortex (CblmC), cerebellum white matter (CblmWM), cerebral cortex

(CeblC), cerebral white matter (CeblWM), lateral ventricle (LV), pallidum (Pa), putamen (Pu), ventral DC (VDC).

to evaluate the difference in performance between the methods,

while registering tumor areas (Table 6). In particular, for each of

the tumor classes NCR/NET, ET, and ED the difference between

(Dalca et al., 2018) and the proposed method subtraction with

L
⋆
reg was significant with NCR/NET: t(200) = 10.69; p < 10−3;

d = 1.07—ET: t(200) = 10.51; p < 10−3; d = 1.05—ED:
t(200) = 8.05; p < 10−3; d = 0.81. The similar behavior
was obtained when the evaluation was performed by merging
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TABLE 5 | The table presents the average distance between (i) the ratio of the area

of the deformed tumor mask to the area of the original tumor mask, and (ii) the

ratio of area of the reference brain volume to the area of the source brain volume.

Method NCR/NET ET ED Combined

Dalca et al. (2018) 2.27 ± 2.68 0.67 ± 0.55 1.96 ± 3.03 0.62 ± 0.51

Proposed

Concatenation only reg. 0.51 ± 0.61 0.26 ± 0.19 0.71 ± 0.94 0.22 ± 0.15

Concatenation w/o L
⋆
reg 1.35 ± 1.14 0.64 ± 0.41 1.80 ± 1.82 0.64 ± 0.42

Concatenation with L
⋆
reg 0.26 ± 0.20 0.26 ± 0.13 0.30 ± 0.28 0.21 ± 0.12

Subtraction only reg. 1.34 ± 0.77 0.77 ± 0.59 2.02 ± 1.65 0.68 ± 0.52

Subtraction w/o L
⋆
reg 1.74 ± 1.35 0.72 ± 0.72 2.38 ± 1.74 0.74 ± 0.76

Subtraction with L
⋆
reg 0.24 ± 0.17 0.25 ± 0.13 0.23 ± 0.22 0.20 ± 0.11

Lower values are better. The average has been calculated over 200 testing pairs from the

BraTS 2018 dataset (NCR/NET, ET and ED). On top of the evaluation per tumor class,

we also conduct an evaluation by merging all the tumor classes into just one class (called

combined). Bold indicates best performance per column.

TABLE 6 | Summary of the statistical difference between the Dalca et al. (2018)

and the proposed method on the BraTS 2018 dataset for the tumor preservation

task.

Method NCR/NET ET ED Combined

Dalca et al. (2018) < 10−3 < 10−3 < 10−3 < 10−3

Proposed

Concatenation only reg. < 10−3 0.540 < 10−3 0.130

Concatenation w/o L
⋆
reg < 10−3 < 10−3 < 10−3 < 10−3

Concatenation with L
⋆
reg 0.282 0.442 0.006 0.386

Subtraction only reg. < 10−3 < 10−3 < 10−3 < 10−3

Subtraction w/o L
⋆
reg < 10−3 < 10−3 < 10−3 < 10−3

Subtraction with L
⋆
reg 1.000 1.000 1.000 1.000

For each model (line) and each performance measure (column), the displayed value is the

p-value (up to 3 significant figures) of the statistical significance between the model and

subtraction with L
⋆
reg for the tumor preservation measure on the corresponding tumor

class (NCR/NET, ET, ED, and their union in the column Combined). Blue line represents

the reference model, red cells indicate no statistical significant p-values while green cells

represents statistical significant p-values.

all 3 tumor classes into one (denoted Combined). Again, we
reported significant differences between (Dalca et al., 2018) and
the proposed method: t(200) = 11.38; p < 10−3; d = 1.14.

To evaluate the performance of the different variants of our
proposedmethod, we compared the performance of the proposed
subtraction with L

⋆
reg and concatenation with L

⋆
reg that reported

the best performances. Indeed, we did not find significant
changes between the two different components except the edema
class [t(200) = 2.78; p < 10−3; d = 0.28]. Moreover, the
proposed concatenation only reg. reports also competitive results
without using the segmentation masks. In particular, even if the
specific method does not report very good performance on the
registration evaluated on anatomical structures (section 3.2.1),
it reports very competitive performance on the Combined and
the smallest in size tumor class (ET). However, for the other
two classes the difference on the performance that it reports
in comparison to the proposed variant subtraction with L

⋆
reg

is significant different: NCR/NET: t(200) = 6, 03; p < 10−3;

d = 0, 60—ED: t(200) = 7, 03; p < 10−3; d = 0, 70. Here we
should mention that even though subtraction only reg.works very
well for the registration of the anatomical regions (section 3.2.1),
it reports one of the worst results about tumor preservation,
with values close to the ones reported by Dalca et al. (2018).
This indicates again that the only reg. model is highly sensitive
to the merging operation and it cannot simultaneously provide
good performance on tumor areas and registration of the entire
volume, proving its inferiority to the proposed method using the
with L

⋆
reg .

Independently of themerging operationwith both registration
and segmentation tasks, i.e., with or without L⋆

reg , we find that
the proposed approach works significantly better in preserving
tumor areas when optimized with L

⋆
reg than without [NCR/NET:

t(200) = −14.33; p < 0.005; d = 1.43—ET: t(200) =
−9.99; p < 0.005; d = 1.00—ED: t(200) = −14.17;
p < 0.005; d = 1.42—Combined: t(200) = −10.94;
p < 0.005; d = 1.09].

Figure 5 presents some qualitative examples from the BraTS
2018 to evaluate the performance of the different methods. The
first two columns present the pair of images to be registered
and segmented and the rest of the columns the deformed source
image with the segmented tumor region superimposed. One
can observe that the most of the methods that are based only
on registration (Dalca et al., 2018, proposed concatenation and
subtraction only reg.) together with the proposed concatenation
and subtraction w/o L

⋆
reg do not preserve the geometry of the

tumor, tending to significantly reduce the area of tumor after
registration, or intermix the different types of tumor. On the
other hand the behavior of the proposed with L

⋆
reg seems to be

much better, with the tumor area properly maintained in the
deformed volume.

Moreover, in Figure 6 we provide a better visualization
for the displacement grid inside the tumor area, highlighting
the importance of Equation (3). Indeed, one can observe
that the displacements inside the tumor area are much
smoother and relaxed when we use the information about the
tumor segmentation.

4. DISCUSSION

In this study, we proposed a novel deep learning based
framework to address simultaneously segmentation and
registration. The framework combines and generates features,
integrating valuable information from both tasks within
a bidirectional manner, while it takes advantage of all the
available modalities, making it quite robust and generic. The
performance of our model indicates highly promising results that
are comparable to recent state-of-the-art models that address
each of the tasks separately (Dalca et al., 2018). However, we
reported a better behavior of the model in the proximity of
tumor regions. This behavior has been achieved by training
a shared encoder that generates features that are meaningful
for both registration and segmentation problems. At the same
time, these two problems have been coupled in a joint loss
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FIGURE 5 | Qualitative evaluation of the tumor deformation of the different evaluated methods, displayed on T1 modalities. Each line is a sample, with source MRI in

the first column to be registered on reference MRI in the second column. BraTS ground-truth annotations are plotted onto the source MRI. Seven models are

benchmarked, one for each of the remaining columns which display the result of applying the predicted grid onto the source MRI. For each model and each line, the

source ground-truth annotation masks of the source MRI were also registered with the predicted deformation grid, and the consequently obtained deformed

ground-truth were plotted onto each deformed source MRI to illustrate the impact of all methods regarding the preservation of tumor extent.

FIGURE 6 | Comparison of the registration grid of the proposed model using the subtraction operation with and w/o L
⋆
reg. This figure is obtained by sampling three

random pairs of test patients, and computing the predicted registration fields, which are displayed by line for the two models, and in consecutive columns, one for

each of the three dimensions, showing the registration field as a warped grid (grayscale) and as a colored map obtained by computing its norm pixelwise (blue-green

map). Furthermore, the contour of the Whole Tumor is plotted on top of each image, obtained from the ground truth segmentation.
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function, enforcing the network to focus on regions that exist in
both volumes.

Even if we could not do a proper comparison with Parisot
et al. (2012) which shares similar concepts, our method
provides very good improvements. In particular, we train
both problems at the same time, without using pre-calculated
classification probabilities. The method proposed in Parisot
et al. (2012) is based on a pre-calculated classifier indicating
the tumoral regions. The authors provided their segmentation
results by adapting Gentle Adaboost algorithm and using
different features including intensity values, texture, such as
Gabor filters and symmetry. After training the classifier they
defined an MRF model to optimize their predictions by taking
into account pairwise relations. By adopting this strategy, the
used probabilities for the tumoral regions are not optimized
simultaneously with the registration, something that it is not the
case in our methodology. In particular, by sharing representation
between the registration and segmentation tasks we argue that
we can create features that are more complex and useful
sharing information that comes from both problems. By using
a deep learning architecture that is end-to-end trainable, we
are able to extract features that are suitable to deal with
both problems automatically. Moreover, our implementation is
modular and scalable permitting easy integration of multiple
modalities, something that is not so straightforward with Parisot
et al. (2012) as it is more complicated to adapt and calculate
the different similarity measures and classifiers taking into
account all these modalities. Finally, we should mention that
our method takes advantage of GPU implementation needing
only a few seconds in order to provide segmentation and
displacement maps while the method in Parisot et al. (2012)
needs∼6 min.

Both qualitative and quantitative evaluations of the proposed
architecture highlight its great potentials reporting more
than 0.66 Dice coefficient for the segmentation of the
different tumor areas, evaluated on the publicly available
BraTS 2018 validation set. Our joint formulation reported
performance similar to the model trained only for segmentation,
while simultaneously addressing the registration problem.
Moreover, both concatenation and subtraction operators report
similar performances, an expected result for the specific
segmentation task, since the merging operation is mainly
used on the registration decoder, even if it affects the
learned parameters of the encoder and thus indirectly the
segmentation decoder.

Concerning the comparison between top performing
tumor segmentation methods, although our formulation
underperforms the winning methods of BraTS 2018, we want
to highlight two major points. First of all, our formulation
is modular in the sense that different network architectures
with optimized components for tumor segmentation can
be evaluated depending on the application and the goals of
the problem. For our experiments we chose a simple VNet
architecture (Milletari et al., 2016) proving that the registration
components do not significantly hinder the segmentation

performance and indicating the soundness of our method
however any other encoder decoder architecture can be used
and evaluated. Secondly, the main goal of our method was the
proper registration and segmentation of the tumoral regions
together with the rest of the anatomical structures and that was
the main reason we did not optimize our network architecture
according to the winning methods of BraTS 2018. However,
we demonstrated that with a very simple architecture, we can
register properly tumoral and anatomical structures while
segmenting with more than 76% of Dice the tumoral regions.

Continuing with the evaluation of the registration
performance, once more the joint multi task framework
reports similar and without statistical difference performance
with formulations that address only the registration task
evaluated on anatomical regions that exist on both volumes.
However, we argue that abnormal regions registration is
better addressed both in terms of qualitative and quantitative
metrics. Moreover, from our experiments we observed that
subtraction of the coding features of the tumors reports higher
performances for the registration of the tumor areas. This
indicates that the subtraction can capture and code more
informative features for the registration task. What is more, we
achieved very good generalization for all the deep learning based
registration methods, as they reported very stable performance
in a completely unseen dataset (part of the OASIS3).

Even if, from our experiments, the competence of our
proposed method for both registration and segmentation tasks
is indicated, we report a much better performance for the
registration of the tumoral regions. In particular, in one joint
framework we were able to produce efficiently and accurately
tumor segmentation maps for both source and reference
images together with their displacement maps that register the
source volume to the reference volume space. Our experiments
indicated that the proposed method with the L

⋆
reg variant

register properly the anatomical together with the tumoral
regions with statistical significance compare to the rest of
the methods for the latter. Both qualitative and quantitative
evaluations of the different components indicate the superiority
of the with L

⋆
reg variant of the proposed method for brain

MRI registration with tumor extent preservation. Using such a
formulation, the network focus on improving local displacements
on tissues anywhere in the common brain space instead of
minimizing the loss within the tumoral regions, which are
empirically the regions with the highest registration errors.
Consequently, the network improves its registration performance
on non-tumor regions (as discussed in section 3.2.1), while
also relaxing the obtained displacements inside those predicted
tumor regions.

Some limitations of our method include the number of
parameters that have to be tuned during the training due
to the multi task nature of our formulation, namely α and
β that affect the performance of the network. Moreover,
due to the multimodal nature of the input and the two
decoders, the network cannot be very deep due to GPU
memory limitations.
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Although the pipeline was built using different patients for
the registration task as a proof of concept, such tool could
have numerous applications in clinical practice, especially when
applied in different images acquired from the same patient.
Regarding the radiotherapy treatment planning, several studies
have shown that significant changes of the targeted volumes in
the brain occurred during radiotherapy raising the question of
replanning treatment to reduce the amount of healthy brain
irradiated in case of tumor reduction, or to re-adapt the treatment
for brain tumors that grow during radiation (Champ et al.,
2012; Yang et al., 2016; Mehta et al., 2018). Since MR-guided
linear accelerator will offer the opportunity to acquire daily
images during RT treatment, the proposed tool could help with
automatic segmentation and image registration for replanning
purposes, and it could also allow accurate evaluation of the
dose delivered in targeted volumes and healthy tissues by
taking into account the different volume changes. Moreover,
while changes of imaging features under treatment is known
to be associated with treatment outcomes in several cancer
diseases (Vera et al., 2014; Fave et al., 2017), the registration
grid computed from two same-patient acquisitions realized at
different times allows an objective and precise evaluation of the
tumor changes.

Future work involves a bettermodeling of the prior knowledge
through a more appropriate geometric modeling of tumor
proximity that encodes more accurately the registration errors
in these areas. This modeling can be integrated into the existing
formulation with some additions specific to tumor losses that will
further constrain its change. Moreover, we have noticed that the
use of Fobenius norm during the training of the registration part
is very sensitive to artifacts in the volume, preventing the network
process from being completely robust. In the future, we aim

to evaluate the performance of the proposed framework using
adversarial losses in order to better address multimodal cases.
Finally, means to automatically obtain the training parameters α

and β would be investigated.
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