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Abstract

Summary: Results from hundreds of genome-wide association studies (GWAS) are now freely

available and offer a catalogue of the association between phenotypes across medicine with var-

iants in the genome. With the aim of using this data to better understand therapeutic mechanisms,

we have developed Drug Targetor, a web interface that allows the generation and exploration of

drug–target networks of hundreds of phenotypes using GWAS data. Drug Targetor networks con-

sist of drug and target nodes ordered by genetic association and connected by drug–target or

drug–gene relationship. We show that Drug Targetor can help prioritize drugs, targets and drug–

target interactions for a specific phenotype based on genetic evidence.

Availability and implementation: Drug Targetor v1.21 is a web application freely available online

at drugtargetor.com and under MIT licence. The source code can be found at https://github.com/

hagax8/drugtargetor.

Contact: helena.gaspar@kcl.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The number of genome-wide association studies (GWAS) is grow-

ing. Consortia are unravelling associations between genetic variants

and traits with ever increasing sample sizes. Available GWAS cover

many areas of medicine, behaviour and biology. In addition, initia-

tives such as the Genotype-Tissue Expression (GTEx) project (GTEx

Consortium, 2013) investigate the tissue-dependent variation in

gene expression levels and identify associations with expression

quantitative trait loci (eQTLs), and methods such as S-PrediXcan

(Barbeira et al., 2018) allow prediction of tissue-specific expression

levels using GWAS summary statistics. These advances can help

map GWAS associations to protein targets in a tissue-specific man-

ner. Maggiora and Gokhale (2017) have shown that bipartite drug–

target networks can be useful to assess polypharmacology (drugs

binding several targets) or polyspecificity (targets interacting with

dissimilar drugs), by providing a simple bipartite representation of

drug–target interactions. In this paper, we present Drug Targetor

(drugtargetor.com), a web interface that allows users to browse over

500 GWAS to identify drugs and targets of interest using bipartite

drug–gene networks. These networks are phenotype-dependent:

drugs and genes are ordered using GWAS-derived genetic scores.

Drug Targetor uses several data layers: drug–target interactions

(how a drug binds a target), drug–gene interactions (how a drug

influences gene expression), genetic scores to order drugs and genes

by association with a phenotype and predicted gene expression lev-

els derived from GWAS and eQTLs.

2 Materials and methods

2.1 Bipartite drug–target networks
Drug Targetor v1.21 builds phenotype-dependent bipartite drug–

gene networks using HTML 5 canvas and JavaScript
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(Supplementary Fig. S1). A bipartite network consists in two sets of

disjoint and independent sets of nodes A and B. Edges connect nodes

in A to nodes in B. In Drug Targetor networks, A ¼ drugs and

B ¼ genes. Drugs and genes are connected by type of drug–gene or

drug–target interaction (Table 1). Genes and drugs are ordered by

genetic scores derived from GWAS. The web platform allows to

choose the phenotype and tissue of interest, the drug ensemble to be

used and the type of drug–target or drug–gene interaction. A total of

530 phenotypes are available in the interface as of October 2018.

The drugs are subdivided into categories defined by the Anatomical

Therapeutic Chemical Classification System (ATC, https://www.

whocc.no/atc_ddd_index). Drug Targetor uses its own database of

genetic scores for drugs and genes; users can choose to visualize the

network for the top drugs, or a network corresponding to a specific

ATC drug class.

2.2 Phenotype-dependent drug and gene scores
Drugs and genes are ordered by GWAS-derived scores, which can be

used as filters in the network construction. The drug score is the

�log10(P-value) of the drug/phenotype association test, computed

using MAGMA pathway analysis (de Leeuw et al., 2015) after map-

ping each drug to its interacting genes. Gene scores, on the other

hand, are a combination of two gene-wise tests (cf. Supplementary

Text S3 for details): MAGMA gene-wise association test and S-

PrediXcan (Barbeira et al., 2018) tissue–gene association test, which

uses eQTL data (Supplementary Text S4). The gene scores range

from 1 to 7; genes with the highest score (7) are significant in both

S-PrediXcan and MAGMA. Drug Targetor reports all S-PrediXcan

z-scores; positive or negative z-scores correspond to up- or down-

regulation in the tissue of interest.

2.3 Drug–target and drug–gene connections
Different types of interactions can be selected in Drug Targetor and

are used to connect drugs and targets: drug–gene interactions (how

a drug influences gene expression), and drug–target interactions

(how a drug interacts with a protein target). Drug–target interac-

tions are further divided into drug mechanism of action (antagonist,

agonist, modulator), and data measuring binding of a compound

to a target (Supplementary Text S1). Different colours are attributed

to the connections depending on interaction type (cf. Table 1).

The different data sources and their references are reported in

Supplementary Table S1.

3 Example

We present an example of a Drug Targetor network based on a type

2 diabetes GWAS (Scott et al., 2017) in Figure 1.

Drugs with highest score are represented with their top targets

(for gene filtering options, cf. Supplementary Text S5). Top-ranked

drugs include already known diabetes drugs agonists of the glitazone

receptor (PPARG gene), but also melatonin receptor 1B agonists.

A recent study showed an improvement of sleep quality in type 2

diabetes patients with insomnia treated with ramelteon (Tsunoda

et al., 2016); evidence also points towards a link between melatonin

and glucose homeostasis (Lardone et al., 2014). Drug Targetor sug-

gestions are supported by literature, indicating that such networks

could be suggestive of repurposing opportunities.
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Table 1. Graphical elements of Drug Targetor networks

Graphical element Description

Blue connector Agonist, positive modulator

Orange connector Antagonist, negative modulator

Brown connector Partial agonist

Purple connector Modulator

Black connector Interaction but unknown mechanism of action

Red connector Decreases gene expression

Green connector Increases gene expression

Grey connector Unknown effect on gene expression

Left-hand table

(drug table)

Drugs ordered by genetic score for a given

phenotype

Right-hand table

(gene table)

Genes ordered by genetic score for a given

phenotype

Red/green cells

(gene table)

Negative/positive tissue-dependent association

result

Fig. 1. Drug Targetor network representing top drugs and their targets with

drug and gene scores derived from a type 2 diabetes genome-wide associ-

ation study by Scott et al. (2017). Drug and gene scores were computed using

MAGMA. Tissue-wise gene associations (z-scores) in the gene table were

computed using S-PrediXcan
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