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Abstract

In omics experiments, variable selection involves a large number of metabolites/ genes and

a small number of samples (the n < p problem). The ultimate goal is often the identification

of one, or a few features that are different among conditions- a biomarker. Complicating bio-

marker identification, the p variables often contain a correlation structure due to the biology

of the experiment making identifying causal compounds from correlated compounds diffi-

cult. Additionally, there may be elements in the experimental design (blocks, batches) that

introduce structure in the data. While this problem has been discussed in the literature and

various strategies proposed, the over fitting problems concomitant with such approaches

are rarely acknowledged. Instead of viewing a single omics experiment as a definitive test

for a biomarker, an unrealistic analytical goal, we propose to view such studies as screening

studies where the goal of the study is to reduce the number of features present in the second

round of testing, and to limit the Type II error. Using this perspective, the performance of

LASSO, ridge regression and Elastic Net was compared with the performance of an

ANOVA via a simulation study and two real data comparisons. Interestingly, a dramatic

increase in the number of features had no effect on Type I error for the ANOVA approach.

ANOVA, even without multiple test correction, has a low false positive rates in the scenarios

tested. The Elastic Net has an inflated Type I error (from 10 to 50%) for small numbers of

features which increases with sample size. The Type II error rate for the ANOVA is compa-

rable or lower than that for the Elastic Net leading us to conclude that an ANOVA is an effec-

tive analytical tool for the initial screening of features in omics experiments.

Introduction

In omics experiments, an analysis goal is the identification of features (metabolites or genes)

that are different between treatment groups. The inspiration for this work is the analysis of

untargeted metabolomics data, however the general results can be applied to other types of
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omics studies. In a typical metabolomics experiment the total number of samples is small and

often limited by cost and processing time. The data collected are in the form of chromato-

grams, which are processed to select regions (peaks) that represent underlying chemical struc-

tures. Processing can be executed by proprietary instrument-specific software or with third

party open source software, such as MZmine [1]. Selected peaks are quantified for each sample.

This process has been well reviewed and well described [2] [3]. Peaks can be matched to

metabolites/lipids and this identification process is its own area of research [4] [5]. In this

work it is assumed, that quantified peaks (or gene expression levels) are the starting point for

the analysis.

Typically, in omics experiments, the number of features is large in comparison to the num-

ber of samples and exceeds the number of available samples by orders of magnitude. Two

alternative analysis paradigms are compared in this work. The first paradigm is based on clas-

sification approaches and compares the least absolute shrinkage and selection operator

(LASSO), ridge regression and the generalization of these approaches—the Elastic Net feature

selection methods, which accounts for the correlation structure among features. The second

paradigm uses a linear models framework, where individual features are modeled separately

ignoring the correlation structure among features, but allowing the incorporation of the exper-

imental design structure directly into the model. By focusing on the “small” sample size n and

“large” number of features p scenarios, these approaches are evaluated in settings likely to

mimic those of the typical practitioner and on different datasets. Type I error and power have

been estimated for the simulated data, to allow the practitioner to understand the performance

of these approaches in real world settings.

Classification approaches have been deployed on subsets of original features selected after

an initial “filtering” step. Prior comparisons deployed pre-screening of the original data, so

that the final set of features available for further use and analysis was (much) smaller than the

original set obtained from the instrument [6] [7] [8] [9] [10] [11]. Pre-screening using a t-test

[6] [8] t-statistic scores [7] [12], Hardy-Weinberg equilibrium tests [9] and also non-statistical

biological considerations [10] [6] have been proposed, with the subsequent application of sta-

tistical or machine learning methods to a subset of features. The rationale for the pre-screening

of features is to aid in the efficient classification of samples into groups rather than feature

selection [7] [13]. For example [6] after data pre-processing and pre-screening only 163 fea-

tures remain out of *16,000 original data features. In the context of biomarker identification,

feature selection rather than classification of samples is the goal. In the context of biomarker

identification, the Type I and Type II errors of the entire process (pre-screening plus selection

by machine learning) are unknown for real data. Here we focus on determining the Type I and

Type II errors associated with feature selection using a single step.

In addition to the above studies which explicitly discuss “pre-screening” many methods

developed for feature selection compare modern approaches using real data. In these compari-

sons, the prediction accuracy is used as the measure of performance since the Type I and Type

II error are unknown in this setting. In a comparison of Multivariate Adaptive Regression

Splines, Learning Ensemble (including bagging and boosting), Random Forest, Bayesian Mov-

ing Averaging, Stochastic Search Variable Selection, and Generalized Regularized Logistics

Regression. The generalized regularized regression model (Elastic Net) had the highest predic-

tive power [14]. A comparison of classifiers from 115 datasets found that Elastic Net was not

different from bagging of k-nearest neighbors [15], support vector machine [16], and a 1-hid-

den layer neural network with sigmoid transfer function [17], [18]. In a recent comparison [19]

of Boruta [20], the Vita method [21], recurrent relative variable importance [22], a parametric

permutation approach [23] as well as recursive feature elimination (RFE) only permutation

Variable selection in omics data

PLOS ONE | https://doi.org/10.1371/journal.pone.0197910 June 21, 2018 2 / 19

Kidney Diseases (NIDDK) DP3DK085678, the

University of Florida Informatics Institute (UFII)

Fellowship, and the University of Florida Genetics

Institute.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0197910


importance had some control of the Type I error. In direct comparisons of permutation impor-

tance and Elastic Net Random Forest was outperformed by Elastic Net [24].

In a simulation study performed by Acharjee et.al. [6] 100 samples were considered with 12

significant features out of 1000 comparing the performance of LASSO, Elastic Net, ridge

regression, principal components regression (PCR), and other methods used for feature selec-

tion. The Elastic Net had the lowest mean squared error of prediction (MSEP) among the con-

sidered methods. LASSO, classification tree (CT), and linear discriminant analysis (LDA) were

applied [8] for metabolic biosignature for Lyme disease prediction, where sample sizes were

202 and 259 for the treatment and control group, respectively. The number of features before

and after pre-screening were 2262 and 95, respectively. Subgroups with sample sizes as small

as 20 were evaluated. LASSO performed the best in terms of the receiver operating characteris-

tic (ROC) curves for these data. Elastic Net had lower MSEP in comparison to support vector

machines (SVM) and penalized logistic regression (PLSR) [7] [25]. LASSO has been shown to

outperform OPLS-DA in feature selection [26] and Elastic Net is superior to stepwise selection

[27].

LASSO, ridge regression and Elastic Net form a special class of penalized regression models.

The first modeling approach with the penalty of that kind was ridge regression proposed by

Hoerl and Kennard [28]. Due to the structure of the penalty ridge regression has a closed form

solution for the standard linear models with normal errors and results in shrunk regression

coefficients none of which is equal to zero. Thus, ridge regression can be used as a prediction

tool but not as a feature selector directly. LASSO was introduced by Tibshirani [29]. While the

LASSO method does not allow a closed form solutions it allows for variable selection. LASSO

uses shrinkage to estimate which set of the regression coefficients have a value of zero and can

therefore be eliminated. The LASSO method has limitations such as the number of variables

that can be selected by the method has to be smaller or equal to the sample size n. The LASSO

will also often select only a single feature in a set of highly correlated features [7].

The Elastic Net method introduced by Zou and Hastie [7] addressed the drawbacks of

the LASSO and ridge regression methods, by creating a general framework and incorporated

these two methods as special cases. The Elastic Net is a weighted combination of both LASSO

and ridge regression penalties. The split between the penalties is controlled by the penalty

split parameter α 2 [0; 1] where α = 0 corresponds to ridge regression penalty and α = 1

corresponds to LASSO. Elastic Net was initially introduced for linear models with normal dis-

tribution of errors [7] and has later been extended to other types of models that included gen-

eralized linear models (such as logistic regression) and survival models together with efficient

numerical computation algorithms [30] [31]. Elastic Net has also been shown to be a generali-

zation of Support Vector Machines (SVM) [32] enabling some fast computational solutions

developed for SVM to be applied to the Elastic Net. Elastic Net has been applied to the analysis

of multiple real and simulated datasets, and has more than 2500 citations as of the writing of

this manuscript. The computation algorithm proposed by Friedman et.al. [31] and the corre-

sponding software package [33] has been used in this work.

For omics data the number of samples n is often between 10 and 100. Such small sample

sizes represent a challenge for the applied statistician. Despite this, little attention has been

given to very small sample sizes. For example [31] the dataset with the smallest sample size

considered was a leukemia dataset with n = 72 samples and p = 3571 features. The data were

originally collected by Golub et.al. [34]. The authors report that p = 72 features were selected

by LASSO, all features (p = 3571) were selected by ridge regression, and the Elastic Net with α
= 0.2 selected values in between (Fig 1 [31]). In their simulation the smallest sample sizes con-

sidered was n = 100 [31]. Another simulation study comparing performance of ridge regres-

sion, LASSO and Elastic Net for small n and large p omics settings was conducted [35]. The
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authors examined sample sizes in the range n = 100, . . ., 1000 with a focus on prediction rather

than feature selection. Ridge regression and Elastic Net were determined to outperform

LASSO for prediction but the samples sizes smaller than 100 were not considered. Direct com-

parisons of LASSO, Elastic Net, classification and regression tree (CRT), random forest (RF),

and t-tests for binary outcome and “non-big” data (n> p) using the simulation studies and

psychiatric disorders data were performed [24]. The authors used sample sizes n = 200, 400

and p = 60 features for simulations which corresponds to the case of “non-big” data (n> p).

For the real data considered in the paper the number of samples was n = 475 and the number

of considered features was p = 44. The authors concluded that LASSO and Elastic Net provide

superior performance for feature identification compared to other considered methods, and

that a two-sided t-test performed well compared to LASSO and Elastic Net under certain sce-

narios [24].

In this work Elastic Net, LASSO and ridge regression are compared to an ANOVA

approach for feature selection purposes with a focus on sample sizes less than 100. Simula-

tion and two real data examples representing different aspects of omics studies are consid-

ered. In the first real dataset, a field experiment in maize, 24, B73 plants are evaluated in two

conditions (ambient (n = 12) and elevated (n = 12) ozone). In the second experiment, 81

type 1 diabetics are examined in for gene expression differences in two different blood cell

types (CD4+ and CD8+). In the maize experiment we expect very few differences among

metabolites while in the diabetes data we expect large differences among the cell types.

The goal in these and other similar experiments is to generate a list of features different

between two experimental conditions for further evaluation; it is not to immediately gener-

ate a biomarker.

Fig 1. Visualization of power (left column) and Type I error (right column) estimates comparison between p = 205 (solid lines) and p = 2050 (dashed

line) features for ρ = 0.4 and sample sizes n = 10 (top row), n = 50 (middle row), and n = 100 (bottom row). The value of the penalty split parameter α is

plotted on the x-axis. Type I error and power estimates are plotted on y-axis for the values of α in the range of [0; 1] with 0.1 increments. In the left

column power estimates are provided based on the four different features for each of the effect sizes (Δ1 = 0.2 is the red line, Δ2 = 0.5 is the blue line, and

Δ3 = 0.8 is the green line). In the right column Type I error estimates are provided (beige lines) based on the random noise features together with a 0.05

threshold plotted as a purple dashed line. The vertical dashed line in the right column plots corresponds to penalty split value α = 0.5. The value of α = 0

corresponds to ridge regression and α = 1 corresponds to LASSO.

https://doi.org/10.1371/journal.pone.0197910.g001
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Materials and methods

Models

Given feature values Yijk, where i is an indicator of the feature (i = 1, 2, . . ., p), j is an indicator

of the sample (j = 1, 2, . . ., n), and k is an indicator of the treatment group (k = 1, 2, . . ., m), the

primary interest is the identification of i-s such that corresponding features have different

means for different treatment groups; i.e. those features where μik 6¼ μik0 for k 6¼ k0.
In a linear model the Yijk are dependent outcomes. Without loss of generality the case of

two groups (m = 2) is considered in this work. The formal model for feature i is either formu-

lated as means model:

Yijk ¼ mik þ �ijk where �ijk � iid Nð0; t2Þ

j ¼ 1; 2; . . . ; n k ¼ 1; 2;
ð1Þ

where μik is the mean for feature i and group mean k. The alternative model formulation for

feature i is the effects model:

Yijk ¼ mi þ nik þ �ijk where �ijk � iid Nð0; t2Þ

j ¼ 1; 2; . . . ; n k ¼ 1; 2;
ð2Þ

where μi is the overall mean for feature i and νik is the mean for feature i and group k. The

required identifiability constraint for the effects model is
P2

k¼1
nik ¼ 0. The tests of hypothesis

H0: μi1 = μi2 (or H0: νi1 = νi2) for each i with correlation among outcomes and a necessary

adjustment for multiple testing to select features are used for comparison. The significance

of difference for each feature i is determined by the corresponding ANOVA F-test. The

ANOVA-based analysis was performed using R language and corresponding build-in function

aov.

In the classification approach features Yj = (Y1j, Y2j, . . ., Ypj)
T are treated as predictors for

the dependent binary random variable Kj that defines the group that sample j belongs to. The

approach utilizes logistic regression with Elastic Net penalty proposed by Zou [7] and estima-

tion algorithm proposed by Friedman et.al. [31]. The approach has been implemented in R
package glmnet [31]. The detailed tutorial of the package has been provided online [36].

Let Gk represent the set of indexes of those samples that belong to group k and Ijk = I(j 2
Gk) be an indicator of sample j belonging to group k. For the two groups scenario the corre-

sponding probabilities for sample j are modeled as

Pr ðKj ¼ 2jY jÞ ¼
exp ½b0 þ βTY j�

1þ exp ½b0 þ βTY j�

Pr ðKj ¼ 1jY jÞ ¼ 1 � Pr ðKj ¼ 2jY jÞ ¼
1

1þ exp ½b0 þ βTY j�

ð3Þ

where β = (β1, β2, . . ., βp)T is the set of logistic regression coefficients used for features. In com-

bined notations the probability and the corresponding logged version have the form

Pr ðKj ¼ kjY jÞ ¼
exp ½Ij2ðb0 þ βTY jÞ�

1þ exp ½b0 þ βTY j�

log ½Pr ðKj ¼ kjY jÞ� ¼ Ij2ðb0 þ βTY jÞ � log ½1þ exp ½b0 þ βTY j��:

ð4Þ
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The penalized log likelihood function for n samples have the from:

1

n

Xn

j¼1

Ij2ðb0 þ βTY jÞ � log 1þ exp b0 þ βTY j

h ih ih i
þ l 1 � að Þ=2½ �jjβjj2

2
þ ajjβjj1

� �
ð5Þ

where jjβjj2
2
¼
Pp

i¼1
b

2

i and jjβjj1 ¼
Pp

i¼1
jbij. The second term in the penalized likelihood

represents the Elastic Net penalty. The penalized likelihood is maximized numerically for

parameters (β0, β) for the given values of the penalty λ and split parameter α. The value α = 1

corresponds to LASSO penalty introduced by Tibshirani [29] and α = 0 corresponds to ridge

regression penalty introduced by Hoerl and Kennard [28]. Due to the structure of the penalty

outlined in (5) for all α> 0 some coefficient estimates b̂ i are equal to zero, and the procedure

serves as a variable selector [7]. The value of penalty λ is often estimated via a cross-validation

procedure. This may be problematic in small sample sizes [37] [38] motivating us to examine

the behavior across a range of values for the split parameter α. In this classification framework,

the problem transforms into variable selection problem with p variables βi and binary categori-

cal outcome Kj. The Elastic Net approach directly accounts for the correlation among features.

Simulation studies

Simulation studies were performed to compare, Elastic Net, ridge regression, and LASSO to

ANOVA, in the identification of features with respect to the following questions: 1) What is

the effect of sample size (n)? 2) What is the effect of the correlation structure among features?

3) What is the effect of increasing the number of features (p)? 4) What is the impact of effect

size (Δ)?

For the control (k = 1) and treatment (k = 2) groups twenty scenarios were considered in

the simulation study (Table 1) covering small (p = 205) and larger (p = 2050) numbers of fea-

tures with medium (ρ = 0.4) and high (ρ = 0.8) correlation between the causal features and

non-causal features as well as independent features representing stochastic noise for a range of

sample sizes from n = 10 to 100 where n1 = n2 and n1+n2 = n.

All the samples were generated from the multivariate normal distribution (MVN) where the

mean of each feature μi for i = 1, 2, . . ., p in the mean vector μ = (μ1, μ2, . . ., μp)T was prelimi-

nary independently generated from the univariate gamma distribution. The gamma distribu-

tion had the shape parameter κ = 50, the scale parameter θ = 1/50, and the density:

f ðmijk; yÞ ¼
1

GðkÞy
k mk� 1

i e�
mi
y ð6Þ

where Γ(κ) is the gamma function. In the given parametrization the mean of the gamma distri-

butions for each μi is equal to κθ = 1 and variance is equal to κθ2 = 1/50.

The variance-covariance matrix S used for the MVN simulation had a block diagonal struc-

ture with four independent blocks and diagonal variance values σ2 = 1. The first three blocks of

Table 1. Summary of the simulation scenarios. For each scenario 1000 datasets were simulated. All together there were 20 scenarios considered.

Number of features (p) Correlation (ρ) Number of Samples (n) Difference (Δ)

205 0.4 10 Δ0 = 0.0

2050 0.8 20 Δ1 = 0.2

30 Δ2 = 0.5

50 Δ3 = 0.8

100

https://doi.org/10.1371/journal.pone.0197910.t001
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S consisted of 35 (or 350) features with the fixed correlation value ρ between the elements

within each block. The fourth block had 100 (or 1000) features generated independently from

the normal distribution to represent stochastic noise likely present in most omics experiments.

The parameters of the distribution were MVN(μ, S) where μ was the realization of the gamma

distribution described in (6). Visualization of the correlation structure for p = 205 features is

presented in Fig A in S1 Appendix. The structure for p = 2050 features is analogous. Twelve

features were simulated with a difference in the means between the two treatment groups, four

in each of the three correlated blocks with effect sizes Δ1 = 0.2, Δ2 = 0.5, and Δ3 = 0.8 for the

first, the second, and the third block respectively. The effect size values Δ1 = 0.2, Δ2 = 0.5, and

Δ3 = 0.8 according to Cohen [39] correspond to small, medium, and large effect sizes respec-

tively. For each simulation scenario summarized in Table 1, 1000 datasets were generated and

then analyzed with all methods. Simulation code is available in S1 File.

Analysis methods

In the ANOVA approach the difference between the treatment groups was considered signifi-

cant for a given feature if the corresponding one-way ANOVA F-test resulted in a nominal p-

value smaller than 0.05. The ANOVA approach was implemented in R using the function aov
from the build-in core package Stats. The false discovery rate (FDR) method proposed by

Benjamini and Hochberg [40] was used to account for multiple testing. The FDR adjustment

was implemented using the p.adjust function also from core package Stats and the dif-

ference between the treatment groups was considered significant if the adjusted p-value was

smaller than thresholds that were used: 0.05 and 0.20.

For the Elastic Net approach the logistic regression with Elastic Net penalty was fit using

the cv.glmnet() function [33]. The default number of folds (10) was used for cross-valida-

tion for all scenarios. The features selected by the method were the ones that had non-zero

coefficients βi-s after the set was finalized. The Elastic Net method (5) depends on the choice of

the penalty parameter α [7]. To investigate sensitivity of the results to values of α, analysis was

performed on simulated data for α values 0 to 1, with 0.1 increment between the values. The α-

sensitivity analysis was performed for each simulation scenario outlined in Table 1.

Real datasets used for methods illustration

The maize data consist of n = 24 samples with n1 = 12 ambient and n2 = 12 ozone samples. The

goal was to identify metabolites i, that were different between the ambient and ozone treat-

ment groups (k = 1, 2). Ozone is a phytotoxic air pollutant that enters plants through the sto-

matal pores on their leaves, and ultimately results in reduced crop yields [41]. The goal of the

study was to identify specific metabolites and metabolic pathways impacted by the air pollut-

ant. Metabolomics data were generated by the South East Center for Integrated Matabolomics

(SECIM) and have been deposited to the Metabolomics Workbench [42] with project ID

PR000193. After QC filtering using information from the blanks [43] there were 986 metabo-

lites in positive ion mode and 863 metabolites in negative ion mode. After the model (1) was

fit, the FDR correction was applied separately to the positive and negative ion mode data.

A gene expression dataset for type 1 diabetes was also considered, consisting of Illumina

HiSeq 2000 RNA sequencing data for three lymphocyte cell types (CD19+ B cells, CD4+ T

cells, CD8+ T cells) from 81 subjects with type 1 diabetes [44]. Gene expression was quantified

as measurements of exon abundance as previously described, and only the subset of 163,713

exons detected in all three cell types was analyzed [44]. For the purposes of illustrating the

approach presented in this manuscript, only expression data from CD4+ and CD8+ T cells

from the 79 individuals with complete data were analyzed to identify the set of differentially-
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expressed exons between CD4+ and CD8+ T cells in type 1 diabetes cases. Only those exons

with average depths per nucleotide (APN)�5 were used for feature selection resulting in 8,268

exons that were present in all samples. Data are deposited in dbGaP [45] under accession num-

ber phs001426.v1.p1.

Results

Simulated data

For the Elastic Net approach simulated data were evaluated across the range of possible values

for the split parameter (Table 1). The parameter α that is responsible for a penalty split is

referred to as a higher level parameter in the package documentation [36]. This α-sensitivity

analysis was used to determine the values of α for use in comparison to the ANOVA approach.

A subset of representative results is presented in Fig 1 (ρ = 0.4) and Fig 2 (ρ = 0.8). The com-

plete set of results is provided in S1 Appendix Figs B–G. The summary statistics for the simu-

lated data for sample sizes 10 and 100 are summarized in S1 Appendix Tables A–H. When

fitting the Elastic Net model (5) there is also an option to cross validate not only the penalty

value λ but also the penalty split parameter α [7]. When performing such cross validation the

estimated value of α will be different for every dataset, which makes interpretation and justifi-

cation of the specific penalty split parameter choice challenging. The possibility to over fit for

small sample sizes should also be a concern [37] [38]. In this work a range of values for α was

examined with the goal of selecting a single value.

For all simulation scenarios and for all values of α except 0 an increase in the effect size

increased the power of detection. The increase in the sample size also increased the power of

detection for all effect sizes and values of α. As the sample size increases the gain in power for

small effect sizes is modest compared to large effect sizes for all methods. Power of detection

decreased monotonically with increase in the penalty split value α from ridge regression (α =

0) to LASSO (α = 1). Ridge regression (α = 0) included all variables and resulted in estimates

of power and Type I error of 1. LASSO (α = 1) had the lowest power of all values of α for each

scenario and was in the range 0.7 − 0.8 only for the larger sample and effect sizes (Δ = 0.8 and

n = 100).

For (α> 0) an increase in the sample size increased the Type I error. The increase was

more pronounced for the smaller number of features (p = 205) than for the larger number of

features (p = 2050). Type I error decreased monotonically with increase in the penalty split

value α from ridge regression to LASSO. However, this is not a linear function. For ridge pen-

alty (α = 0) coefficients of the correlated predictors are shrunk towards each other, for LASSO

penalty (α = 1) only single coefficient of the correlated group selects one and discards the

others [7]. The value α = 0.5 that was used for the analysis in this work tends to either select or

not select the groups of correlated features together [36]. For the larger number of features

(p = 2050) the steep reduction in Type I error occurs at much lower values of α than for the

smaller number of features. The larger value of correlation values (ρ = 0.8 vs ρ = 0.4) increases

Type I errors for larger sample sizes. For any value of α, Type I error was larger than nominal

level 0.05 when the number of features was small (p = 205) and the sample size is n = 100. For

the larger number of features (p = 2050) and small sample sizes (n = 10, 20, 30, 50) the Type I

error was close to nominal level for α 2 [0.5; 1] including for the LASSO. Based on these results

α = 0.5 was considered a balanced representation of power and Type I error for the Elastic Net

approach and was used for comparison with the ANOVA approach.

Type I error for the Elastic Net α = 0.5 and LASSO increased monotonically with the

increase in the sample size but still stayed within the nominal level (0.05) for the considered

sample sizes (n� 100) if the number of features was larger (p = 2050). For the smaller number
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Fig 2. Visualization of power (left column) and Type I error (right column) estimates. Comparison between p = 205

(solid lines) and p = 2050 (dashed line) features for ρ = 0.8 and sample sizes n = 10 (top row), n = 50 (middle row), and

n = 100 (bottom row). The value of the penalty split parameter α is plotted on the x-axis. Type I error and power

estimates are plotted on y-axis for the values of α in the range of [0; 1] with 0.1 increments. In the left column power

estimates are provided based on the four different features for each of the effect sizes (Δ1 = 0.2 is the red line, Δ2 = 0.5 is

the blue line, and Δ3 = 0.8 is the green line). In the right column Type I error estimates are provided (beige lines) based
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of features (p = 205) and sample sizes above fifty the error was above nominal level (0.05). To

further investigate the behavior of Type I error based on the sample size for the larger number

of features, the sizes n = 200, 500 and 1000 were considered for p = 2050 features and correla-

tion ρ = 0.4. The results indicated that the Type I error kept increasing monotonically with the

sample size increase for both LASSO and Elastic Net and were above the nominal level of 0.05

for sample size n = 200 for Elastic Net and for sample size n = 500 for LASSO.

The ANOVA tests were performed independently on each feature, the Type I error and the

power of the tests were very similar regardless of the number of features and correlation

between features. As expected, as sample size and effect size increased power increased. The

power of ANOVA approach was in the range: 0.7 − 0.8 for sample sizes greater than n = 50

and effect size Δ = 0.8 regardless of the number of features. The results for Type I error were at

the nominal level (0.05) for unadjusted ANOVA despite the multiple testing and as expected

[40] were well below the nominal level of 0.2 after FDR adjustment. Indeed, after FDR adjust-

ment at 0.20 the results were below 0.05.

For features simulated as correlated with differentially expressed features, but not them-

selves simulated to have a difference in the mean, the Elastic Net and LASSO approaches over

selected features when the number of features was p = 205 and sample size was n� 50. As

expected, the performance of the ANOVA for these features mirrored the behavior of the Type

I error for all sample sizes. Power estimates for sample sizes smaller than 50 were lower than

0.5 for small effect sizes for all tests. The increase in the effect size Δ increases power of the

tests. Overall, LASSO performed worse than either Elastic Net or ANOVA (adjusted or

unadjusted).

Of particular interest, the increase in the number of features from p = 205 to p = 2050

affected the Type I error and the power of any of the considered methods much less than the

increase in number of samples from n = 10 to n = 100. This indicates that the number of fea-

tures examined does not play as crucial a role as the correlation and dependency structure in

the data and the sample size. The results for ρ = 0.4 are provided in Figs 3 and 4 and for ρ = 0.8

in S1 File Figs F and G.

Real data

Venn diagrams (Fig 5, S1 Appendix Fig H) of the result comparison for different methods for

maize data with FDR adjustment for ANOVA are presented in Fig 5 and without FDR adjust-

ment in S1 Appendix Fig H. The results for the positive and negative ion modes were similar.

When Type I error is minimized (FDR level 0.05) ANOVA selects comparable number of fea-

tures to the Elastic Net and LASSO, but the three methods do not have perfect overlap between

the set of features and none of the sets include the other. At an FDR level 0.2 the set of features

selected by ANOVA does not include all the features selected by LASSO and Elastic Net. This

results hold for both positive and negative ion modes. Interestingly, in the negative ion mode

there were features selected by LASSO (p = 3) and not selected by Elastic Net. For positive ion

model features selected by LASSO formed a proper subset of the features selected by Elastic

Net.

In the diabetes data (Figs I and J in S1 Appendix) a set of p = 1781 exons was selected using

the ANOVA method and FDR level 0.2 while the Elastic Net procedure selected a subset of 58

on the random noise features together with a 0.05 threshold plotted as a purple dashed line. The vertical dashed line in

the right column plots corresponds to penalty split value α = 0.5. The value of α = 0 corresponds to ridge regression

and α = 1 corresponds to LASSO.

https://doi.org/10.1371/journal.pone.0197910.g002
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Fig 3. Visualization of power and Type I error estimates comparison for p = 205 features, correlation ρ = 0.4, and

all sample sizes. Each row of the plots corresponds to a feature selection method. ANOVA FDR adjustment cutoff is

0.2. The value of the sample size (n) is displayed on the x-axis in all plots. The estimates of power and Type I error are

provided on the y-axis. In the left column power estimates are provided based on the four different features for each of

the effect sizes (Δ1 = 0.2 is the red line, Δ2 = 0.5 is the blue line, and Δ3 = 0.8 is the green line). In the right column Type

I error estimates are provided (beige lines) based on the random noise features together with a 0.05 threshold plotted as

Variable selection in omics data
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a purple dashed line. In the middle column the proportions of non-different detected features within each block

correlated to different ones for each of the blocks and corresponding effect sizes (Δ1 = 0.2 is the red line, Δ2 = 0.5 is the

blue line, and Δ3 = 0.8 is the green line) are displayed.

https://doi.org/10.1371/journal.pone.0197910.g003

Fig 4. Visualization of power and Type I error estimates comparison for p = 2050 features, correlation ρ = 0.4, and all sample sizes. Each row of the plots

corresponds to a feature selection method. ANOVA FDR adjustment cutoff is 0.2. The value of the sample size (n) is displayed on the x-axis in all plots. The

estimates of power and Type I error are provided on the y-axis. In the left column power estimates are provided based on the four different features for each of the

effect sizes (Δ1 = 0.2 is the red line, Δ2 = 0.5 is the blue line, and Δ3 = 0.8 is the green line). In the right column Type I error estimates are provided (beige lines) based

on the random noise features together with a 0.05 threshold plotted as a purple dashed line. In the middle column the proportions of non-different detected features

within each block correlated to different ones for each of the blocks and corresponding effect sizes (Δ1 = 0.2 is the red line, Δ2 = 0.5 is the blue line, and Δ3 = 0.8 is

the green line) are displayed.

https://doi.org/10.1371/journal.pone.0197910.g004
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exons and the LASSO procedure selected 13 exons that formed a subset of Elastic Net selection.

For the ANOVA method and FDR level 0.05 the set of p = 1047 exons were selected, and,

again, the exons selected by LASSO formed a subset of exons selected by Elastic Net, which

was in its turn the subset of the ANOVA features. The unadjusted ANOVA results are pro-

vided in S1 Appendix Fig I.

Discussion

For omics data the identification of features that are potentially different among groups is a

common analytical goal. Typically biologists view this initial experiment as a screening step

although this is often not explicitly stated. It is not a realistic analytical goal to identify a bio-

marker in a single study, particularly a single study with sample sizes that are small. Many

omics experiments have sample sizes in the tens. Further, there are many levels of structure in

these data. There are biological correlations among the features examined due to the shared

pathways that generate the observations and the experiments themselves often have a structure

due to batch effects during data acquisition and potential covariates. For human studies, the

initial sample collections may be complicated by patient characteristics such as age, sex or

comorbidity. These analytic concerns should be considered in the evaluation of statistical

methods for variable selection [46] [47] [48]. Here we explicitly consider the goal of the experi-

ment to be the identification of a reasonable number of compounds that can be followed up.

That is an explicit goal to minimize Type II error without undue inflation of the Type I error.

Methods have been developed for variable selection in omics data with the stated goal of

finding the biomarker [6] [49] [50] [14]. However, it has been established that popular partial

least squares discriminant analysis (PLS-DA) based approaches often overfit [51] [52].

Fig 5. Venn diagrams depicting the results for the maize data. ANOVA (Green), Elastic Net (Blue) and LASSO (Brown) are compared. In Panel A the positive ion

mode is shown with an FDR for the ANOVA of 0.05 while in Panel B the negative ion mode is show. Panel C is the positive ion mode with FDR of 0.2 and Panel D is

the negative ion mode.

https://doi.org/10.1371/journal.pone.0197910.g005
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Similarly machine learning approaches [53] [54] have been demonstrated to overfit for small

samples. Elastic Net has been consistently found to perform well compared to other machine

learning approaches [7] [6].

Elastic Net requires the selection of the penalty split α which can either be specified [36]

[55] or, potentially, cross validated. There are several issues with cross validation in this con-

text. First, cross validation for sample sizes less than 100 may be problematic due to poor per-

formance [37] [38]. In this context cross-validation across the values of α in addition to the

cross-validation over the values of λ is likely to perform poorly. Further, if cross-validation is

performed for the penalty split parameter α, the analysis for each dataset will have a different

value for â which makes the direct comparison of the model challenging.

For small sample sizes when the number of features is also small, such as in a targeted

panel of metabolites, the Elastic Net has an inflated Type I error. For larger numbers of features

(n< p) the Elastic Net at small sample sizes (<100) has Type I error control, but has lower

power than the uncorrected ANOVA. The uncorrected ANOVA does not have an inflation of

the Type I error in these scenarios. Type I error inflation (overselection) for sample size of 50

has been reported for LASSO and other penalized approaches [56]. Ridge regression, will

include all features in the prediction and has a Type I and Type II error of 1. The Elastic Net

has also been shown to have a higher than nominal Type I error in studies with fairly large

samples by omics standards (n = 500) [57].

Elastic Net has other distinct drawbacks in comparison to ANOVA as an initial screening

tool. Elastic Net lacks an analytical solution [30] [31] making interpretation of the coefficient

values based on values of the original measurement challenging. Further, some of the elements

of the experiment may not be accounted for properly in normalization [58] [59] [60]. This

may result in Elastic Net picking features that are (very) different between unaccounted for

sources of variation (e.g. batch) and ignoring important but potentially smaller difference

between treatments. This may explain why in the maize data there are features selected by Elas-

tic Net that are not selected by the ANOVA approach. There is a possibility to include batch

ID and other relevant variables as features that are subject to selection, but this is not expected

to have the same effect as including covariates in an ANOVA model.

Often initial untargeted metabolomics studies are used to cast a broad net in identifying

what set of compounds may be different among groups [61]. This is analogous to a screening

study where the cost of the false negative should be weighed higher than the cost of the false

positive, as subsequent experiments will remove the false positives. There is always a tradeoff

[62] [63] [64]. As with screening studies, the follow up studies used to confirm a difference

between groups are more expensive in labor, time and materials than the untargeted global

approaches indicating that Type I error cannot be completely disregarded. The identification

of groups of features that are differentially expressed from a shared pathway will provide

insight into underlying biological processes [65] [66] [67]. Ideally correlated features that are

truly differentially expressed should be selected and correlated features that are not different

should not be selected. The ANOVA approach does not have an elevated Type I error rate

among features correlated to those that are differentially expressed, compared to independent

random noise, a desirable property.

The Type II error for the ANOVA approach was, in some circumstances, lower than the

Elastic Net and LASSO. The conditions under which a two sample t-test can be used to extract

all of the features that are different between conditions has recently been examined [68]. Fan

and Fan prove that all features different between the two groups are selected with a probability

of one (that is the probability of Type II errors goes to zero) assuming that most of the features

are not different between the groups, Cramer’s condition holds and the variance for each fea-

ture is bounded away from zero. The diabetes data here clearly violate the first condition, as
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the number of genes different between the two conditions is large. However, in this case the

ANOVA approach selected more features than the Elastic Net and the LASSO suggesting that

the Type II error when the assumption of sparse differences is violated may not affect the Type

II error.

The ultimate goal of a biomarker identification is to have one or a few biomarkers capable

of predicting the treatment group. However, minimizing features at an early stage, using data

from a single, small experiment risks the exclusion of the optimal biomarker. For biomarker

identification to be successful, it should be thought of as a sequential screening procedure, a

result of a preponderance of evidence over time. In the initial stages, selection of all of the

significant correlated features (low Type II error), and none of the non-significant correlated

features (low Type I error) allows the scientist to examine sets of significant features for biolog-

ical insights. Enrichment analyses and other approaches can lend insights into the biological

pathways and can help design subsequent experiments to measure those pathways more

completely- for example developing a targeted panel of metabolites to be assayed in a large

population based on the indication that the biological pathway is affected by the disease.

Conclusion

An ANOVA is a simple technique, can account for a complex set of experimental design con-

ditions [59], is likely to achieve a very low Type II error [68] and in the conditions studied here

has lower Type I error than other more complex methods. For studies whose goal is to advance

a set of features to the next round of testing for biological relevance, an ANOVA is an excellent

choice.

Supporting information
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to the manuscript size limitations.
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