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Abstract

The ability to experience, use and eventually control anger is crucial to main-

tain well-being and build healthy relationships. Despite its relevance, the neu-

ral mechanisms behind individual differences in experiencing and controlling

anger are poorly understood. To elucidate these points, we employed an

unsupervised machine learning approach based on independent component

analysis to test the hypothesis that specific functional and structural networks

are associated with individual differences in trait anger and anger control.

Structural and functional resting state images of 71 subjects as well as their

scores from the State–Trait Anger Expression Inventory entered the analyses.

At a structural level, the concentration of grey matter in a network including

ventromedial temporal areas, posterior cingulate, fusiform gyrus and cerebel-

lum was associated with trait anger. The higher the concentration, the higher

the proneness to experience anger in daily life due to the greater tendency to

orient attention towards aversive events and interpret them with higher hostil-

ity. At a functional level, the activity of the default mode network (DMN) was

associated with anger control. The higher the DMN temporal frequency, the

stronger the exerted control over anger, thus extending previous evidence on

the role of the DMN in regulating cognitive and emotional functions in the

domain of anger. Taken together, these results show, for the first time, two

specialized brain networks for encoding individual differences in trait anger

and anger control.

Abbreviations: ADHD, attention deficit hyperactivity disorder; BOLD, blood-oxygen-level-dependent; CAT12, computational anatomy toolbox; CN,
cerebellar network; DAN, dorsal attention network; DMN, default mode network; FC, functional connectivity; fMRI, functional magnetic resonance
imaging; FPN, fronto-parietal network; IC(s), independent component(s); ICA, independent component analysis; LN, language network; MDL,
minimum description length; MNI, Montreal Neurological Institute; mPFC, medial prefrontal cortex; MRI, magnetic resonance imaging; ROI, region
of interest; SBM, source-based morphometry; SCID-I, Structured Clinical Interview for DSM-IV; SMN, sensorimotor network; SN, salience network;
SPM12, statistical parametric mapping; STAXI, State–Trait Anger Expression Inventory; TIV, total intracranial volume; VBM, voxel-based
morphometry; VN, visual network.
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1 | INTRODUCTION

Anger has been defined as an intense emotional state
involving a strong uncomfortable and hostile response
to a perceived provocation, hurt or threat (Sorella
et al., 2021; Videbeck, 2006). Anger has a survival value,
given its fundamental role in alerting us and in fight-or-
flight reactions. It also helps us to pose limits to unfair
behaviours of others and to show assertiveness (Grecucci,
Giorgetta, Bonini, & Sanfey, 2013; Grecucci, Giorgetta,
van Wout, et al., 2013; Sorella et al., 2021). When this
transitory emotional state (e.g. state anger) is experienced
with a certain frequency and intensity, it becomes trait
anger: a long-lasting individual difference in frequency
and duration of anger episodes (Spielberger, 1988, p. 1).
Although anger leads to instrumental actions, it can
become detrimental if excessively experienced or poorly
controlled. Indeed, high levels of trait anger can lead not
only to psychological and interpersonal consequences
(Baron et al., 2006) but also to physiological drawbacks
such as higher incidence of cardiovascular diseases
(Smith et al., 2004), tobacco use (Spielberger et al., 1995)
and excessive alcohol intake (Litt et al., 2000).

Besides some recent attempts to study specific aspects
of anger, such as anger experience and anger perception
(Sorella et al., 2021), there is poor evidence on the neural
bases of individual differences in trait anger. The vast
majority of studies focused on specific sub-aspects of trait
anger instead of looking at the complete picture. For
example, the tendency to generate hostile attributions,
one main feature of trait anger according to the integra-
tive cognitive model (Wilkowski & Robinson, 2008), has
been associated with different brain areas such as the
temporo-parietal junction (Carlson et al., 2012; Giardina
et al., 2011; Quan et al., 2019) and medial brain areas
linked to emotional conceptualization (Lindquist
et al., 2012). Also, the posterior cingulate cortex has been
associated with the feeling of certainty (Luttrell
et al., 2016), which is known to characterize trait anger
(Lerner & Keltner, 2000).

Another line of evidence comes from studies on atten-
tional biases. Increased tendency to attend aversive
events characterizes trait anger (Wilkowski &
Robinson, 2008). Indeed, its scores have been associated
with both attentional biases while inspecting angry facial
expressions (Honk et al., 2001; Veenstra et al., 2016) and
bilateral dorsal amygdala activity (Carré et al., 2010). In

fact, amygdala lesions impair the automatic allocation of
attention to aversive stimuli (Anderson & Phelps, 2001)
and socially relevant stimuli (Kennedy & Adolphs, 2010;
Piretti et al., 2020).

Besides individual differences in trait anger, another
important aspect not yet studied in the neuroimaging lit-
erature concerns anger control. Controlling anger may be
vital in certain interpersonal situations, and lack of anger
control is usually punished by society and law. The inte-
grative cognitive model considers anger control as an
effortful capacity to control anger expression by calming
down and monitoring its outcomes (Wilkowski &
Robinson, 2010). This is exerted by frontal brain regions.
These regions have been hypothesized to control anger
through their role in top-down modulation of subcortical
brain regions. In particular, an effort to control anger
after an insult (recreated in experimental settings with
anger provocation paradigms) increases the connectivity
between the amygdala and prefrontal cortices, which are
responsible for top-down control (Denson et al., 2013).
Accordingly, another study (Fulwiler et al., 2012) showed
a positive correlation between anger control and the
functional connectivity (FC) of the amygdala with the
contralateral orbitofrontal cortex.

Moreover, a poor anger control has been associated
with a greater tendency to react with angry expression and
aggressive behaviours towards hostile stimuli (Bettencourt
et al., 2006; Dodge & Coie, 1987; Mattevi et al., 2019).
Further, aggressive outbreaks and maladaptive interper-
sonal behaviours are particularly common in different
disorders such as borderline personality disorder (Dadomo
et al., 2016, 2018; de Panfilis et al., 2019; Kernberg, 2012),
antisocial personality disorder (Kolla et al., 2016) and the
intermittent explosive disorder (Coccaro et al., 2014). On
the other hand, excessive inhibition (excessive control) of
anger characterizes, among others, anxiety disorders
(Grecucci et al., 2020; Grecucci, Giorgetta, Brambilla,
et al., 2013) and dependent personality disorder
(Kernberg, 2012). From a neural point of view, it has been
reported that resting state activity of violent offenders after
anger provocation showed increased amygdala–paralimbic
connectivity and decreased amygdala–medial prefrontal
cortex (mPFC) connectivity (Siep et al., 2018), suggesting
that a lack of mPFC regulation can lead to reactive
aggression and anger expression. Authors concluded that
this area may be particularly involved in anger control
(Gilam et al., 2015, 2018; Jacob et al., 2018).
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However, one limitation of the previously cited
studies is that they measured anger by using anger provo-
cation paradigms or the perception of angry facial expres-
sions (Sorella et al., 2021), but there is poor evidence on
how individual differences mediate trait anger and anger
control. Moreover, previous paradigms usually focused
only on one specific aspect of anger. For example,
because high trait anger individuals are characterized by
the perception of high levels of hostility in environmental
cues, scholars have started to investigate the relationship
between the perception of angry faces and aggressive
tendencies (Beyer et al., 2015; Buades-Rotger et al., 2016).
However, trait anger also refers to other features, such as
the frequency in which anger is elicited in life or a self-
centred point of view characterized by high certainty.
Therefore, we decided to investigate the individual differ-
ences of anger, taking into account more comprehensive
measures of anger.

In addition, previous studies relied on a priori defined
brain regions (e.g. region of interest [ROI] studies) and
massive univariate approaches, thus ignoring the possi-
bility that different regions together may play a role in
anger. Furthermore, previous studies have focused on
functional magnetic resonance imaging (fMRI),
neglecting possible structural markers of anger.

To overcome all these limitations, we decided to apply
an unsupervised machine learning approach based on
the independent component analysis (ICA) to structural
and functional data (Lapomarda, Grecucci, et al., 2021;
Lapomarda, Pappaianni, et al., 2021; Pappaianni
et al., 2019; Saviola et al., 2020). In particular, the
unsupervised machine learning (Vu et al., 2018) ICA
(Brown et al., 2001), part of the so-called blind source
separation methods (Müller et al., 2004), was applied to
both structural and functional (resting state) images of
71 healthy individuals. The goal was to understand
whether specific structural features (i.e. grey matter con-
centration) and patterns of connectivity (i.e. the temporal
variability and frequency of functional networks) were
associated with individual differences in trait anger,
anger control, anger-out and anger-in.

Specifically, these anger facets were measured with
the State–Trait Anger Expression Inventory (STAXI;
Spielberger, 1988), a self-report measure. Trait anger
refers to the frequency and duration of anger episodes,
whereas anger control refers to the ability to control and
regulate this emotion. Finally, anger-out represents the
tendency to externalize anger, and anger-in the tendency
to internalize it (redirect it towards the self).

Because trait anger is considered a stable individual
tendency, we expect to find evidence at a structural level,
that is, grey matter concentration changes. In particular,
given that trait anger is characterized by the perception

of environmental cues as hostile, we expect to find grey
matter changes in a network involving perceptual brain
regions linked to emotional processing, such as para-
limbic and temporal areas. However, we expect that trait
anger can influence not only the perception but also the
conceptualization of life events, thus involving the poste-
rior cingulate cortex and temporal areas that are also
associated with certainty (Luttrell et al., 2016) that char-
acterizes anger (Lerner & Keltner, 2000).

On the other hand, we expect that anger control,
anger-out and anger-in would be more related to func-
tional activity, being transient brain states. On the basis
of a recent review on anger (Alia-Klein et al., 2020), we
expect that anger-out could be positively related to the
habit network and negatively related to the self-
regulation network, also known as the dorso-parietal net-
work. On the other hand, anger-in and anger control
could be related to the self-regulation network or to the
default mode network (DMN). Indeed, different
researchers have shown that DMN has a net role in regu-
lating cognitive and emotional functions (Pan et al., 2018;
Sripada et al., 2014), but there is a lack of evidence that
this extends to anger. Prior studies have shown that the
DMN could suppress limbic and paralimbic areas respon-
sible for emotional processes and reactivity (Buckner
et al., 2008; Harris & Friston, 2010). Moreover, alterations
of the DMN have also been associated with anger expres-
sion in individuals with attention deficit hyperactivity
disorder (ADHD) (Hasler et al., 2017) and to criminal
psychopathic tendencies (Pujol et al., 2012). This evi-
dence suggests that this network could be particularly
involved in the regulation of violent acts. Furthermore,
the DMN could be associated not only with anger control
but also with anger-out or anger-in scores, in particular
when considering the modulation of the DMN exerted on
other brain networks (see, e.g. Weathersby et al., 2019).

To note, the majority of previous connectivity studies
usually took into account the strength of connections
between different brain regions and networks. However,
although connectivity features were previously
considered as static (such as the frequency, amplitude
and phase), recent evidence proposed and started to show
that connectivity patterns change over time (Calhoun
et al., 2014; Chang & Glover, 2010). Therefore, we
decided to take into consideration two available measures
linked to the temporal dynamics of the ICA based
networks: the temporal variability and frequency.
Although few studies considered these measures, there is
increasing evidence linking these features with different
variables such as age, gender (Allen et al., 2011), cogni-
tive states (Garrett et al., 2013), empathy and awareness
(Stoica & Depue, 2020). Furthermore, some studies also
showed alterations of temporal features of some networks
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in clinical population, such as higher frequency fluctua-
tions in the DMN of schizophrenia patients (Garrity
et al., 2007). Exploring these features of the brain circuits
involved in individual anger-related differences may shed
new light on the neurocognitive mechanisms underlying
angry outbursts and anger regulation and possibly pave
the way to new forms of neuroscientific evidence-based
psychological treatments for individual who suffer from
anger dyscontrol at a clinical and subclinical level
(Frederickson et al., 2018; Grecucci et al., 2017, 2020).

2 | MATERIALS AND METHODS

2.1 | Participants

For this study, we took advantage of data from the Max
Planck Institute sample (MPI-S) dataset (OpenNeuro
database, accession number ds000221), which contains
behavioural, physiological and neuroimaging data from
healthy subjects (Babayan et al., 2018). Absence of
psychiatric conditions was controlled with the SCID-I
(Wittchen et al., 1995). For the purpose of this study, we
selected participants according to age (20–40), availability
of structural T1-weighted images and 15-min eyes-open
resting state data and availability of specific question-
naires’ scales. In this study, we focused on the 44-item
STAXI (Spielberger, 1988), selecting self-report measures
to assess trait anger, anger control, anger-out and
anger-in. The final sample included 71 subjects (M = 42,
F = 29) ranging from 20 to 40 years, mean age
26.02 � 3.53 (age was specified in a 5-year bin, where the
middle value was used for calculations). See Table 1 for
more details.

2.2 | Data acquisition

Neuroimaging data were acquired on a 3T Siemens
Magnetom Verio Scanner. For our analyses, we consid-
ered T1-weighted images, acquired using a MP2RAGE
sequence (TR = 5000 ms, TE = 2.92 ms, TI1 = 700 ms,
TI2 = 2500 ms, flip angle 1 = 4�, flip angle 2 = 5�, voxel
size = 1.0 mm isotropic, duration = 8.22 min), and the

15-min resting state data (voxel size = 2.3 mm isotropic,
FOV = 202 � 202 mm2, imaging matrix = 88 � 88,
64 slices with 2.3 mm thickness, TR = 1,400 ms,
TE = 39.4 ms, flip angle = 69�, echo spacing = 0.67 ms,
bandwidth = 1776 Hz/Px, partial Fourier 7/8, no pre-
scan normalization, multiband acceleration factor = 4,
657 volumes, duration = 15 min 30 s).

2.3 | Structural analyses

Structural images were analysed by using an
unsupervised machine learning approach based on the
ICA. ICA applied to structural images is also known as
source-based morphometry (SBM) (Grecucci et al., 2016;
Gupta et al., 2019; Pappaianni et al., 2017, 2019; Sorella
et al., 2019; Xu, Groth, et al., 2009; Xu, Pearlson, &
Calhoun, 2009). This is a data-driven multivariate alter-
native to voxel-based morphometry (VBM), used to iden-
tify ‘source networks’ or groups of spatially distinct
regions in the brain with common covariation among
participants (Xu, Groth, et al., 2009). The main difference
between VBM and SBM is the application of ICA to iden-
tify patterns of covariation of grey matter in different
independent areas, detecting and decomposing the mixed
signals coming from whole brain structural images. In
this way, SBM identifies brain networks, taking into
account the interrelationship among different voxels,
rather than a voxel-by-voxel comparison (as in VBM).
The multivariate nature of this approach makes it more
efficient than other structural analyses because it reduces
the noise while acting as a spatial filter (Grecucci
et al., 2016; Pappaianni et al., 2017, 2019; Sorella
et al., 2019). Before applying ICA, images were
preprocessed with SPM12 (http://www.fil.ion.ucl.ac.uk/
spm/software) using the toolbox CAT12 (http://www.
neuro.uni-jena.de/cat/) for image segmentation.

A visual check of data quality was performed in order
to identify any distortion, such as head motion or stripes.
Then, images were reoriented according to the origin and
segmented in grey matter, white matter and cerebrospi-
nal fluid through CAT12. For the purposes of the study,
we only took into account the grey matter images. The
registration was computed through Diffeomorphic

TAB L E 1 Participants

N Age Trait anger Anger-in Anger-out Anger control

Participants 71 26.02 � 3.53 18.38 � 3.93 15.87 � 4.32 12.03 � 3.1 22.38 � 3.82

Males 42 26.43 � 3.41 17.95 � 4.02 16.21 � 3.78 11.52 � 2.82 23.21 � 3.52

Females 29 25.43 � 3.66 19 � 3.76 15.38 � 5.04 12.76 � 3.38 21.17 � 3.97

Difference M versus F (p-value) 0.244 0.272 0.428 0.099 0.026
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Anatomical Registration using Exponential Lie algebra
(DARTEL; https://github.com/scanUCLA/spm12-dartel)
tools for SPM12, rather than using traditional
approaches. The last step of the preprocessing included
the normalization to MNI space with spatial smoothing
(full width at half maximum of Gaussian smoothing ker-
nel [8, 8, 8]).

After the preprocessing steps, ICA was applied to the
data, allowing us to identify independent grey matter
sources in the brain. ICA was applied to structural images
through the sMRI modality of the Group ICA fMRI Tool-
box (GIFT, http://mialab.mrn.org/software/gift).

The Infomax algorithm was used to maximize the rec-
ognition of IC from images’ signal information (Bell &
Sejnowski, 1995; Lee et al., 1999), whereas the ICASSO
toolbox (http://research.ics.aalto.fi/ica/icasso/) was used
to investigate the reliability of the ICA algorithm
(RandInit mode, with 100 repetitions).

Finally, the ICA converted grey matter volumes of
each component into numerical vectors; it returned an
n � m matrix (n subjects in rows and m component in
columns), which represents how a specific component is
expressed in each participant (Grecucci et al., 2016;
Pappaianni et al., 2017, 2019; Sorella et al., 2019). After
obtaining the components, we performed statistical ana-
lyses to determine which networks are linked to anger.
In particular, we performed the Pearson correlation
between each component and the scores of the STAXI.
Significant results were then corrected relying on partial
correlation, considering gender, age, total intracranial
volume (TIV) and a social desirability scale (Crowne &
Marlowe, 1960). In addition, the same method was used
to partial out the scores on the other subscales when find-
ing a significant result with a particular scale.

Mango (http://ric.uthscsa.edu/mango/), Surf Ice
(https://github.com/neurolabusc/surf-ice) and Matlab
(https://it.mathworks.com/products/matlab.html) were
used to visualize data.

2.4 | Functional analyses

Similar to structural analyses, the same unsupervised
machine learning approach based on the ICA was then
applied to functional images. The usage of ICA also in
resting state analyses shows many advantages. Besides its
abilities to detect and remove noise, ICA maximizes the
statistical independence in order to extract different net-
works with high consistency (Rajamanickam, 2020).
Indeed, the main reason why we relied on this approach
is to extract resting state networks without overlaying a
predefined mask, but relying on the individual features of
the participants included in the analysis. Thus, one of the

main advantages that led us to rely on ICA-based resting
state analyses is to identify naturally grouping functional
connections patterns of brain regions not restricted to
predefined boundaries of network nodes (Kornelsen
et al., 2020; Motoyama et al., 2019). This is especially
important when considering that resting state networks
are susceptible to individual differences.

The preprocessing steps were performed through the
default processing pipeline of CONN software (https://
web.conn-toolbox.org) for volume-based analysis of rest-
ing states data. It includes the following steps: functional
realignment and unwarping, translation and centring,
functional outlier detection (conservative settings), func-
tional direct segmentation and normalization (2 mm reso-
lution), structural translation and centring, structural
segmentation and normalization (2 mm resolution) and
functional and structural smoothing (spatial convolution
with Gaussian kernel 8 mm). Then, CONN includes a
component-based noise correction method (CompCor) for
the physiological and other noise source reduction. This
step applies linear regression and bandpass filtering in
order to remove unwanted motion, physiological and
other artefactual effects from the BOLD signal before com-
puting connectivity measures. Data were checked through
quality assurance plots. ICA was then applied, given that
we did not want to restrict our analyses to a priori seeds/
ROIs and rather investigate possible connectivity differ-
ences related to trait anger across the entire brain. There-
fore, we selected voxel-to-voxel analysis, specifically the
group-ICA one. Through the ICA, we identified 20 net-
works (default settings) of highly functionally-connected
areas. This analysis is based on Calhoun’s group-level ICA
approach (Calhoun et al., 2001) and includes the following
steps: variance normalization preconditioning, subject
concatenation of BOLD signal data along temporal dimen-
sion, group-level dimensionality reduction, fastICA for
estimation of independent spatial components and GICA1
back projection for individual subject-level spatial map
estimation (Nieto-Castanon, 2020; Whitfield-Gabrieli &
Nieto-Castanon, 2012).

Among the 20 networks, we used the CONN’s
preselected eight networks correspondent to well-known
resting state networks in literature (Soman et al., 2020)
through the spatial match to template function. Through
ICA.Temporal.Components, we considered the temporal
variability, defined as a fluctuation of neural activity over
time, and the temporal frequency, defined as distribution
of neural activity fluctuations over various frequencies, of
the BOLD signal time series associated with each net-
work. Finally, we checked whether the temporal variabil-
ity and the temporal frequency of the identified networks
were related to STAXI anger scores of the 71 subjects
through correlation coefficients. Significant results were
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then corrected relying on partial correlations, considering
gender, age, TIV and a social desirability scale
(Crowne & Marlowe, 1960). In addition, the same
method was used to partial out the scores on the other
subscales when finding a significant result with a particu-
lar scale.

3 | RESULTS

3.1 | Structural results

ICA applied to structural images automatically identified
eight independent components (ICs) on the basis of grey
matter changes through the subsampling scheme pro-
posed by Li et al. (2007). This method is used to obtain a
set of effectively independent and identically distributed
samples on which the minimum description length
(MDL) information-theoretic criteria are then applied.
See Figures 1 and 2. The consistency and reliability of the
results were quantified with a quality index (Iq) ranging
from 0 to 1, which reflects the difference between
intracluster and extracluster similarity of the identified
networks (Canessa et al., 2013; Himberg et al., 2004). All
of them showed an Iq > 0.9, which indicates a highly sta-
ble ICA decomposition (Allen et al., 2011). ICs were then
correlated with trait anger, anger control, anger-out and
anger-in scores.

3.1.1 | Trait anger

The analysis showed a positive significant correlation
between Independent Component 3 (IC 3, Iq = 0.97)
and trait anger (r = 0.34, p = 0.004), even after cor-
recting for gender (r = 0.327, p = 0.0058), age
(r = 0.339, p = 0.0041), TIV (r = 0.338, p = 0.0042),
social desirability (r = 0.376, p = 0.0013) and the other
three anger’s subscales of the STAXI (r = 0.2694;

p = 0.0263). Results remained significant after cor-
recting for the number of components (n = 8,
Bonferroni corrected p-critic = 0.006). The IC 3 included
portions of the fusiform gyrus, different parts of the cer-
ebellum, the temporal pole, the lingual gyrus, the visual
association area, the posterior cingulate cortex and the
inferior parietal lobule. See Table 2 and Figure 3. The
other seven components were not significantly corre-
lated with trait anger (r = �0.007, p = 0.954;
r = �0.178, p = 0.137; r = �0.040; p = 0.740;
r = 0.070, p = 0.563; r = �0.079, p = 0.511; r = 0.147,
p = 0.220; r = 0.112, p = 0.352).

3.1.2 | Anger control

The analysis showed no significant correlations with any
of the eight components (r = �0.103, p = 0.394;
r = �0.126, p = 0.295; r = �0.092, p = 0.445; r = 0.021,
p = 0.862; r = 0.020, p = 0.867; r = �0.206, p = 0.085;
r = 0.072, p = 0.550; r = 0.035, p = 0.772).

3.1.3 | Anger-out

The analysis showed no significant correlations with any
of the eight components (r = �0.006, p = 0.961;
r = �0.048, p = 0.691; r = 0.212, p = 0.076; r = 0.053,
p = 0.660; r = �0.078, p = 0.518; r = 0.080, p = 0.507;
r = 0.013, p = 0.912; r = �0.073, p = 0.546).

3.1.4 | Anger-in

The analysis showed no significant correlations with any
of the eight components (r = �0.107, p = 0.373;
r = �0.023, p = 0.851; r = �0.072, p = 0.554; r = 0.118,
p = 0.326; r = 0.010, p = 0.933; r = �0.086, p = 0.474;
r = 0.121, p = 0.314; r = �0.016, p = 0.897).

F I GURE 1 Heatmap of the structural

results. Heatmap plot of the four analyses

showing the correlations between the four

anger scales (trait anger, anger-in, anger-out

and anger control) with the structural

networks
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3.2 | Functional results

The resting state ICA identified 20 functional networks.
Among them, the temporal variability and frequency of
the eight standard resting state networks have been
regressed with anger control scores. These networks are

the following: the cerebellar network (ICA1), the salience
network (ICA3), the language network (ICA12), DMN
(ICA14), the visual network (ICA15), the fronto-parietal
network (ICA17), the dorsal attention network (ICA18)
and the sensorimotor network (ICA19). See Figures 2
and 4.

F I GURE 2 Structural and

functional independent

networks. A machine learning

method known as independent

component analysis was applied

to both structural and functional

neuroimaging data. The eight

structural ICs are displayed on

the left (first column in hot

colours); the eight functional ICs

are displayed on the right

(second column in cold colours).

The functional networks

included the cerebellar network

(CN), the salience network (SN),

the language network (LN), the

default mode network (DMN),

the visual network (VN), the

fronto-parietal network (FPN),

the dorsal attention network

(DAN) and the sensorimotor

network (SMN)
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3.2.1 | Trait anger

The analysis showed no significant correlations with trait
anger when considering the variability (ICA1: r = 0.25,
p = 0.033; ICA3: r < 0.01, p = 0.730; ICA12: r < 0.01,
p = 0.970; ICA14: r = 0.1, p = 0.544; ICA15: r < 0.01,
p = 0.811; ICA17: r = 0.1, p = 0.359; ICA18: r = �0.25,
p = 0.039; ICA19: r = �0.141, p = 0.242) or the fre-
quency (ICA1: r = �0.25, p = 0.042; ICA3: r < 0.01,
p = 0.719; ICA12: r < 0.01, p = 0.693; ICA14: r = �0.283,
p = 0.021; ICA15: r < 0.01, p = 0.973; ICA17: r < 0.01,
p = 0.982; ICA18: r = 0.1, p = 0.433; ICA19: r < 0.01,
p = 0.723) of each network, after correcting for the num-
ber of components (n = 8 considering both the variability
and the frequency of each; Bonferroni corrected p
critic = 0.003).

3.2.2 | Anger control

The analysis showed a positive significant correlation
between temporal frequency in the DMN and anger con-
trol (r = 0.36, p = 0.002), even when correcting for gen-
der (r = 0.33, p = 0,006), age (r = 0.35, p = 0.004), TIV
(r = 0.3665, p = 0.0018), social desirability (r = 0.3499,
p = 0.0030) and the other three anger’s subscales of the

STAXI (r = 0.3075, p = 0.0108). Results remained signifi-
cant after correcting for the number of components
(n = 8, considering both the variability and the frequency
of each; Bonferroni corrected p critic = 0.003). See
Table 3 and Figure 3. None of the other networks showed
significant correlation with anger control when consider-
ing the variability (ICA1: r < 0.01, p = 0.95; ICA3:
r = 0.10, p = 0.48; ICA12: r = 0.17, p = 0.19; ICA14:
r = 0.14, p = 0.27; ICA15: r < 0.01, p = 0.61; ICA17:
r = 0.22, p = 0.07; ICA18: r < 0.01, p = 0.64; ICA19:
r = 0.20, p = 0.11) or the frequency (ICA1: r < 0.01,
p = 0.80; ICA3: r < 0.01, p = 0.55; ICA12: r < 0.01,
p = 0.20; ICA15: r < 0.01, p = 0.67; ICA17: r < 0.01,
p = 0.94; ICA18: r < 0.01, p = 0.93; ICA19: r < 0.01,
p = 0.56) of each network.

3.2.3 | Anger-out

The analysis showed no significant correlations with trait
anger when considering the variability (ICA1: r = 0.1,
p = 0.416; ICA3: r < 0.01, p = 0.976; ICA12: r = 0.2,
p = 0.091; ICA14: r = �0.10, p = 0.382; ICA15:
r = 0.141, p = 0.306; ICA17: r = 0.1, p = 0.495; ICA18:
r = 0.173, p = 0.181; ICA19: r = 0.332, p = 0.005) or the
frequency (ICA1: r < 0.01, p = 0.583; ICA3: r < 0.01,

TAB L E 2 Morphometric results associated with trait anger

ICA network 3 Volume (cc)
Random effects: max value
(x, y, z) Brodmann

Label (nearest grey matter
within 5 mm)

4.8/6.7 5.6 (�33, �55, �16)/6.3 (36, �56, �16) 19,20,37 Fusiform gyrus

2.4/5.9 5.3 (�30, �52, �16)/6.2 (34, �52, �16) 19,20,37 Fusiform gyrus

0.8/3.0 4.7 (�36, �55, �14)/6.0 (39, �53, �16) 19,20,37 Fusiform gyrus

0.3/1.0 4.1 (�43, �68, �23)/5.1 (48, �52, �25) No Brodmann area Cerebellum-tuber

0.1/0.2 4.4 (�39, �55, �16)/5.8 (34, �66, �13) 19,20,37 Fusiform gyrus

0.1/0.0 4.0 (�22, �56, 8)/� 23 Posterior cingulate cortex

0.1/0.0 3.9 (�37, �70, �23)/� No Brodmann area Cerebellum-uvula

0.0/2.7 �/5.7 (43, �50, �38) No Brodmann area Cerebellar tonsil

0.0/0.9 �/4.7 (36, �69, �39) No Brodmann area Cerebellum-inferior semi-lunar
lobule

0.0/0.8 �/5.0 (4, �84, �10) 18 Lingual gyrus

0.0/0.3 �/5.0 (21, 3, �37) 38 Parahippocampal gyrus

0.0/0.2 �/4.0 (36, �75, �34) No Brodmann area Cerebellum-pyramis

0.0/0.1 �/4.4 (1, �83, �7) 18 Visual association area

0.0/0.1 �/3.8 (53, �16, 27) 40 Inferior parietal lobule

0.0/0.1 �/3.7 (36, �39, 39) 40 Inferior parietal lobule

0.0/0.1 �/3.6 (46, 10, �26) 38 Temporal pole

Note: ICA 3 significantly correlates with trait anger.
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F I GURE 4 Heatmap of the functional results. Heatmap plot of the four analyses showing the correlations between the four anger

scales (trait anger, anger-in, anger-out and anger control) with the functional networks (CN, cerebellar network; DAN, dorsal attention

network; DMN, default mode network; FPN, fronto-parietal network; LN, language network; SMN, sensorimotor network; SN, salience

network; VN, visual network)

F I GURE 3 Structural and functional networks associated with trait anger and anger control. The structural network (a) includes

portions of the temporal pole, the posterior cingulate cortex and the inferior parietal lobule, the lingual gyrus, the visual association area,

fusiform gyrus and parts of the cerebellum, which positively correlates with trait anger (r = 0.3386, p = 0.004) (c). The functional network,

that is, the default mode network, IC14 (b), whose frequency positively correlates with anger control (R2 = 0.13, p = 0.002) (d)
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p = 0.991; ICA12: r = �0.2, p = 0.090; ICA14: r < 0.01,
p = 0.946; ICA15: r = �0.173, p = 0.149; ICA17: r < 0.01,
p = 0.678; ICA18: r = 0.224, p = 0.073; ICA19: r = 0.316,
p = 0.009) of each network, after correcting for the
number of components (n = 8 considering both the
variability and the frequency of each; Bonferroni
corrected p critic = 0.003).

3.2.4 | Anger-in

The analysis showed no significant correlations with
anger-in when considering the variability (ICA1:
r < 0.01, p = 0.978; ICA3: r = 0.10, p = 0.329; ICA12:
r < 0.01, p = 0.972; ICA14: r < 0.01, p = 0.785; ICA15:
r = �0.1, p = 0.521; ICA17: r = 0.141, p = 0.247; ICA18:
r = 0.316, p = 0.007; ICA19: r = <0.10, p = 0.888) or the
frequency (ICA1: r = �0.224, p = 0.059; ICA3: r = 0.10,
p = 0.549; ICA12: r = 0.141, p = 0.254; ICA14:
r = �0.245, p = 0.035; ICA15: r = �0.10, p = 0.376;
ICA17: r = �0.141, p = 0.215; ICA18: r = �0.2,
p = 0.086; ICA19: r < 0.01, p = 0.986) of each network,
after correcting for the number of components (n = 8
considering both the variability and the frequency of
each; Bonferroni corrected p critic = 0.003).

4 | DISCUSSION

Anger is a fundamental emotion that helps us to respond
to perceived provocations, hurts or threats (Sorella
et al., 2021). In this paper, we explored important aspects
of anger by relying on self-report measures of trait anger,
anger control, anger-out and anger-in of the STAXI
questionnaire. As predicted, we found neural correlates
of trait anger, defined as a stable personality tendency to
experience anger, and anger control or the ability individ-
uals have to regulate this emotion. In particular, we
hypothesized that trait anger may be more related to
structural properties of the brain and that anger control,
anger-out and anger-in may be more expressed at a func-
tional level. In line with our predictions, we found evi-
dence of a structural network associated with trait anger
and separate functional evidence for anger control abili-
ties in the DMN. No significant result was associated
with anger-out and anger-in scores. We discussed these
results in more details in the next sections.

4.1 | The structural side of trait anger

ICA applied to structural images revealed that trait anger
is associated with a network including the right temporal

TAB L E 3 Resting state results associated with anger control

Default mode network Max value (x, y, z) Brodmann Label

+10–66 + 38 7 Posterior cingulate

+38 + 38–6 47 Ventral PFC

+42–80–34 No Brodmann area Cerebellum

–40–78–32 No Brodmann area Cerebellum-

�22 + 58 + 2 10, 32 Anterior cingulate

+28–90–10 18 Visual association cortex

�28–94–10 18 Visual association cortex

+6 + 34 + 16 32 Anterior cingulate

+0–90 + 32 32 Cerebellum-inferior semi-lunar lobule

+42–60–52 19 Visual extrastriate cortex

+56–20–10 22 Superior temporal gyrus

�44–52–44 No Brodmann area Cerebellum

�32 + 8 + 58 6 Premotor cortex

�14 + 12–10 No Brodmann area Putamen

�60–40 + 50 40 Parietal lobule

+62–40 + 50 40 Parietal lobule

�30 + 44 + 44 9 Medial prefrontal cortex

+14 + 12–10 No Brodmann area Nucleus accumbens

+6–84–42 No Brodmann area Cerebellum

Note: DMN’s frequency significantly correlates with anger control.
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pole, the right ventromedial temporal area, the posterior
cingulate, the bilateral fusiform gyrus (anterior and
posterior regions) and the cerebellum. Scholars suggested
that during anger-eliciting situations, a mutual interac-
tion between posterior and anterior temporal areas can
be responsible for retrieving semantic memories of past
experiences associated with anger, enhancing the
elicitation of this emotion (Potegal & Stemmler, 2009;
Sorella et al., 2021). Medial and anterior temporal areas
are involved in mnemonic and emotional processing
(Grecucci et al., 2010; Grecucci, Giorgetta, Bonini, &
Sanfey, 2013; Grecucci, Giorgetta, van Wout, et al., 2013;
Harris & Friston, 2010; Roshtstein et al., 2011), and they
can have a key role in anger-related experiences. Indeed,
temporal lobectomy has been shown to cause social
withdrawal in monkeys and to reduce aggression and
rage in both monkeys and humans (Fenwick, 1989; Olson
et al., 2007; Potegal & Stemmler, 2009). In particular, the
temporal pole found in our analysis is consistent with
previous research showing its involvement in both anger-
inducing paradigms (Damasio et al., 2000; Dougherty
et al., 1999; Foster & Harrison, 2002; Grecucci, Giorgetta,
Bonini, & Sanfey, 2013; Grecucci, Giorgetta, van Wout,
et al., 2013; Kimbrell et al., 1999; Klimecki et al., 2018;
Olson et al., 2007) and aggressive and/or violent habits
(Bufkin & Luttrell, 2005; Potegal & Stemmler, 2009). This
area seems to bind highly processed perceptual inputs to
visceral emotional responses, allowing the formation of a
personal semantic memory through perception–emotion
linkages (Olson et al., 2007), especially when considering
anger-related social cues used to interpret the behaviours
of others (Sorella et al., 2021).

The fusiform gyrus area has previously been associ-
ated with emotional valence (Mattek et al., 2020),
especially when considering anger during mental imag-
ery (Drexler et al., 2000). In addition, the right anterior
fusiform gyrus is crucial for associative semantic knowl-
edge (Mion et al., 2010) and could be responsible for the
initial elicitation of anger-associated beliefs (stored in our
semantic system), such as the unfairness of the situation
(Fernandez & Wasan, 2009; Smedslund, 1993).

Therefore, these temporal regions can underlie a link
between perceptions, memories and emotion that is
characterized by higher grey matter concentration in
individuals with high trait anger. In addition, this higher
concentration of grey matter could be responsible for
hostile interpretations of environmental cues related to
trait anger (Wilkowski & Robinson, 2007, 2008, 2010),
especially when a more explicit conceptualization of
events is considered. This process in particular may rely
on the posterior cingulate cortex, whose activity is related
to the conceptualization of self-relevant cues (Ochsner
et al., 2005; Rameson et al., 2010), especially when they

are socially significant (Johnson et al., 2006). In addition,
these conceptualizations are characterized by high
certainty in high trait anger individuals (Lerner &
Keltner, 2000). Accordingly, the posterior cingulate has
been previously associated with high certainty (Luttrell
et al., 2016), and different meta-analyses revealed that
this area is also implicated during both anger-inducing
life experiences and anger perception (Murphy
et al., 2003; Phan et al., 2002; Sorella et al., 2021).

Lastly, the cerebellum has been found to play a role
in negative emotions such as anger and disgust, and it
seems particularly relevant for emotional control when
goal-directed behaviour is needed in social contexts
(Schraa-Tam et al., 2012). In addition, a recent meta-
analysis found involvement of the cerebellum in both
perceptual and aggressive mechanisms associated with
anger (Klaus & Schutter, 2021). Furthermore, the authors
found that cerebellar activity was functionally connected
with several networks, such as the somatomotor and the
DMN. Therefore, the role of the cerebellum in anger
could be modulated by these connectivity patterns, where
the DMN could play a regulatory role, as explained in the
following paragraph.

4.2 | The functional side of anger control

Functional analyses revealed that individual differences
in anger control correlate with the temporal frequency of
the DMN, whereas the temporal variability of the
networks showed no significant correlations. Even if the
interpretation of the temporal frequency of the DMN is
still under debate, there is some evidence that shows its
relevance when considering different variables, such as
physiological activity (Yuen et al., 2019), age, gender
(Allen et al., 2011) and mental illness (Garrity
et al., 2007). Our results extend this evidence to the study
of emotional control. Indeed, they confirm and extend
previous findings on the topic, showing for the first time
an association between anger control and the DMN tem-
poral frequency, rather than other widely used connectiv-
ity measures, such as the role of different areas in the
network or the strength of their connections. Neverthe-
less, our results are in line with previous studies
suggesting that some areas of the DMN are implicated in
the regulation of emotions (Grecucci et al., 2019). It has
been shown that DMN alterations are associated with
anger in both clinical and non-clinical populations. For
example, a study by Hasler et al. (2017) suggested that
inter-hemispheric DMN asymmetry (e.g. in the inferior
parietal lobule and in the medial frontal gyrus) is related
to anger expression in individuals with ADHD, which
are characterized by impaired anger regulation.
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Furthermore, criminal psychopathic individuals show
altered FC in the DMN (Pujol et al., 2012), suggesting
that this network is also involved in the regulation of
violent acts.

Other studies with non-clinical populations suggest
that negative mood states, such as anger, might result
from impaired connectivity between DMN regions. In
particular, anger is negatively associated with connectiv-
ity between dorsal and ventral regions in the DMN (Dong
et al., 2017). In addition, the modulation of the DMN
activity following acute tryptophan depletion (which
reduces serotonin levels) is associated with mood change:
Specifically, there is a link between low-frequency spon-
taneous BOLD activity in the superior parietal lobule and
self-reported scores of anger and hostility (Kunisato
et al., 2011). Another study showed associations between
the activation of the anterior cingulate cortex and anger
control capacity; males with high trait aggression show a
decreased activation in this area during a frustration task,
suggesting that this region could play a role in the control
of anger (Pawliczek et al., 2013).

In addition, many studies show that the mPFC
(another hub of the DMN) can suppress limbic activation
of subcortical, paralimbic and temporal areas (for a
review, see Harris & Friston, 2010). A possible explanation
could be that the DMN, through the FC of frontal
regions with limbic and perceptual brain areas, can
reduce the effect of hostile interpretations and angry
reactions through an effortful control (Wilkowski &
Robinson, 2010). Consistently, the DMN has been associ-
ated with monitoring potential alternative courses of
action (Allegra et al., 2018), possibly modulating infer-
ences about the beliefs and intentions of others (Laird
et al., 2011; Li et al., 2014; Schilbach et al., 2008). Although
anger is characterized by high external causality attributed
to others and high goal-directed motivation, the DMN is
known to reduce this motivation and to improve social
understanding and representation of others’ mental states
(Greicius et al., 2003; Gusnard & Raichle, 2001; Li et al.,
2014; Samson et al., 2004). Therefore, the DMN can
induce a self-referential process that can regulate and con-
trol anger while increasing social and moral emotions,
such as guilt (Colasante et al., 2015; Stuewig et al., 2010).

5 | CONCLUSIONS AND
LIMITATIONS

Separating different aspects of anger is of fundamental
importance to fully understand this complex emotion
(Sorella et al., 2021). The study of how trait anger and
anger control capacity are implemented in our brain has
been poorly addressed by neuroscience. In this paper, for
the first time, we found evidence of a structural network

associated with trait anger and a functional network
associated with anger control capacity. Because trait
anger is a stable personality trait, this becomes
sedimented in specific parts of the brain (posterior per-
ceptual, amnestic and paralimbic brain regions), where
the grey matter concentration correlates with trait anger
scores. On the other hand, functional results show a posi-
tive correlation between anger control capacity and the
frequency of the DMN. In addition to the theoretical rele-
vance of such results, clinicians can benefit from under-
standing the functional and structural bases of anger to
develop psychological treatments based on neuroscien-
tific evidence. For example, by targeting the areas found
in the present study relying on pharmacology or neuro-
stimulation methods, new treatments could be used to
improve anger regulation in clinical and non-clinical
populations suffering from anger dysregulation.

However, a limitation of the study is that it only con-
cerns healthy subjects. Therefore, further evidence is
needed to generalize our results to clinical populations
characterized by anger dysregulation.

Another limitation, in contrast with previous studies
on anger (Alia-Klein et al., 2020; Gilam &
Hendler, 2015; Sorella et al., 2021), concerns the absence
of the amygdala in our results. This is probably due to
the difficulty to identify subcortical regions in whole
brain multivariate analyses, thereby not allowing the
identification of cortico–subcortical networks (Malherbe
et al., 2014). However, future studies should take into
account the possible relationship between the DMN and
the amygdala in anger and its control. Indeed, although
it is known that the mPFC plays a regulatory role on the
amygdala during affective processes, such as during the
regulation of anger (Alia-Klein et al., 2020), some studies
also suggest that the entire DMN could be involved in
emotion regulation, given its suppression of limbic and
paralimbic areas (Buckner et al., 2008; Harris &
Friston, 2010) and its alterations associated with anger
expression and violence (Hasler et al., 2017; Pujol
et al., 2012). For example, it has been observed that indi-
viduals with a genotype associated with aggression are
characterized by DMN deactivations during inhibitory
control (Ma et al., 2018), although posterior cingulate
deactivations were observed in psychopathic individuals
during moral dilemmas (Pujol et al., 2012). Our results
are in line with this evidence and suggest that the DMN
can be involved in the regulation of emotions such as
anger and in moral judgements. In particular, the
mentalization process associated with the DMN could
play a key role in the regulation of anger, for example,
when considering the possible consequences of anger
expression. However, future studies are needed to clarify
and sustain these hypotheses.
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In addition, we analysed structural and functional
data separately. Future studies can further investigate the
relation between structural and functional brain net-
works involved in emotional experiences, especially
when considering emotional control and the common
brain areas involved in these analyses. For example, the
posterior cingulate emerged both in the structural and in
the functional networks. On a speculative account, its
role could be modulated according to its connectivity
with other brain areas. For example, it has been previ-
ously linked to both certainty (Luttrell et al., 2016), char-
acteristic of high trait anger and moral judgement (Pujol
et al., 2012), which could be involved in the control of
anger when other areas of the DMN are also activated.

Finally, it should be noted that the DMN identified by
the ICA mainly involved posterior brain regions. Other
studies relying on the same analysis found similar effects
(see, e.g. Motoyama et al., 2019). In multivariate analyses,
this could be explained by the fact that posterior regions of
the DMN seem to be more robust (Kim & Lee, 2011).
Future studies are needed to better understand this result,
in particular considering the anterior and posterior regions
of the DMN and their link with affective processes.

ACKNOWLEDGEMENT
We thank Stepheni Uh (MRC Cognition and Brain
Science Unit, Cambridge University, UK) for her
assistance with language revision of our manuscript.
Open Access Funding provided by Universita degli
Studi di Trento within the CRUI-CARE Agreement.
[Correction added on 20 May 2022, after first online
publication: CRUI funding statement has been added.]

CONFLICT OF INTEREST
The authors have no competing interests to declare that
are relevant to the content of this article.

AUTHOR CONTRIBUTIONS
Sara Sorella: Conceptualization, methodology, formal
analysis, writing–original draft preparation. Valentina
Vellani: Methodology, formal analysis, writing–original
draft preparation. Roma Siugzdaite: Methodology, for-
mal analysis, writing–reviewing and editing. Paola
Feraco: Writing–reviewing and editing. Alessandro
Grecucci: Formal analysis, supervision, conceptualiza-
tion, writing–original draft preparation, writing–
reviewing and editing. All listed authors should have con-
tributed to the manuscript substantially and have agreed
to the final submitted version.

PEER REVIEW
The peer review history for this article is available at
https://publons.com/publon/10.1111/ejn.15537.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are avail-
able in OpenNeuro at [https://openneuro.org/datasets/
ds000221/versions/00002], reference number [ds000221].

ORCID
Sara Sorella https://orcid.org/0000-0001-6080-9467

REFERENCES
Alia-Klein, N., Gan, G., Gilam, G., Bezek, J., Bruno, A.,

Denson, T. F., Hendler, T., Lowe, L., Mariotti, V.,
Muscatello, M. R., Palumbo, S., Pellegrini, S., Pietrini, P.,
Rizzo, A., & Verona, E. (2020). The feeling of anger: From
brain networks to linguistic expressions. Neuroscience & Biobe-
havioral Reviews, 108, 480–497. https://doi.org/10.1016/j.
neubiorev.2019.12.002

Allegra, M., Seyed-Allaei, S., Schuck, N. W., Amati, D., Laio, A., &
Reverberi, C. (2018). Brain network dynamics during sponta-
neous strategy shifts and incremental task optimization.
https://doi.org/10.1101/481838

Allen, E. A., Erhardt, E. B., Damaraju, E., Gruner, W., Segall, J. M.,
Silva, R. F., Havlicek, M., Rachakonda, S., Fries, J.,
Kalyanam, R., Michael, A. M., Caprihan, A., Turner, J. A.,
Eichele, T., Adelsheim, S., Bryan, A. D., Bustillo, J.,
Clark, V. P., Feldstein Ewing, S. W., … Calhoun, V. D. (2011).
A baseline for the multivariate comparison of resting-state net-
works. Frontiers in Systems Neuroscience, 5, 1–23. https://doi.
org/10.3389/fnsys.2011.00002

Anderson, A. K., & Phelps, E. A. (2001). Lesions of the human
amygdala impair enhanced perception of emotionally salient
events. Nature, 411, 305–309. https://doi.org/10.1038/35077083

Babayan, A., Baczkowski, B., Cozatl, R., Dreyer, M., Engen, H.,
Erbey, M., Falkiewicz, M., Farrugia, N., Gaebler, M.,
Golchert, J., Golz, L., Gorgolewski, K., Haueis, P.,
Huntenburg, J., Jost, R., Kramarenko, Y., Krause, S.,
Kumral, D., Lauckner, M., … Villringer, A. (2018).
MPI-Leipzig_Mind-Brain-Body. OpenNeuro, ds000221, version
00002. https://doi.org/10.18112/openneuro.ds000221.v1.0.0
[dataset]

Baron, K. G., Smith, T. W., Butner, J., Nealey-Moore, J.,
Hawkins, M. W., & Uchino, B. N. (2006). Hostility, anger,
and marital adjustment: Concurrent and prospective associa-
tions with psychosocial vulnerability. Journal of Behavioral
Medicine, 30(1), 1–10. https://doi.org/10.1007/s10865-006-
9086-z

Bell, A. J., & Sejnowski, T. J. (1995). An information-maximization
approach to blind separation and blind deconvolution. Neural
Computation, 7, 1129–1159. https://doi.org/10.1162/neco.1995.
7.6.1129

Bettencourt, B. A., Talley, A., Benjamin, A. J., & Valentine, J.
(2006). Personality and aggressive behavior under provoking
and neutral conditions: A meta-analytic review. Psychological
Bulletin, 132(5), 751–777. https://doi.org/10.1037/0033-2909.
132.5.751

Beyer, F., Münte, T. F., Göttlich, M., & Krämer, U. M. (2015).
Orbitofrontal cortex reactivity to angry facial expression in a
social interaction correlates with aggressive behavior. Cerebral
Cortex, 25(9), 3057–3063. https://doi.org/10.1093/cercor/
bhu101

522 SORELLA ET AL.

https://publons.com/publon/10.1111/ejn.15537
https://openneuro.org/datasets/ds000221/versions/00002
https://openneuro.org/datasets/ds000221/versions/00002
https://orcid.org/0000-0001-6080-9467
https://orcid.org/0000-0001-6080-9467
https://doi.org/10.1016/j.neubiorev.2019.12.002
https://doi.org/10.1016/j.neubiorev.2019.12.002
https://doi.org/10.1101/481838
https://doi.org/10.3389/fnsys.2011.00002
https://doi.org/10.3389/fnsys.2011.00002
https://doi.org/10.1038/35077083
https://doi.org/10.18112/openneuro.ds000221.v1.0.0
https://doi.org/10.1007/s10865-006-9086-z
https://doi.org/10.1007/s10865-006-9086-z
https://doi.org/10.1162/neco.1995.7.6.1129
https://doi.org/10.1162/neco.1995.7.6.1129
https://doi.org/10.1037/0033-2909.132.5.751
https://doi.org/10.1037/0033-2909.132.5.751
https://doi.org/10.1093/cercor/bhu101
https://doi.org/10.1093/cercor/bhu101


Brown, G. D., Yamada, S., & Sejnowski, T. J. (2001). Independent
component analysis at the neural cocktail party. Trends in
Neuroscience, 24(1), 54–63. https://doi.org/10.1016/S0166-2236
(00)01683-0

Buades-Rotger, M., Engelke, C., Beyer, F., Keevil, B. G.,
Brabant, G., & Krämer, U. M. (2016). Endogenous testosterone
is associated with lower amygdala reactivity to angry faces and
reduced aggressive behavior in healthy young women. Scien-
tific Reports, 6(1), 1–14. https://doi.org/10.1038/srep38538

Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The
brain’s default net- work: Anatomy, function, and relevance to
disease. Ann NY Acad Sci, 1124, 1–38. https://doi.org/10.1196/
annals.1440.011

Bufkin, J. L., & Luttrell, V. E. (2005). Neuroimaging studies of
aggressive and violent behavior. Trauma, Violence and Abuse,
6, 176–191. https://doi.org/10.1177/1524838005275089

Calhoun, V., Adali, T., Pearlson, G., & Pekar, J. (2001). A method
for making group inferences from functional MRI data using
independent component analysis. Human Brain Mapping,
14(3), 140–151. https://doi.org/10.1002/hbm.1048

Calhoun, V. D., Miller, R., Pearlson, G., & Adalı, T. (2014). The
chronnectome: Time-varying connectivity networks as the
next frontier in fmri data discovery. Neuron, 84(2), 262–274.
https://doi.org/10.1016/j.neuron.2014.10.015

Canessa, N., Crespi, C., Motterlini, M., Baud-Bovy, G.,
Chierchia, G., Pantaleo, G., Tettamanti, M., & Cappa, S. F.
(2013). The functional and structural neural basis of individual
differences in loss aversion. The Journal of Neuroscience,
33(36), 14307–14317. https://doi.org/10.1523/JNEUROSCI.
0497-13.2013

Carlson, J. M., Beacher, F., Reinke, K. S., Habib, R., Harmon-
Jones, E., Mujica-Parodi, L. R., & Hajcak, G. (2012). Nonco-
nscious attention bias to threat is correlated with anterior cin-
gulate cortex gray matter volume: A voxel-based morphometry
result and replication. NeuroImage, 59(2), 1713–1718. https://
doi.org/10.1016/j.neuroimage.2011.09.040

Carré, J. M., Fisher, P. M., Manuck, S. B., & Hariri, A. R. (2010).
Interaction between trait anxiety and trait anger predict
amygdala reactivity to angry facial expressions in men but
not women. Social Cognitive and Affective Neuroscience, 7(2),
213–221. https://doi.org/10.1093/scan/nsq101

Chang, C., & Glover, G. H. (2010). Time-frequency dynamics of
resting-state brain connectivity measured with fMRI.
NeuroImage, 50(1), 81–98. https://doi.org/10.1016/j.
neuroimage.2009.12.011

Coccaro, E. F., Lee, R., & Mccloskey, M. S. (2014). Relationship
between psychopathy, aggression, anger, impulsivity, and
intermittent explosive disorder. Aggressive Behavior, 40(6),
526–536. https://doi.org/10.1002/ab.21536

Colasante, T., Zuffianò, A., & Malti, T. (2015). Do moral emotions
buffer the anger-aggression link in children and adolescents?
Journal of Applied Developmental Psychology, 41, 1–7. https://
doi.org/10.1016/j.appdev.2015.06.001

Crowne, D. P., & Marlowe, D. (1960). A new scale of social desir-
ability independent of psychopathology. Journal of Consulting
Psychology, 24, 349–354. https://doi.org/10.1037/h0047358

Dadomo, H., Grecucci, A., Giardini, I., Ugolini, E., Carmelita, A., &
Panzeri, M. (2016). Schema therapy for emotional
dysregulation: Theoretical implication and clinical application.

Frontiers in Psychology, 7, 1987. https://doi.org/10.3389/fpsyg.
2016.01987

Dadomo, H., Panzeri, M., Caponcello, D., Carmelita, A., &
Grecucci, A. (2018). Schema therapy for emotional dys-
regulation in personality disorders: A review. Current Opinion
in Psychiatry, 31(1), 43–49. https://doi.org/10.1097/YCO.
0000000000000380

Damasio, A. R., Grabowski, T. J., Bechara, A., Damasio, H.,
Ponto, L. L., Parvizi, J., & Hichwa, R. D. (2000). Subcortical
and cortical brain activity during the feeling of self- generated
emotions. Nature Neuroscience, 3, 1049–1056. https://doi.org/
10.1038/79871

de Panfilis, C., Schito, G., Generali, I., Gozzi, L., Ossola, P.,
Marchesi, C., & Grecucci, A. (2019). Emotions at the border:
Increased punishment behavior during fair interpersonal
exchanges in borderline personality disorder. Journal of
Abnormal Psychology, 128(2), 162–172. https://doi.org/10.
1037/abn0000404

Denson, T. F., Ronay, R., Hippel, W. V., & Schira, M. M. (2013).
Endogenous testosterone and cortisol modulate neural
responses during induced anger control. Social Neuroscience,
8(2), 165–177. https://doi.org/10.1080/17470919.2012.655425

Dodge, K. A., & Coie, J. D. (1987). Social-information-processing
factors in reactive and proactive aggression in children’s
peer groups. Journal of Personality and Social Psychology, 53,
1146–1158. https://doi.org/10.1037/0022-3514.53.6.1146

Dong, G., Li, H., Wang, L., & Potenza, M. N. (2017). The correlation
between mood states and functional connectivity within
the default mode network can differentiate internet gaming
disorder from healthy controls. Progress in Neuro-
Psychopharmacology and Biological Psychiatry, 77, 185–193.
https://doi.org/10.1016/j.pnpbp.2017.04.016

Dougherty, D. D., Shin, L. M., Alpert, N. M., Pitmann, R. K.,
Orr, S. P., Lasko, M., Macklin, M. L., Fischman, A. J., &
Rauch, S. L. (1999). Anger in healthy men: A PET study using
script-driven imagery. Biological Psychiatry, 46, 466–472.
https://doi.org/10.1016/S0006-3223(99)00063-3

Drexler, K., Schweitzer, J. B., Quinn, C. K., Gross, R., Ely, T. D.,
Muhammad, F., & Kilts, C. D. (2000). Neural activity related
to anger in cocaine-dependent men: A possible link to violence
and relapse. American Journal on Addictions, 9(4), 331–339.
https://doi.org/10.1080/105504900750047382

Fenwick, P. (1989). The nature and management of aggression in
epilepsy. Journal of Neuropsychiatry & Clinical Neurosciences,
1, 418–425.

Fernandez, E., & Wasan, A. (2009). The anger of pain sufferers:
Attributions to agents and appraisals of wrongdoings. In M.
Potegal, G. Stemmler, & C. Spielberger (Eds.), International
handbook of anger (pp. 449–464). Springer.

Foster, P. S., & Harrison, D. W. (2002). The relationship between
magnitude of cerebral activation and intensity of emotional
arousal. International Journal of Neuroscience, 112(12),
1463–1477. https://doi.org/10.1080/00207450290158359

Frederickson, J., Messina, I., & Grecucci, A. (2018). Dysregulated
affects and dysregulating defenses: Toward an emotion regula-
tion informed dynamic psychotherapy. Frontiers in Psychology,
9, 2054. https://doi.org/10.3389/fpsyg.2018.02054

Fulwiler, C. E., King, J. A., & Zhang, N. (2012). Amygdala–
orbitofrontal resting-state functional connectivity is associated

SORELLA ET AL. 523

https://doi.org/10.1016/S0166-2236(00)01683-0
https://doi.org/10.1016/S0166-2236(00)01683-0
https://doi.org/10.1038/srep38538
https://doi.org/10.1196/annals.1440.011
https://doi.org/10.1196/annals.1440.011
https://doi.org/10.1177/1524838005275089
https://doi.org/10.1002/hbm.1048
https://doi.org/10.1016/j.neuron.2014.10.015
https://doi.org/10.1523/JNEUROSCI.0497-13.2013
https://doi.org/10.1523/JNEUROSCI.0497-13.2013
https://doi.org/10.1016/j.neuroimage.2011.09.040
https://doi.org/10.1016/j.neuroimage.2011.09.040
https://doi.org/10.1093/scan/nsq101
https://doi.org/10.1016/j.neuroimage.2009.12.011
https://doi.org/10.1016/j.neuroimage.2009.12.011
https://doi.org/10.1002/ab.21536
https://doi.org/10.1016/j.appdev.2015.06.001
https://doi.org/10.1016/j.appdev.2015.06.001
https://doi.org/10.1037/h0047358
https://doi.org/10.3389/fpsyg.2016.01987
https://doi.org/10.3389/fpsyg.2016.01987
https://doi.org/10.1097/YCO.0000000000000380
https://doi.org/10.1097/YCO.0000000000000380
https://doi.org/10.1038/79871
https://doi.org/10.1038/79871
https://doi.org/10.1037/abn0000404
https://doi.org/10.1037/abn0000404
https://doi.org/10.1080/17470919.2012.655425
https://doi.org/10.1037/0022-3514.53.6.1146
https://doi.org/10.1016/j.pnpbp.2017.04.016
https://doi.org/10.1016/S0006-3223(99)00063-3
https://doi.org/10.1080/105504900750047382
https://doi.org/10.1080/00207450290158359
https://doi.org/10.3389/fpsyg.2018.02054


with trait anger. Neuroreport, 23(10), 606–610. https://doi.org/
10.1097/wnr.0b013e3283551cfc

Garrett, D. D., Kovacevic, N., McIntosh, A. R., & Grady, C. L.
(2013). The modulation of BOLD variability between cognitive
states varies by age and processing speed. Cerebral Cortex,
23(3), 684–693. https://doi.org/10.1093/cercor/bhs055

Garrity, A. G., Pearlson, G. D., McKiernan, K., Lloyd, D.,
Kiehl, K. A., & Calhoun, V. D. (2007). Aberrant “default
mode” functional connectivity in schizophrenia. The American
Journal of Psychiatry, 164, 450–457. https://doi.org/10.1176/
ajp.2007.164.3.450

Giardina, A., Caltagirone, C., & Oliveri, M. (2011). Temporo-parietal
junction is involved in attribution of hostile intentionality in
social interactions: An rTMS study. Neuroscience Letters, 495(2),
150–154. https://doi.org/10.1016/j.neulet.2011.03.059

Gilam, G., Abend, R., Gurevitch, G., Erdman, A., Baker, H.,
Ben-Zion, Z., & Hendler, T. (2018). Attenuating anger and
aggression with neuromodulation of the vmPFC: A simulta-
neous tDCS-fMRI study. Cortex, 109, 156–170. https://doi.org/
10.1016/j.cortex.2018.09.010

Gilam, G., & Hendler, T. (2015). Deconstructing anger in the
human brain. In M. Wöhr & S. Krach (Eds.), Social behavior
from rodents to humans (Vol. 30). Current Topics in Behavioral
Neurosciences. (pp. 257–273). Springer.

Gilam, G., Lin, T., Raz, G., Azrielant, S., Fruchter, E., Ariely, D., &
Hendler, T. (2015). Neural substrates underlying the tendency
to accept anger-infused ultimatum offers during dynamic
social interactions. NeuroImage, 120, 400–411. https://doi.org/
10.1016/j.neuroimage.2015.07.003

Grecucci, A., Frederickson, J., & Job, R. (2017). How dare you not
recognize the role of my contempt: Insights from experimental
psychopathology. Behavioral and Brain Sciences, 40, e238.
https://doi.org/10.1017/S0140525X16000777

Grecucci, A., Giorgetta, C., Bonini, N., & Sanfey, A. (2013).
Reappraising social emotions: The role of inferior frontal
gyrus, temporo-parietal junction and insula in interpersonal
regulation. Frontiers in Human Neuroscience, 7, 523. https://
doi.org/10.3389/fnhum.2013.00523

Grecucci, A., Giorgetta, C., Brambilla, P., Zanon, S., Perini, L.,
Balestrieri, M., Bonini, N., & Sanfey, A. (2013). Anxious
ultimatums. How anxiety affects socio-economic decisions.
Cognition & Emotion., 27(2), 230–244. https://doi.org/10.1080/
02699931.2012.698982

Grecucci, A., Giorgetta, C., van Wout, M., Bonini, N., & Sanfey, A.
(2013). Reappraising the ultimatum: An fMRI study of
emotion regulation and decision-making. Cerebral Cortex,
23(2), 399–410. https://doi.org/10.1093/cercor/bhs028

Grecucci, A., Messina, I., Amodeo, L., Lapomarda, G.,
Crescentini, C., Dadomo, H., Panzeri, M., Theuninck, A., &
Frederickson, J. (2020). A dual route model for regulating
emotions: Comparing models, techniques and biological
mechanisms. Frontiers in Psychology, 11, 930. https://doi.org/
10.3389/fpsyg.2020.00930

Grecucci, A., Rubicondo, D., Siugzdaite, R., Surian, L., & Job, R.
(2016). Uncovering social deficits in autistic individuals: A
source-based morphometry study. Frontiers in Neuroscience,
31(10), 388.

Grecucci, A., Soto, D., Rumiati, R., Humphreys, G. W., &
Roshtstein, P. (2010). The interrelations between verbal

working memory and visual selection of emotional faces.
Journal of Cognitive Neuroscience, 22(6), 1189–1200. https://
doi.org/10.1162/jocn.2009.21276

Grecucci, A., Sulpizio, S., Vespignani, F., & Job, R. (2019). Seeing
emotions, reading emotions: Behavioral and ERPs evidence of
the regulation of visual and linguistic stimuli. PLoS ONE,
14(5), 0209461.

Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003).
Functional connectivity in the resting brain: A network
analysis of the default mode hypothesis. Proceedings. National
Academy of Sciences. United States of America, 100, 253–258.
https://doi.org/10.1073/pnas.0135058100

Gupta, C. N., Turner, J. A., & Calhoun, V. D. (2019). Source-based
morphometry: A decade of covarying structural brain patterns.
Brain Structure & Function, 224, 3031–3044. https://doi.org/10.
1007/s00429-019-01969-8

Gusnard, D. A., & Raichle, M. E. (2001). Searching for a baseline:
Functional imaging and the resting human brain. Nature
Reviews. Neuroscience, 2, 685–694. https://doi.org/10.1038/
35094500

Harris, C. R. L., & Friston, K. J. (2010). The default-mode,
ego-functions and free-energy: A neurobiological account of
Freudian ideas. Brain, 133(4), 1265–1283. https://doi.org/10.
1093/brain/awq010

Hasler, R., Preti, M. G., Meskaldji, D. E., Prados, J., Adouan, W.,
Rodriguez, C., & Sinanaj, I. (2017). Inter-hemispherical asym-
metry in default-mode functional connectivity and BAIAP2
gene are associated with anger expression in ADHD adults.
Psychiatry Research: Neuroimaging, 269, 54–61. https://doi.org/
10.1016/j.pscychresns.2017.09.004

Himberg, J., Hyvärinen, A., & Esposito, F. (2004). Validating the
independent components of neuroimaging time series via clus-
tering and visualization. NeuroImage, 22, 1214–1222. CrossRef
Medline

Honk, J. V., Tuiten, A., Haan, E. D., Hout, M. V., & Stam, H.
(2001). Attentional biases for angry faces: Relationships to trait
anger and anxiety. Cognition & Emotion, 15(3), 279–297.
https://doi.org/10.1080/02699930126112

Jacob, Y., Gilam, G., Lin, T., Raz, G., & Hendler, T. (2018). Anger
modulates influence hierarchies within and between emo-
tional reactivity and regulation networks. Frontiers in Behav-
ioral Neuroscience, 12, 60. https://doi.org/10.3389/fnbeh.2018.
00060

Johnson, M. K., Raye, C. L., Mitchell, K. J., Touryan, S. R.,
Greene, E. J., & Nolen-Hoeksema, S. (2006). Dissociating
medial frontal and posterior cingulate activity during self-
reflection. Social Cognitive and Affective Neuroscience, 1(1),
56–64. https://doi.org/10.1093/scan/nsl004

Kennedy, D. P., & Adolphs, R. (2010). Impaired fixation to eyes fol-
lowing amygdala damage arises from abnormal bottom-up
attention. Neuropsychologia, 48, 3392–3398. https://doi.org/10.
1016/j.neuropsychologia.2010.06.025

Kernberg, O. F. (2012). The inseparable nature of love and aggres-
sion: Clinical and theoretical perspectives. American Psychiat-
ric Pub.

Kim, D.-Y., & Lee, J.-H. (2011). Are posterior default-mode networks
more robust than anterior default-mode networks? Evidence
from resting-state fmri data analysis. Neuroscience Letters,
498(1), 57–62. https://doi.org/10.1016/j.neulet.2011.04.062

524 SORELLA ET AL.

https://doi.org/10.1097/wnr.0b013e3283551cfc
https://doi.org/10.1097/wnr.0b013e3283551cfc
https://doi.org/10.1093/cercor/bhs055
https://doi.org/10.1176/ajp.2007.164.3.450
https://doi.org/10.1176/ajp.2007.164.3.450
https://doi.org/10.1016/j.neulet.2011.03.059
https://doi.org/10.1016/j.cortex.2018.09.010
https://doi.org/10.1016/j.cortex.2018.09.010
https://doi.org/10.1016/j.neuroimage.2015.07.003
https://doi.org/10.1016/j.neuroimage.2015.07.003
https://doi.org/10.1017/S0140525X16000777
https://doi.org/10.3389/fnhum.2013.00523
https://doi.org/10.3389/fnhum.2013.00523
https://doi.org/10.1080/02699931.2012.698982
https://doi.org/10.1080/02699931.2012.698982
https://doi.org/10.1093/cercor/bhs028
https://doi.org/10.3389/fpsyg.2020.00930
https://doi.org/10.3389/fpsyg.2020.00930
https://doi.org/10.1162/jocn.2009.21276
https://doi.org/10.1162/jocn.2009.21276
https://doi.org/10.1073/pnas.0135058100
https://doi.org/10.1007/s00429-019-01969-8
https://doi.org/10.1007/s00429-019-01969-8
https://doi.org/10.1038/35094500
https://doi.org/10.1038/35094500
https://doi.org/10.1093/brain/awq010
https://doi.org/10.1093/brain/awq010
https://doi.org/10.1016/j.pscychresns.2017.09.004
https://doi.org/10.1016/j.pscychresns.2017.09.004
https://doi.org/10.1080/02699930126112
https://doi.org/10.3389/fnbeh.2018.00060
https://doi.org/10.3389/fnbeh.2018.00060
https://doi.org/10.1093/scan/nsl004
https://doi.org/10.1016/j.neuropsychologia.2010.06.025
https://doi.org/10.1016/j.neuropsychologia.2010.06.025
https://doi.org/10.1016/j.neulet.2011.04.062


Kimbrell, T. A., George, M. S., Parakh, P. I., Ketter, T. A.,
Podell, D. M., Danielson, A. L., Repella, J. D., Benson, B. E.,
Willis, M. W., Herscovitch, P., & Post, R. M. (1999). Regional
brain activity during transient self-induced anxiety and anger
in healthy adults. Biological Psychiatry, 46, 454–465. https://
doi.org/10.1016/S0006-3223(99)00103-1

Klaus, J., & Schutter, D. (2021). Functional topography of anger
and aggression in the human cerebellum. NeuroImage, 226,
117582. https://doi.org/10.1016/j.neuroimage.2020.117582

Klimecki, O. M., Sander, D., & Vuilleumier, P. (2018). Distinct brain
areas involved in anger versus punishment during social inter-
actions. Scientific Reports, 8(1), 10556. https://doi.org/10.1038/
s41598-018-28863-3

Kolla, N. J., Meyer, J. H., Bagby, R. M., & Brijmohan, A. (2016).
Trait anger, physical aggression, and violent offending in anti-
social and borderline personality disorders. Journal of Forensic
Sciences, 62(1), 137–141. https://doi.org/10.1111/1556-4029.
13234

Kornelsen, J., Wilson, A., Labus, J. S., Witges, K., Mayer, E. A., &
Bernstein, C. N. (2020). Brain resting-state network alterations
associated with Crohn’s disease. Frontiers in Neurology, 11, 48.
https://doi.org/10.3389/fneur.2020.00048

Kunisato, Y., Okamoto, Y., Okada, G., Aoyama, S., Demoto, Y.,
Munakata, A., & Yamawaki, S. (2011). Modulation of default-
mode network activity by acute tryptophan depletion is
associated with mood change: A resting state functional
magnetic resonance imaging study. Neuroscience Research,
69(2), 129–134. https://doi.org/10.1016/j.neures.2010.11.005

Laird, A. R., Fox, P. M., Eickhoff, S. B., Turner, J. A., Ray, K. L.,
McKay, D. R., Glahn, D. C., Beckmann, C. F., Smith, S. M., &
Fox, P. T. (2011). Behavioral interpretations of intrinsic
connectivity networks. Journal of Cognition, 23, 4022–4037.
https://doi.org/10.1162/jocn_a_00077

Lapomarda, G., Grecucci, A., Messina, I., Pappaianni, E., &
Dadomo, H. (2021). Common and different gray and white
matter alterations in bipolar and borderline personality disor-
der. Brain Research, 1762, 147401. https://doi.org/10.1016/j.
brainres.2021.147401

Lapomarda, G., Pappaianni, E., Siugzdaite, R., Sanfey, A. G.,
Rumiati, R. I., & Grecucci, A. (2021). Out of control: An
altered parieto-occipital-cerebellar network for impulsivity in
bipolar disorder. Behavioural Brain Research, 406, 113228.

Lee, T. W., Girolami, M., & Sejnowski, T. J. (1999). Independent
component analysis using an extended infomax algorithm for
mixed subgaussian and supergaussian sources. Neural Computa-
tion, 11, 417–441. https://doi.org/10.1162/089976699300016719

Lerner, J. S., & Keltner, D. (2000). Beyond valence: Toward a model
of emotion-specific influences on judgment and choice. Cogni-
tion and Emotion, 14, 473–493. https://doi.org/10.1080/
026999300402763

Li, W., Mai, X., & Liu, C. (2014). The default mode network and
social understanding of others: What do brain connectivity
studies tell us. Frontiers in Human Neuroscience, 8, 74. https://
doi.org/10.3389/fnhum.2014.00074

Li, Y. O., Adali, T., & Calhoun, V. D. (2007). Estimating the number
of independent components for functional magnetic resonance
imaging data. Human Brain Mapping, 28(11), 1251–1266.
https://doi.org/10.1002/hbm.20359

Lindquist, K. A., Wager, T. D., Kober, H., Bliss-Moreau, E., &
Barrett, L. F. (2012). The brain basis of emotion: A meta-
analytic review. The Behavioral and Brain Sciences, 35(3),
121–143. https://doi.org/10.1017/S0140525X11000446

Litt, M. D., Cooney, N. L., & Morse, P. (2000). Reactivity to alcohol-
related stimuli in the laboratory and in the field: Predictors of
craving in treated alcoholics. Addiction, 95(6), 889–900.
https://doi.org/10.1046/j.1360-0443.2000.9568896.x

Luttrell, A., Stillman, P. E., Hasinski, A. E., & Cunningham, W. A.
(2016). Neural dissociations in attitude strength: Distinct
regions of cingulate cortex track ambivalence and certainty.
Journal of Experimental Psychology: General, 145(4), 419–433.
https://doi.org/10.1037/xge0000141

Ma, R., Gan, G., Zhang, J., Ming, Q., Jiang, Y., Gao, Y., Wang, X., &
Yao, S. (2018). MAOA genotype modulates default mode
network deactivation during inhibitory control. Biological
Psychology, 138, 27–34. https://doi.org/10.1016/j.biopsycho.
2018.08.006

Malherbe, C., Messé, A., Bardinet, E., Pélégrini-Issac, M.,
Perlbarg, V., Marrelec, G., & Benali, H. (2014). Combining
spatial independent component analysis with regression to
identify the subcortical components of resting-state fMRI func-
tional networks. Brain Connectivity, 4(3), 181–192. https://doi.
org/10.1089/brain.2013.0160

Mattek, A. M., Burr, D. A., Shin, J., Whicker, C. L., & Kim, M. J.
(2020). Identifying the representational structure of affect
using fMRI. Affective Science, 1, 42–56. https://doi.org/10.1007/
s42761-020-00007-9

Mattevi, A., Sorella, S., Vellani, V., Job, R., & Grecucci, A. (2019).
Regolare la rabbia: Quale strategia? Uno studio preliminare.
Giornale italiano di Psicologia.

Mion, M., Patterson, K., Acosta-Cabronero, J., Pengas, G.,
Izquierdo-Garcia, D., Hong, Y. T., Fryer, T. D., Williams, G. B.,
Hodges, J. R., & Nestor, P. J. (2010). What the left and right
anterior fusiform gyri tell us about semantic memory. Brain,
133(11), 3256–3268. https://doi.org/10.1093/brain/awq272

Motoyama, Y., Oshiro, Y., Takao, Y., Sato, H., Obata, N., Izuta, S.,
Mizobuchi, S., & Kan, S. (2019). Resting-state brain functional
connectivity in patients with chronic pain who responded to
subanesthetic-dose ketamine. Scientific Reports, 9, 12912.
https://doi.org/10.1038/s41598-019-49360-1

Müller, K.-R., Vig�ario, R., Meinecke, F., & Ziehe, A. (2004). Blind
source separation techniques for decomposing event related
brain signals. International Journal of Bifurcation and Chaos,
14(2), 773–792. https://doi.org/10.1142/S0218127404009466

Murphy, F. C., Nimmo-Smith, I., & Lawrence, A. D. (2003).
Functional neuroanatomy of emotions: A meta-analysis.
Cognitive, Affective, & Behavioral Neuroscience, 3, 207–233.
https://doi.org/10.3758/CABN.3.3.207

Nieto-Castanon, A. (2020). Handbook of fcMRI methods in CONN.
Hilbert Press.

Ochsner, K. N., Beer, J. S., Robertson, E. R., Cooper, J. C.,
Gabrieli, J. D., Kihsltrom, J. F., & Desposito, M. (2005). The
neural correlates of direct and reflected self-knowledge.
NeuroImage, 28(4), 797–814. https://doi.org/10.1016/j.
neuroimage.2005.06.069

Olson, I. R., Plotzker, A., & Ezzyat, Y. (2007). The enigmatic tempo-
ral pole: A review of findings on social and emotional

SORELLA ET AL. 525

https://doi.org/10.1016/S0006-3223(99)00103-1
https://doi.org/10.1016/S0006-3223(99)00103-1
https://doi.org/10.1016/j.neuroimage.2020.117582
https://doi.org/10.1038/s41598-018-28863-3
https://doi.org/10.1038/s41598-018-28863-3
https://doi.org/10.1111/1556-4029.13234
https://doi.org/10.1111/1556-4029.13234
https://doi.org/10.3389/fneur.2020.00048
https://doi.org/10.1016/j.neures.2010.11.005
https://doi.org/10.1162/jocn_a_00077
https://doi.org/10.1016/j.brainres.2021.147401
https://doi.org/10.1016/j.brainres.2021.147401
https://doi.org/10.1162/089976699300016719
https://doi.org/10.1080/026999300402763
https://doi.org/10.1080/026999300402763
https://doi.org/10.3389/fnhum.2014.00074
https://doi.org/10.3389/fnhum.2014.00074
https://doi.org/10.1002/hbm.20359
https://doi.org/10.1017/S0140525X11000446
https://doi.org/10.1046/j.1360-0443.2000.9568896.x
https://doi.org/10.1037/xge0000141
https://doi.org/10.1016/j.biopsycho.2018.08.006
https://doi.org/10.1016/j.biopsycho.2018.08.006
https://doi.org/10.1089/brain.2013.0160
https://doi.org/10.1089/brain.2013.0160
https://doi.org/10.1007/s42761-020-00007-9
https://doi.org/10.1007/s42761-020-00007-9
https://doi.org/10.1093/brain/awq272
https://doi.org/10.1038/s41598-019-49360-1
https://doi.org/10.1142/S0218127404009466
https://doi.org/10.3758/CABN.3.3.207
https://doi.org/10.1016/j.neuroimage.2005.06.069
https://doi.org/10.1016/j.neuroimage.2005.06.069


processing. Brain, 130(7), 1718–1731. https://doi.org/10.1093/
brain/awm052

Pan, J., Zhan, L., Hu, C., Yang, J., Wang, C., Gu, L., Zhong, S.,
Huang, Y., Wu, Q., Xie, X., Chen, Q., Zhou, H., Huang, M., &
Wu, X. (2018). Emotion regulation and complex brain net-
works: Association between expressive suppression and effi-
ciency in the fronto-parietal network and default-mode
network. Frontiers in Human Neuroscience, 12, 70. https://doi.
org/10.3389/fnhum.2018.00070

Pappaianni, E., de Pisapia, N., Siugzdaite, R., Crescentini, C.,
Calcagnì, A., Job, R., & Grecucci, A. (2019). Less is more: Psy-
chological and morphometric differences between low vs high
reappraisers. Cognitive, Affective, & Behavioral Neuroscience,
20, 128–140. https://doi.org/10.3758/s13415-019-00757-5

Pappaianni, E., Siugzdaite, R., Vettori, S., Venuti, P., Job, R., &
Grecucci, A. (2017). Three shades of gray: Detecting brain
abnormalities in children with autism using source-, voxel-
and surface- based morphometry. European Journal of Neuro-
science, 47, 690–700. https://doi.org/10.1111/ejn.13704

Pawliczek, C. M., Derntl, B., Kellermann, T., Gur, R. C.,
Schneider, F., & Habel, U. (2013). Anger under control: Neural
correlates of frustration as a function of trait aggression. PLoS
ONE, 8(10), e78503. https://doi.org/10.1371/journal.pone.
0078503

Phan, K. L., Wager, T., Taylor, S. F., & Liberzon, I. (2002). Func-
tional neuroanatomy of emotion: A meta-analysis of emotion
activation studies in PET and fMRI. NeuroImage, 16, 331–348.
https://doi.org/10.1006/nimg.2002.1087

Piretti, L., Pappaianni, E., Lunardelli, A., Zorzenon, I., Ukmar, M.,
Pesavento, V., & Grecucci, A. (2020). The role of amygdala in
self-conscious emotions in a patient with acquired bilateral
damage. Frontiers in Neuroscience, 14, 677. https://doi.org/10.
3389/fnins.2020.00677

Potegal, M., & Stemmler, G. (2009). Constructing a neurology of
anger. In M. Potegal, G. Stemmler, & C. Spielberger (Eds.),
International handbook of anger (pp. 39–59). Springer.

Pujol, J., Batalla, I., Contreras-Rodriguez, O., Harrison, B. J.,
Pera, V., Hernandez- Ribas, R., Real, E., Bosa, L., Soriano-
Mas, C., Deus, J., L�opez-Solà, M., Pifarré, J.,
Mench�on, J. M., & Cardoner, N. (2012). Breakdown in the
brain network subserving moral judgment in criminal psy-
chopathy. Social Cognitive and Affective Neuroscience, 7, 917–
923. https://doi.org/10.1093/scan/nsr075

Quan, F., Zhu, W., Dong, Y., Qiu, J., Gong, X., Xiao, M., Zheng, Y.,
Zhao, Y., Chen, X., & Xia, L.-X. (2019). Brain structure links
trait hostile attribution bias and attitudes toward violence.
Neuropsychologia, 125, 42–50. https://doi.org/10.1016/j.
neuropsychologia.2019.01.015

Rajamanickam, K. (2020). A mini review on different methods of
functional-MRI data analysis. Archives of Internal Medicine
Research, 03(01), 044–060. https://doi.org/10.26502/aimr.0022

Rameson, L. T., Satpute, A. B., & Lieberman, M. D. (2010). The neu-
ral correlates of implicit and explicit self-relevant processing.
NeuroImage, 50(2), 701–708. https://doi.org/10.1016/j.
neuroimage.2009.12.098

Roshtstein, P., Soto, D., Grecucci, A., Geng, J. J., &
Humphreys, G. W. (2011). The role of the pulvinar in resolving
competition between memory and visual selection: A

functional connectivity study. Neuropsychologia, 49(6), 1544–
1552. https://doi.org/10.1016/j.neuropsychologia.2010.12.002

Samson, D., Apperly, I. A., Chiavarino, C., & Humphreys, G. W.
(2004). Left temporoparietal junction is necessary for rep-
resenting someone else’s belief. Nature Neuroscience, 7, 499–
500. https://doi.org/10.1038/nn1223

Saviola, F., Pappaianni, E., Monti, A., Grecucci, A., Jovicich, J., &
de Pisapia, N. (2020). Separating trait and state anxiety in the
brain: Evidence from source-based morphometry and func-
tional connectivity study. Scientific Reports, 10, 11112. https://
doi.org/10.1038/s41598-020-68008-z

Schilbach, L., Eickhoff, S. B., Rska-Jagiela, A. R., Fink, G. R., &
Vogeley, K. (2008). Minds at rest? Social cognition as the
default mode of cognizing and its putative relationship to the
“default system” of the brain. Consciousness and Cognition, 17,
457–467. https://doi.org/10.1016/j.concog.2008.03.013

Schraa-Tam, C. K., Rietdijk, W. J., Verbeke, W. J., Dietvorst, R. C.,
Van Den Berg, W. E., Bagozzi, R. P., & de Zeeuw, C. I. (2012).
fMRI activities in the emotional cerebellum: A preference for
negative stimuli and goal-directed behavior. The Cerebellum,
11(1), 233–245. https://doi.org/10.1007/s12311-011-0301-2

Siep, N., Tonnaer, F., Ven, V. V. D., Arntz, A., Raine, A., &
Cima, M. (2018). Anger provocation increases limbic and
decreases medial prefrontal cortex connectivity with the left
amygdala in reactive aggressive violent offenders. Brain Imag-
ing and Behavior, 13(5), 1311–1323. https://doi.org/10.1007/
s11682-018-9945-6

Smedslund, J. (1993). How shall the concept of anger be defined?
Theory & Psychology, 3(1), 5–33. https://doi.org/10.1177/
0959354393031001

Smith, T. W., Glazer, K., Ruiz, J. M., & Gallo, L. C. (2004). Hostility,
anger, aggressiveness, and coronary heart disease: An interper-
sonal perspective on personality, emotion, and health. Journal
of Personality, 72, 1217–1270. https://doi.org/10.1111/j.1467-
6494.2004.00296.x

Soman, S. M., Raghavan, S., Rajesh, P. G., Mohanan, N.,
Thomas, B., Kesavadas, C., & Menon, R. N. (2020). Does rest-
ing state functional connectivity differ between mild cognitive
impairment and early Alzheimer’s dementia? Journal of the
Neurological Sciences, 418, 117093. https://doi.org/10.1016/j.
jns.2020.117093

Sorella, S., Grecucci, A., Piretti, L., & Job, R. (2021). Do anger per-
ception and the experience of anger share common neural
mechanisms? Coordinate-based meta-analytic evidence of sim-
ilar and different mechanisms from functional neuroimaging
studies. NeuroImage, 230, 117777.

Sorella, S., Lapomarda, G., Messina, I., Frederickson, J. J.,
Siugzdaite, R., Job, R., & Grecucci, A. (2019). Testing the
expanded continuum hypothesis of schizophrenia and bipolar
disorder. Neural and psychological evidence for shared and
distinct mechanisms. NeuroImage: Clinical, 23, 101854.
https://doi.org/10.1016/j.nicl.2019.101854

Spielberger, C. D. (1988). Professional manual for the state-trait
anger expression inventory (STAXI) (Research ed.). Odessa,
FL: Psychological Assessment Resources.

Spielberger, C. D., Foreyt, J. P., Goodrick, G., & Reheiser, E. C.
(1995). Personality characteristics of users of smokeless
tobacco compared with cigarette smokers and non-users of

526 SORELLA ET AL.

https://doi.org/10.1093/brain/awm052
https://doi.org/10.1093/brain/awm052
https://doi.org/10.3389/fnhum.2018.00070
https://doi.org/10.3389/fnhum.2018.00070
https://doi.org/10.3758/s13415-019-00757-5
https://doi.org/10.1111/ejn.13704
https://doi.org/10.1371/journal.pone.0078503
https://doi.org/10.1371/journal.pone.0078503
https://doi.org/10.1006/nimg.2002.1087
https://doi.org/10.3389/fnins.2020.00677
https://doi.org/10.3389/fnins.2020.00677
https://doi.org/10.1093/scan/nsr075
https://doi.org/10.1016/j.neuropsychologia.2019.01.015
https://doi.org/10.1016/j.neuropsychologia.2019.01.015
https://doi.org/10.26502/aimr.0022
https://doi.org/10.1016/j.neuroimage.2009.12.098
https://doi.org/10.1016/j.neuroimage.2009.12.098
https://doi.org/10.1016/j.neuropsychologia.2010.12.002
https://doi.org/10.1038/nn1223
https://doi.org/10.1038/s41598-020-68008-z
https://doi.org/10.1038/s41598-020-68008-z
https://doi.org/10.1016/j.concog.2008.03.013
https://doi.org/10.1007/s12311-011-0301-2
https://doi.org/10.1007/s11682-018-9945-6
https://doi.org/10.1007/s11682-018-9945-6
https://doi.org/10.1177/0959354393031001
https://doi.org/10.1177/0959354393031001
https://doi.org/10.1111/j.1467-6494.2004.00296.x
https://doi.org/10.1111/j.1467-6494.2004.00296.x
https://doi.org/10.1016/j.jns.2020.117093
https://doi.org/10.1016/j.jns.2020.117093
https://doi.org/10.1016/j.nicl.2019.101854


tobacco products. Personality and Individual Differences, 19(4),
439–448. https://doi.org/10.1016/0191-8869(95)00084-j

Sripada, C., Angstadt, M., Kessler, D., Phan, K. L., Liberzon, I.,
Evans, G. W., Welsh, R. C., Kim, P., & Swain, J. E. (2014).
Volitional regulation of emotions produces distributed alter-
ations in connectivity between visual, attention control, and
default networks. NeuroImage, 89, 110–121. https://doi.org/10.
1016/j.neuroimage.2013.11.006

Stoica, T., & Depue, B. E. (2020). Shared characteristics of intrinsic
connectivity networks underlying interoceptive awareness and
empathy. https://doi.org/10.1101/2020.04.30.070490

Stuewig, J., Tangney, J. P., Heigel, C., Harty, L., & McCloskey, L.
(2010). Shaming, blaming, and maiming: Functional links
among the moral emotions, externalization of blame, and
aggression. Journal of Research in Personality, 44(1), 91–102.
https://doi.org/10.1016/j.jrp.2009.12.005

Veenstra, L., Schneider, I. K., Bushman, B. J., & Koole, S. L. (2016).
Drawn to danger: Trait anger predicts automatic approach
behaviour to angry faces. Cognition and Emotion, 31(4), 765–
771. https://doi.org/10.1080/02699931.2016.1150256

Videbeck, S. L. (2006). Psychiatric mental health nursing (3rd ed.).
Lippincott Williams & Wilkins.

Vu, M. T., Adali, T., Ba, D., Buzs�aki, G., Carlson, D., Heller, K.,
Liston, C., Rudin, C., Sohal, V. S., Widge, A. S.,
Mayberg, H. S., Sapiro, G., & Dzirasa, K. (2018). A shared
vision for machine learning in neuroscience. The Journal of
Neuroscience, 38(7), 1601–1607. https://doi.org/10.1523/
JNEUROSCI.0508-17.2018

Weathersby, F. L., King, J. B., Fox, J. C., Loret, A., & Anderson, J. S.
(2019). Functional connectivity of emotional well-being: Over-
connectivity between default and attentional networks is asso-
ciated with attitudes of anger and aggression. Psychiatry
Research. Neuroimaging, 291, 52–62. https://doi.org/10.1016/j.
pscychresns.2019.08.001

Whitfield-Gabrieli, S., & Nieto-Castanon, A. (2012). Conn: A func-
tional connectivity toolbox for correlated and anticorrelated
brain networks. Brain Connectivity, 2(3), 125–141. https://doi.
org/10.1089/brain.2012.0073

Wilkowski, B. M., & Robinson, M. D. (2007). Keeping your cool:
Trait anger, hostile thoughts, and the recruitment of limited

capacity control. Personality and Social Psychology Bulletin, 33,
1201–1213. https://doi.org/10.1177/0146167207301031

Wilkowski, B. M., & Robinson, M. D. (2008). The cognitive basis of
trait anger and reactive aggression: An integrative analysis.
Personality and Social Psychology Review, 12(1), 3–21. https://
doi.org/10.1177/1088868307309874

Wilkowski, B. M., & Robinson, M. D. (2010). The anatomy of anger:
An integrative cognitive model of trait anger and reactive
aggression. Journal of Personality, 78(1), 9–38. https://doi.org/
10.1111/j.1467-6494.2009.00607.x

Wittchen, H.-U., Kessler, R. C., Zhao, S., & Abelson, J. (1995). Reli-
ability and clinical validity of UM-CIDI DSM-III-R generalized
anxiety disorder. Journal of Psychiatric Research, 29, 95–110.
https://doi.org/10.1016/0022-3956(94)00044-R

Xu, L., Groth, K. M., Pearlson, G., Schretlen, D. J., &
Calhoun, V. D. (2009). Source-based morphometry: The use of
independent component analysis to identify gray matter differ-
ences with application to schizophrenia. Human Brain Map-
ping, 30(3), 711–724. https://doi.org/10.1002/hbm.20540

Xu, L., Pearlson, G., & Calhoun, V. D. (2009). Joint source based
morphometry identifies linked gray and white matter group
differences. NeuroImage, 44(3), 777–789. https://doi.org/10.
1016/j.neuroimage.2008.09.051

Yuen, N. H., Osachoff, N., & Chen, J. J. (2019). Intrinsic frequencies
of the resting-state fMRI signal: The frequency dependence of
functional connectivity and the effect of mode mixing.
Frontiers in Neuroscience, 13, 900. https://doi.org/10.3389/
fnins.2019.00900

How to cite this article: Sorella, S., Vellani, V.,
Siugzdaite, R., Feraco, P., & Grecucci, A. (2022).
Structural and functional brain networks of
individual differences in trait anger and anger
control: An unsupervised machine learning study.
European Journal of Neuroscience, 55(2), 510–527.
https://doi.org/10.1111/ejn.15537

SORELLA ET AL. 527

https://doi.org/10.1016/0191-8869(95)00084-j
https://doi.org/10.1016/j.neuroimage.2013.11.006
https://doi.org/10.1016/j.neuroimage.2013.11.006
https://doi.org/10.1101/2020.04.30.070490
https://doi.org/10.1016/j.jrp.2009.12.005
https://doi.org/10.1080/02699931.2016.1150256
https://doi.org/10.1523/JNEUROSCI.0508-17.2018
https://doi.org/10.1523/JNEUROSCI.0508-17.2018
https://doi.org/10.1016/j.pscychresns.2019.08.001
https://doi.org/10.1016/j.pscychresns.2019.08.001
https://doi.org/10.1089/brain.2012.0073
https://doi.org/10.1089/brain.2012.0073
https://doi.org/10.1177/0146167207301031
https://doi.org/10.1177/1088868307309874
https://doi.org/10.1177/1088868307309874
https://doi.org/10.1111/j.1467-6494.2009.00607.x
https://doi.org/10.1111/j.1467-6494.2009.00607.x
https://doi.org/10.1016/0022-3956(94)00044-R
https://doi.org/10.1002/hbm.20540
https://doi.org/10.1016/j.neuroimage.2008.09.051
https://doi.org/10.1016/j.neuroimage.2008.09.051
https://doi.org/10.3389/fnins.2019.00900
https://doi.org/10.3389/fnins.2019.00900
https://doi.org/10.1111/ejn.15537

	Structural and functional brain networks of individual differences in trait anger and anger control: An unsupervised machin...
	1  INTRODUCTION
	2  MATERIALS AND METHODS
	2.1  Participants
	2.2  Data acquisition
	2.3  Structural analyses
	2.4  Functional analyses

	3  RESULTS
	3.1  Structural results
	3.1.1  Trait anger
	3.1.2  Anger control
	3.1.3  Anger-out
	3.1.4  Anger-in

	3.2  Functional results
	3.2.1  Trait anger
	3.2.2  Anger control
	3.2.3  Anger-out
	3.2.4  Anger-in


	4  DISCUSSION
	4.1  The structural side of trait anger
	4.2  The functional side of anger control

	5  CONCLUSIONS AND LIMITATIONS
	ACKNOWLEDGEMENT
	CONFLICT OF INTEREST
	AUTHOR CONTRIBUTIONS
	PEER REVIEW
	DATA AVAILABILITY STATEMENT

	REFERENCES


