

Review

Interactions between electromagnetic radiation and biological systems

Lingyu Liu, 1,5 Bing Huang, 2,5 Yingxian Lu, 3,4,5,* Yanyu Zhao, 3,4 Xiaping Tang, 3,4 and Yigong Shi 1,3,4,*

SUMMARY

Even though the bioeffects of electromagnetic radiation (EMR) have been extensively investigated during the past several decades, our understandings of the bioeffects of EMR and the mechanisms of the interactions between the biological systems and the EMRs are still far from satisfactory. In this article, we introduce and summarize the consensus, controversy, limitations, and unsolved issues. The published works have investigated the EMR effects on different biological systems including humans, animals, cells, and biochemical reactions. Alternative methodologies also include dielectric spectroscopy, detection of bioelectromagnetic emissions, and theoretical predictions. In many studies, the thermal effects of the EMR are not properly controlled or considered. The frequency of the EMR investigated is limited to the commonly used bands, particularly the frequencies of the power line and the wireless communications; far fewer studies were performed for other EMR frequencies. In addition, the bioeffects of the complex EM environment were rarely discussed. In summary, our understanding of the bioeffects of the EMR is quite restrictive and further investigations are needed to answer the unsolved questions.

INTRODUCTION

Biological systems have developed clever strategies to sense and to make use of the matters and energy in the environment. Among different forms of energy is electromagnetic radiation (EMR), which is pervasive in the earth's atmosphere since before the inception of life. The bioresponses of the visible frequency bands are obvious. In contrast, the bio-responses to the nonradiative EMR just next to the visible range have been poorly understood. But it is intuitively irrational if the biological systems have selected only an extremely narrow band of frequency as the sensitive range. Thus, there might be different forms of bio-responses to the EMR including radio frequency to be discovered, which remains to be an interesting research topic. One of the difficulties of discovering a new bioeffect of the EMR is the lack of hint: people cannot knowingly sense the existence of EMR surrounding them. Another problem is that the possible bioeffects of the EMR are difficult to be isolated from a complex bioeffect caused by other factors accompanied with the EMR, such as heat. Despite such difficulties, many studies have been carried out to examine the bio-responses to EMR using different approaches, as summarized in Scheme 1.

STUDIES OF IMPACTS OF EMR ON HUMANS

Overview of the epidemiological investigations and experiments on humans

The level of nonradiative EMR in the environment of our daily life has been drastically increased since the 1950s with the rapid development of the techniques of wireless communication. The highest power flux density is over 10¹⁸ times higher than the natural level, ^{1–3} and people of certain occupations are exposed to EMR of power density even higher, especially the radio frequency EMR (RF-EMR) in the range between 300 kHz and 300 GHz. Epidemiological studies of humans, especially those with occupational exposure to high levels of EMR, can provide important evidence of the risks of the exposure to EMR and indicate potential reporter systems that could be affected by the EMR. The corresponding reporting systems mainly include physiological and pathological effects, diseases from epidemiological retrospective studies, clinical symptoms, and diseases after daily or occupational exposure to EMR. Guidelines are written accordingly for the prevention, diagnosis, and treatment of EMR-related health problems and illnesses. ^{4,5}

The epidemiological investigations of the impact of EMR on humans should be carefully designed to integrate the variables in the complicated electromagnetic environment. Among them, questionnaire studies and case reports are superior in providing information of self-report symptoms induced by EMR exposure; while double-blind cohort studies are typically used for analysis of pathogenesis and impact factors.^{6,7}

^{*}Correspondence: luyingxian@westlake.edu.cn (Y.L.), syg@westlake.edu.cn (Y.S.) https://doi.org/10.1016/j.isci.2024.109201

¹Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China

²Brain Function and Disease Laboratory, Department of Pharmacology, Shantou University Medical College, 22 Xin-Ling Road, Shantou 515041, China

³Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China

⁴Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China

⁵These authors contributed equally

1. Studies of impacts of	1.1 Overview of the epidemiological investigations and experiments on humans	Physiological and pathological effects, diseases from epidemiological retrospective studies, clinical symptoms, and diseases after EMR daily or occupational exposure										
EMR on humans	1.2 Epidemiological investigations	Short-term effects, cumulative effects, and thermal effects of EMR exposure										
	1.3 Electrosensitivity and magnetosensitivity	Worth of further confirmation										
		Static electric field	Static magnetic field	Low frequency EMR	RF-EMR							
	2.1 Overview of the animal experiments	Bioeffects of EM	IR in model animals									
2. Animal experiments	2.2 Studies about the EMR impacts on animals	Electrosensitive for hunting	Navegation and magnetosensitivity	Promote the regeneration of planarians, reduces the fertility of C. elegans, inhibit the growth of tumors in mice	Reduced capacity of total antioxidant, suppressed the inflammatory responses, reduced spermatogenesis, altered functions of central nervous system, increased occurrence of tumor							
	2.3 Challenges of the animal experiments	The complexity	of the animal experin	nent								
	3.1 Overview of the experiments on cellular systems	The advantage o	f the cells and tissues	;								
3. In-vitro cell systems	3.2 Studies about the effects of EMR on the multicellular system		The differentiation of cells	Calcium signaling and cell growth	Reduced cell proliferation and increase the level of ROS							
	3.3 Studies about the effect of EMR on the unicellular system	Cell migration	The formation of biofilms	Decreased cell viabilities	Antibiotic resistance							
	3.4 Challenges of the experiments in cell systems	The disadvantage of the cells and tissue										
	4.10verview of the in-vitro biochemical experiments	The advantage of carefully designed in-vitro biochemical experiments										
4. In-vitro biochemical	4.2 Challenges of the biochemical experiments	Systematic error and random errors										
experiments	4.3 Studies about the effect of EMR on the biochemical reactions	Cryptochrome and catalytic activity of crucial enzymes										
5. Dielectric	5.1 Overview of the dielectric spectroscopy	Dielectric spectroscopy indicate possible interactions between the substance and the EM wave										
spectroscopy	5.2 Challenges of the dielectric spectroscopy	The disruption fi	rom the signals of the	water and ions								
6. Detection of the EMR	6.1 Overview of the detection of the EMR emission	These observations are worth of further confirmation										
emitted by biological systems	6.2 Challenges of the detection of the EMR emission		high sensitivity and l s communication term		el of the background EMR due to the							
	7.1 Overview of the theoretical approach	bioeffects of the	EMR		xplain the mechanism underlying the							
7. Theoretical	7.2 Ion cyclotron resonance model	The ions accelerated by the magnetic field leading to alterations of variables as exemplified by ion concentration										
predictions	7.3 Radical pair model	A reaction system containing radical pairs of singlet state and triplet state exposed to an external magnetic field will shift the energy level of the triplet states, and further result in an altered balance of singlet-triplet interconvertion.										
8. Additional	8.1 EMR heating	thermal effects			es directly triggered by the EMR and the							
issues	8.2 Modulation of the EMR		•	•	ation pattern of the EMR. Bioeffects of in those of the single-frequency carrier							
	8.3 Complexity of the EMR environment	Complexity of the	ne EMR environment		Complexity of the EMR environment							

Scheme 1. Investigations of the bioeffects of the EMR

Table 1. Studies of the bioeffects of EMR on humans Exposure **EMR Frequency** Dose of EMR Modulation pattern duration Bioeffect of EMR Reference Quasi-static 35 μΤ Rotation 7 min Altered electroencephalography Wang et al. 32 magnetic field (EEG) Static/50 Hz Tens of kV/m Cutaneous sensations Kato Blondin electric field Odagiri-Shimizu Chapman Jankowiak et al. ^{27–31} GSM: 900 MHz GSM SAR: 2 W/kg **Huber Schmid** GSM: 2, 8, 14, 217, 30 min at Altered EEG in sleep Danker-Hopfe^{8–10} TETRA: 385 MHz TETRA SAR: 6 W/kg 1736 Hz pulse weekly TETRA: 17.6 Hz intervals pulse Wallace et al. 11 900 MHz Peak SAR: 0.49, **GSM** 26 min Unchanged heart 0.70, 0.93 W/kg rate variability 800-2200 MHz UMTS/HSDPA/ 1-4 h/day active Rago Al-Bayyari et al. 19,235 Decreased **HSUPA** cell phone usage semen quality 1st/2ND/3rd generation Fejes Agarwal Chalabi^{16–18} Analog phones: 0.12-1.6 W/kg 0-4 h/day 450-900 MHz; body weight cell phone GSM phones: communications 850-1900 MHz 3rd generation phones: ~2 GHz Yildirim, Ding et al. 20,21 Cell phones: 3.19 W/kg 3rd/4th generation 30-120 min/day 850-1800 MHz; cell phone, Wi-Fi Wi-Fi: 2.45 GHz 3.6-10 GHz Mean duration: Worse gonadic function Lancranjan¹⁴ 8 years

Consequently, the epidemiological investigations of EMR are mostly focused on the impact of RF-EMR that are widely used in wireless communication, including those used by broadcasts, mobile phones, and wireless fidelity (Wi-Fi). Representative investigations of EMR impacts on humans are listed in Table 1.

Epidemiological investigations

Short-term exposure to 900 MHz EMR causes alternations in the sleep EEG of the volunteers, 8-10 but did not significantly change the heart rate variability. 11 These findings indicated that the influence of the EMR is most likely to be mild but cumulative 12 and the influence of long-term exposures might be more easily observed. 13 For example, a study of young workmen with exposure to microwaves of 3.6-10 GHz (the mean duration is 8 years) showed a higher occurrence of worse gonadic function, including libido decrease, sexual dynamic disturbances in the framework of the asthenic syndrome, and various alterations of spermatogenesis. 14 Exposure to EMR of mobile phones (800 MHz-2.2 GHz) with the specific absorption rate (SAR) of no more than 2 W/kg is associated with reduced sperm motility, viability, and concentration. 15-21 Also, the effect of the EMR on sperm motility can be mediated by mitochondrial activity. 22 However, the mechanisms that underlies the reported bioeffects of the EMR on the human are much less discovered.

In these studies, it is very important to figure out the appropriate dose of the EMR applied to the biological system. It is well understood that the energy of the EMR can be partly absorbed by materials and transformed into heat. The SAR is the power absorbed by a subject when exposed to EMR and is used to indicate the heating effect of the EMR.²³ To evaluate the dose of EMR applied in the experiments, one could estimate the distribution of the electromagnetic fields, currents, SAR, and heat generation inside the human body induced by external EMR before performing experiments in two ways. The first is to simulate the EMR distribution using a finite element analyzer based on Maxwell's electromagnetic equations. The second is to prepare an EM-radiated dummy, i.e., a human-shaped container filled with phantom mimicking the dielectric properties of the body, and perform measurements on the dummy using an electromagnetic probe. A group of researchers reported that a temperature rise of 0.1° C is induced in the tissue by a 60-min exposure to mobile phone communication according to simulation.²⁴ Calculations also suggested that the strength of electric field induced in the human body varies in different body parts, forming hotspots that are highly risked to overheating.²⁵ Another study shows that a passenger exposed to the EMR of the pantograph of a high-speed train receives a peak electric field of 300 V/m at the soles of the shoes and a peak current density of 35 μ A/m² at the ankle.²⁶

Electrosensitivity and magnetosensitivity

downstream bioeffects are interesting topics for further studies.

Yet, it is unclear whether human can sense EMR, and it is still unrevealed which specific organism or molecule that might play as the receptor of the electromagnetic signals is still unrevealed. People exposed to strong direct current (DC) or 50-Hz alternating current (AC) electric fields of tens of kV/m reported cutaneous sensations such as tingling or itching, and the threshold for this sensation is correlated to both the frequency of the electric field and the humidity of the air. ^{27–31} However, it is still unknown whether humans could perceive or respond to electric fields weaker than the reported strengths or EM signals of other frequencies. Thus, further investigations are needed to answer these questions.

Another study in 2019 reported that the variations of the magnetic field altered the alpha event–related desynchronization of the human brain, indicating that the brain is potentially magnetosensitive. ³² This observation is worth further confirmation, and its molecular basis and

ANIMAL EXPERIMENTS

Overview of the animal experiments

An intuitionistic experimental approach to investigate the bioeffect of EMR is to expose animals to an EMR environment. The animals are excellent subjects to facilitate the discovery of new bio-responses induced by EMR, even though it might be complicated to reveal the related molecular basis. The pattern of the EMR is usually chosen according to the waveforms widely used in daily life, such as those of the mobile phones, Wi-Fi, and Bluetooth. To facilitate the observation of the bioeffects, researchers usually apply long-term EMR exposures to the animals and push the power of the EMR to the upper limits of the communication protocols. Some of the studies about the EMR impacts on animals use common model animals including *Caenorhabditis elegance* (*C. elegans*), ^{33–40} planarians, ^{41–46} *Drosophila*, ^{47–51} and rodents. ^{52–70} Other studies exploit animals that are assumed to be sensitive to EMR or those with navigating abilities. For example, there are marine species ⁷¹ (i.e., sharks, ⁷² skates, ^{73,74} and eels ^{75,76}), insects (i.e., bees ^{77,78} and the Australian bogong moth ⁷⁹), and navigating birds (i.e., European robins ^{80–86} and pigeons ^{87–90}). Representative investigations of EMR impacts on animals are listed in Table 2.

Studies about EMR impacts on animals

Static electric field

Many species are electrosensitive. For example, bumblebees are able to sense the electric field of flowers of about 100 V/m using mechanosensory hairs, ^{77,91} and possibly communicate with each other through the variation of the electric fields. ⁹² *C. elegans* were found able to navigate in a DC electric field toward the negative pole, and were thus assumed to have the potential to detect electrical currents or electromagnetic fields. ³⁵ Their navigating abilities were suggested to be related to the expression of a group of genes encoding the amphid sensory neurons and the AWC^{ON} neurons, including eat-4, ceh-36, and nsy-5/inx-19. ^{34,38} Also, a variety of marine species can make use of electromagnetic fields for distant sensing. For example, *Electrophorus electricus* can stun prey by generating high-voltage discharge (~860 V) and communicate with each other through low-voltage discharge (~10 V). ⁷⁶ Many marine species can detect distant preys and predators through the ampullae of Lorenzini by sensing the variation of the faint electric field. ⁷¹ The keys to the distant electric sensing ability are ion channels, such as the voltage-gated potassium channels of sharks ⁷² and the calcium-activated potassium channel in skates. ⁷⁴ Homologs of these channels might be potential targets for studies on EM sensing. However, our knowledge of electrosensitivity is still limited. The lower limit of the electrosensitivity is still unknown, while the impact of alternating EM signals on the electrosensitivity is poorly understood.

Static magnetic field

The navigating instinct of animals is assumed to be related to magnetosensitivity. Iron-rich clusters that are considered as potential sensors of the magnetic fields were found in some species, as reported in *C. elegans* and pigeons. 89,93 In contrast, the magnetoreceptors of other navigating animals are still controversial. $^{47-51}$ European robins were the first reported animals to show the light-dependent orientation of flight, 80,81 presumably due to the magnetoreception through photoreceptors (cryptochrome) on the retina. 82 Later, *Drosophila* were proposed to be light-dependent magnetosensitive based on the following two types of behavioral experiments. One is the binary choice experiments, in which the flies showed naive and trained responses to a magnetic field. 47 The other is the negative geotaxis experiment, in which the climbing abilities of the flies were disrupted by the presence of a 500- μ T magnetic field. However, contradicting results are reported by another group using a larger sample size (10,960 flies in total). Weak static magnetic field were found to alter stem cell-mediated growth in planarians. And the regeneration ability of the planarian was significantly inhibited by 72-h stimulation of static magnetic field of 200 μ T, which was related to alterations in the levels of reactive oxygen species (ROS) and heat shock protein 70 (Hsp70).

Low frequency EMR

Planarians exposed to a magnetic field combining DC ($42\pm0.1~\mu T$) and AC ($3.7~Hz,100\pm0.5~n T$) for 4 h were promoted in fission and regeneration. ⁴² In a comparative study, a burst-firing magnetic field ($5~\mu T$) reduced the activity of planarian by about 50%. ⁹⁴ Extremely low frequency electromagnetic fields (ELF-EMR) slowed down the cephalic regeneration in planarians. ⁴¹ However, ELF-EMR exposure of planarians during the initial 3-day post-surgery caused a significant increase in regeneration and an elevation in the level of hsp70 and phospho-ERK expression. ⁴³

C. elegans displayed sensitivity to ELF-EMR, which exerted distinct effects on their metabolism processes and body lengths across different exposure generations. 37,39,40 Exposure of C. elegans to pulsed electric field (intensity: tens of kV/m; pulse width: 10 ns; burst

CellPress OPEN ACCESS

EMR Frequency	Dose of EMR	Modulation pattern	Exposure duration	Animals	Bioeffect of EMR	Reference
Static electric field	~100 V/m	-	-	Bumblebees	Preference in binary choice	Clarke ⁷⁷
Static magnetic field	1-50 μΤ			Drosophila	Preference in binary choice	Gegear, and Gegear et al. ^{47,48}
	500 μΤ				Disruption of climbing	Fedele et al. ⁴⁹
	0, 90, 220, 300, 500 μΤ				No magnetosensing behavior	Bassetto et al. ⁵⁰
	44-189 μΤ			Pigeons	Preference in binary choice	Mora et al. ⁸⁸
	45 μT (Geomagnetic level), 200 μT		0-72 h	Planarians	Decreased blastema sizes	Van Huizen et al. ⁴⁶
Static/60 Hz/ Static +60 Hz magnetic field	DC: 51.1, 78.4 μT AC: peak 1.0–80.0 μT	-	12 days		Regeneration anomalies with tumor-like protuberances	Jenrow et al. ⁴¹
AC magnetic field: FM: 0.4–167 Hz GM: 0.065–500 Hz	FM: 0.1–2.5 μT GM: 0.5–5 μT	FM: frequency-modulated pulses GM: wideband pulses	6.5 h/day FM for 1–5 days, 6.5 h/day GM for 1–5 days		Dissolution of planarian	Murugan et al. ⁴⁴
50 Hz magnetic field	400 μΤ	Sinusoidal	24 h/day for 60 days	Rats	Improved the cognitive and pathological symptoms of AD	Liu, and Zuo ^{58,66}
	2.4 mT		2 h		Altered brain lipid profile	Martínez-Sámano et al. ⁶⁷
	1.6 mT		2-48 h	Honeybees	Altered structure of chemical compounds	Koziorowska et al.
Static magnetic field + 0.65/1.315/2.63 MHz	DC: 46, 92 μT, EMR: 5, 15, 48, 150 nT		-	European robins	Disorientation of flight	Ritz et al. ⁸²
50 kHz - 5 MHz	Peak intensity 0.1–50 nT	Wideband noise				Engels et al. ⁸³
200 kHz	2 V/cm	Sinusoidal	6 days	Mice	Inhibited growth of tumors	Kirson et al. ⁵⁴
P00 MHz	90 mW/kg		12 h/day for 7 days		DNA damage in sperm	Aitken et al. ⁵³
	0.9 W/kg	GSM	2 h/day for 35 days	Rats	Altered sperm cells	Kesari et al. ⁵⁵
	$1\pm0.4~\mathrm{mW/cm}^2$ SAR 2 W/kg	Sinusoidal	1 h/day for 21 days during the gestation period		Neuronal damage in hippocampus	Erdem Koç et al. ⁶¹
	$1\pm0.4~\mathrm{mW/cm^2}$ SAR 2 W/kg	Sinusoidal	1 h/day between GD 1 to the end of gestation		Increased total kidney volume; decreased the numbers of glomeruli	Ulubay et al. ⁵⁷
915 MHz	Continuous wave: 3 W Pulse: 1–10 W	Sinusoidal, 8-215 Hz pulse modulation	2 h		Increased permeability of the blood-brain barrier	Persson et al. ⁵²

(Continued on next page)

Table 2. Continued						
EMR Frequency	Dose of EMR	Modulation pattern	Exposure duration	Animals	Bioeffect of EMR	Reference
900 MHz	4.5–13.4 V/m; SAR: 0.01 W/kg	Sinusoidal	1 h/day for 25 days		Altered cerebellar morphology & reduced number of neurons	Aslan et al. ⁶²
	SAR: 1.5, 3.0, 6.0 W/kg	GSM, CDMA; cycle of 10-min on and 10-min off	18 h/day from prenatal life to 106 weeks after birth		Increased incidences of Schwannomas and Schwann cells hyperplasia, and malignant glial tumors	Wyde et al. ⁶⁵
1.8 GHz	0, 5, 25, 50 V/m SAR: 0.1, 0.03, 0.001 W/kg	GSM	19 h/day from prenatal life to natural death			Falcioni et al. ⁶⁴
900 MHz	0.25, 0.5 W/kg	GSM	45 min/day 5 days/week from postnatal day 35 to natural death		No significant difference	Ouadah et al. ⁶⁹
1.9 GHz	3.2 V/m	DECT	24 h/day for 8 weeks	Lizards	Suppressed inflammatory responses	Mina et al. ¹⁰¹
2.4 GHz	8 W	Sinusoidal, 100 Hz pulse modulation	1-9 days	Mice	Increased time of wakefulness	Liu et al. ⁷⁰
2.45 GHz	-	Wi-Fi	24 h/day for 10 weeks	Rats	Altered oxidative defense system	Kamali et al. ⁶⁸
			2 h/day along gestation till parturition		Behavioral and biochemical impairments	Othman et al. ⁶³
1.8 GHz, 1.9 GHz, 2.4 GHz	GSM: 5.53 V/m – 50 nT; DECT: 3.75 V/m; Wi-Fi: 2.1 V/m	GSM, DECT, Wi-Fi	0.5, 1, 3, 6, 24 h	C. elegance	No statistically significant differences	Fasseas et al. ³⁶

frequency: 0.1–100 kHz) reduced the fertility without inducing heating effects. ³³ Also, FTIR spectra of the chemical compounds, extracted from the honeybees indicated structural alterations of the compounds, were induced by the exposure to an ELF-EMR of 50 Hz, 1.6 mT. ⁷⁸

The exposure of Alzheimer's disease rat to ELF-EMR of 50 Hz, 400 μ T for 60 continuous days improved the cognitive and pathological symptoms of the rats through the RKIP-mediated NF- κ B signaling pathway. ^{58,66} Alteration of brain lipid profile was observed in the rats exposed to 50 Hz, 2.4-mT ELF-EMR. ⁶⁷ And the exposure to 200-kHz EMR of 2 V/cm inhibited the growth of tumors in mice. ⁵⁴

RF-EMR

Like the epidemiological studies of humans, the investigations of the RF-EMR impact on animals are mainly focused on the frequencies of the wireless communications. It has been reported that the exposures of animals to RF-EMR are correlated with behavioral or functional changes, clinical symptoms, and diseases. 36,52,53,55-57,59-65,68-70,82-86,95-111

Most widely adopted bio-responses to the RF-EMR exposures are related to the heating effect of high-power EMR^{95,107} or accumulative effects caused by the long-term exposure to EMR.^{64,65} The alterations induced by the high-power or long-term RF-EMR exposures are summarized as follows.

Physiological processes. Continuous exposure of rats to EMR of 2.45 GHz for 10 consecutive weeks significantly reduced the capacity of total antioxidant and the activities of antioxidant enzymes.⁶⁸ Similar phenomena were also observed in rats exposed to RF-EMR of 900 MHz or 1.8 GHz.^{98,100,105} Additionally, continuous exposure of lizards to RF-EMR of 1.9 GHz DECT for 8 consecutive weeks suppressed the inflammatory responses.¹⁰¹

Spermatogenesis and development of embryos. High-power or long-term microwave exposures caused alternations in the spermatogenesis and worse metrics of semen (such as reduced population, reduced motility, increased proportion of abnormal morphology, etc.). 53,55,95,99,109 While the exposure of embryos of zebrafish to 100 MHz EMR from 24 to 72 h post fertilization altered the development of the embryos. 104

Blood-brain barrier. The blood-brain barrier was altered by the exposure to RF-EMR. 52,56,59,108 And pulse modulated RF-EMR of 900 MHz or 1.8 GHz induced increasement of the permeability of blood-brain barrier in rats. 52,56,59

Nervous system. RF-EMR also affects the neurons, the cerebral morphology, the neurogenesis in the early development, and the functions of central nervous system (i.e., emotion, memory, and recognition). 60,62,63,96,102,103,110,111 The sleep pattern of the mice was altered by the consecutive exposure to a pulse-modulated RF-EMR of 2.4 GHz for nine days. 70 Prenatal exposure of rats to 2.45-GHz RF-EMR altered post-natal development, and leaded to anxiety, motor deficit, and exploratory behavior impairments. 63 And the prenatal exposure to 900 MHz RF-EMR induced alterations in the hippocampus in rats. 57,61

Tumorigenesis. Lifelong exposure to Code Division Multiple Access (CDMA) or Global System for Mobile Communications (GSM) signals of 900 MHz or 1.8 GHz resulted in increased occurrence of tumor in rats. ^{64,65} However, another study reported that rats with C6 brain tumors showed no significant difference in the survival (31 days post-graft median), tumor volume, mitotic index, vascularization, infiltration, necrosis or cell division) in the groups exposed or unexposed to 900-MHz GSM RF-EMR ⁶⁹ Therefore, the duration of the exposure to RF EMR seems to be an essential factor of the alterations in tumorigenesis.

Low-dose RF-EMR are mild stimulations, and the corresponding bio-effects are not evident or remain controversial. ^{82,83,85,86,106} *C. elegans* exposed to 1.8 GHz GSM, 1.9 GHz DECT, or 2.4 GHz Wi-Fi signals for up to 24 h showed no significant alteration on the lifespan, fertility, growth, memory, levels of ROS, apoptosis, or gene expression. ³⁶ The light-dependent flight orientation abilities of the navigating birds were affected by the single-frequency EMR of several MHz or by the wideband EMR with the spectrum extending from tens of kHz to several MHz. ^{83,97} However, some of the experimental evidence of the disturbance of magnetoreception in European robins using EMR is inconsistent with the prediction of the radical-pair model. ^{84,85}

Challenges of the animal experiments

One of the greatest challenges for animal experiments investigating the bioeffects of EMR is to determine the proper EMR pattern (e.g., the frequency, amplitude, and modulation). Once the pattern of EMR is determined, the experiment is highly consuming of labor, material, and time, yet the corresponding bio-responses can hardly be extrapolated to other patterns of EMR. Consequently, the attempt to cover all the EMR patterns using animal experiments is unrealistic. It is obligatory to exploit certain strategies to narrow down the patterns of EMR for selection and focus on those most possibly trigger bio-responses. The bio-responses of the animal to the EMR exposure are also affected by the gender of the animals, as reported in the literature, ^{56,59,65} probably due to the remarkable difference of the hormone levels between males and females. Another limitation of the animal experiment is that it is hard to cover the enormous diversity of the biological world. The few categories of animals are studied, but the observations can hardly be extrapolated to other species. Thus, there is a universe of species that are unexplored for the bio-impacts of the EMR.

IN-VITRO EXPERIMENTS ON CELLULAR SYSTEMS

Overview of the experiments on cellular systems

Animals are complex integrations of different organs and tissues. In contrast, cells are subjects of lower-level structure for the investigation of bio-responses to external stimuli. Since the *in vitro* cultivation of cells is conducted in the incubators with accurate control of temperature, component of the culture medium and the gas environment, it offers more interfaces for parametric studies. The cells can be exposed to an EMR stimulation for a period, and their responses can be examined using a variety of biomarkers, providing clues for the possible mechanism of the bio-responses.^{112–119}

The experiments using cell systems are less costly than those using animals. The cell systems are also easily accessed, replicated, and operated, and compatible with gene editing. Moreover, *in vitro* cultivated cells are more sensitive to the environmental conditions than the whole body, due to the lack of feedback regulations from nervous and endocrine systems.¹²⁰

Unicellular organism is an interesting category of cell-based systems, including prokaryotes such as bacteria and eukaryotes such as yeast. They live in the wild nature and maintain the basic living activities at the single-cell level. Like for other cell systems, it is convenient to set different exposure periods, frequency modulations or input powers to the unicellular organisms. The unicellular organism generally shows growth rates much higher than that of the multicellular organism. The rapid growth rate of bacteria or yeast makes them ideal models for observing the cumulative effects of external stimuli on growth of an organism and for the screening assays for potential drug targets or other stimuli (e.g., EMR patterns). High growth rate of the unicellular organism also leads to its excellent adaptability and high rate of evolution. Table 3.

Studies about the effects of EMR on the multicellular system

Currently, most studies focus on the EMR impacts on the physiological functions of cells, including but not limited to the morphology, viability, motility, DNA damage, membrane potential, the oxidative stress status, nitric oxide signaling, gene expression and functions, etc. 54,111,112,123–135136-168

Static magnetic field

Magnetic field promotes the differentiation of various cells, including mice's neural progenitor cells (mNPCs), murine embryonic stem cells (mESCs), human-induced pluripotent stem cells (hiPSCs), and oligodendrocytes precursor cells (OPCs). ^{158,166} In the presence of the magnetic nanoparticles, magnetic field also stimulates neurite initiation or axon elongation and direct the orientation of the PC12 cells. ¹⁴⁷ Magnetic fields also affect the cell viability and morphology. ¹⁶⁹ An 8-T static magnetic field altered the direction of growth of the Schwann cells. ¹³⁴

Low frequency EMR

The ELF-EMR was proposed to match with the frequency of the ion cyclotron resonance (ICR)¹²⁴ and predicted to be able to cause variations of the membrane potential of cells. ¹⁴⁵ Cells exposed to EMR of the ICR frequency were altered in calcium influx, calcium signaling, ROS level, growth, differentiation, and apoptosis. ^{125,127–129,131,136,140,146,152} For example, HaCaT exposed to an ELF-EMR of 7 Hz, 100 μ T for 1 h (twice daily) was promoted in differentiation. ¹³⁷ Pulsed magnetic fields of 0.6 mT with 5-ms bursts fired at 15 Hz induced significant increase of the nitrite concentration and DNA content of osteoblasts. ¹³³ The calcium uptake of the rat thymocytes was altered by the exposure to ELF-EMR of 60 Hz. ^{125,127} Besides, the exposure of human sperm to 50 Hz ELF-EMR for 5–30 min lead to reduced motility of the spermatozoa. ¹⁶² However, other studies claimed that no significant variation in the cells after the exposure to the EMR of the ICR frequency. ^{130,157}

The growth rates of a variety of tumor cell lines are inhibited by a stimulation of continuous-mode EMR around 100–300 kHz. This stimulation specifically affects tumor cell division by either arresting cell proliferation, disrupting cells undergoing division, or increasing tumor cells membrane permeability, resulting in a slowdown of tumor growth *in vitro* and *in vivo*. 54,112,155 Similar findings have been reported in other studies involving different types of tumors. 143,150,160,163

RF-EMR

The studies of EMR impacts on the cells are also focused on the RF-EMR, due to its wide application in the daily life. For example, human colon cancer cells HT-29 and SW480 exposed to RF-EMR of 13.56 MHz were reduced in cell proliferation and clonogenicity compared to the cells heated with water bath. ¹⁶⁴ A 27.12-MHz RF-EMR pulse modulated at 2 Hz caused higher levels of nitric oxide signaling in neuronal cells after lipopolysaccharide (LPS) challenge. ¹⁴¹ Apart from that, a 10-MHz RF-EMR pulse modulated with 10 kHz pulses inhibited thrombin-induced endothelin-1 mRNA expression through a nitric oxide-related pathway. ¹³⁵ Moreover, alternating electric fields between 100 Hz and 100 MHz can induce dielectrophoretic force on a variety of cells in cell suspensions, thus can be used as tools to manipulate suspended cells in microfluidics. ^{123,126,132}

High-power RF-EMR increased the level of ROS, resulting in downstream damaging effects to proteins, lipids, carbohydrates, and nucleotides. 111,139,144,148,149,153,159 For instance, exposure of human semen samples to RF-EMR of 1.8 GHz mobile phone signals or 2.45-

	S
OPEN ACCESS	Cell ² ress

		Modulation				
EMR Frequency	Dose of EMR	pattern	Exposure duration	Cell type	Bioeffect of EMR	Reference
Static magnetic field	20-35 mT	-	9, 48 h	Bacteria (E. coli)	Altered rates of growth & formation of biofilms	Letuta, Berdinskiy and Letuta, Tikhonova ^{178,179}
	200 mT		18 h	Bacteria (Pseudomonas aeruginosa)	Increased swarming motility	Raouia et al. ¹⁷⁶
	444 mT		24 h		Suppressed biofilms; enhanced ciprofloxacin activity	Bandara et al. ¹⁷⁵
7 Hz	100 μΤ	Sinusoidal	1 h × 2 times/ day x 3 days	Human epithelial cells	Altered morphology	Lisi et al. ¹³⁷
15 Hz	0.6 mT	5-ms bursts	15 days	Osteoblasts	Increased levels of nitrite concentration & DNA content	Diniz et al. ¹³³
13.75 Hz	2.5 μΤ	Sinusoidal	5 days	Mouse skeletal muscle cell	Altered growth rate & phase	De Carlo et al. ¹⁴⁰
20, 40, 50 Hz	1-4 mT		1, 2, 6 h	Bacteria (E. coli; Staphylococcus aureus)	Inhibition of colony forming units; alternation of the crucial physicochemical processes	Bayır and Oncul et al. ^{180,181}
50 Hz	1 mT		24 h	Human neuroblastoma	Increased ROS level	Reale et al. ¹⁴⁶
60 Hz	13, 22 mT		1 h	Rat thymocytes	Altered calcium flux	Walleczek and Liburdy et al. ^{125,127}
10, 50, 100 Hz	5, 10 mT	Square waves	2, 4, 24 h	Human glioblastoma	Altered growth rate	Akbarnejad et al. ¹⁵²
100-300 kHz	1–2.5 V/cm	Sinusoidal	24-72 h	Human & rodent tumor cell lines	Decreased growth rate	Kirson et al. 112
Static magnetic field +7 MHz	45μ T + 10 μ T _{RMS}	Sinusoidal	2, 3 days	Rat pulmonary arterial smooth muscle cells	Altered O ₂ & H ₂ O ₂ production	Usselman et al. 144
10 MHz	1.25, 1.92 V/m SAR: 0.98, 2.31 mW/kg	10 kHz pulse modulated	8, 24 h	Bovine aortic endothelial cells	Altered mRNA expression	Morimoto et al. ¹³⁵
13.56 MHz	SAR: 40 W/kg	Sinusoidal	1 h	Human colon cancer cells	Reduced cell proliferation and clonogenicity	Wust et al. ¹⁶⁴

(Continued on next page)

Table 3. Continued						
EMR Frequency	Dose of EMR	Modulation pattern	Exposure duration	Cell type	Bioeffect of EMR	Reference
27.12 MHz	$2.5~\mu T$, $41~\pm~10~V/m$	2 Hz pulse modulated	Neuronal cells: 5 days; Human fibroblasts 15 min	Neuronal cells & human fibroblasts	Increased nitric oxide level	Pilla ¹⁴¹
900 MHz	1 W/kg	GSM modulated	24, 48, 72,120 h	SN56 cholinergic cell line & rat primary cortical neurons	Reduced number of neurites	Del Vecchio et al. ¹³⁸
900 MHz	2 W	GSM modulated	2 h	Human peripheral blood Mononuclear Cells	Increased ROS production	Kazemi et al. ¹⁴⁹
900 MHz	10 W, 134–145 V/m	Sinusoidal	0, 30, 60, 90 min	Human peripheral blood cells	Unchanged miRNA expression level of the blood cells	Lamkowski et al. ¹⁶⁵
1.8 GHz	1, 2, 4 W/kg	-	1, 2, 3 days	Embryonic neural stem cells	Inhibited neurite outgrowth	Chen et al. ¹⁴²
1.8 GHz	0.4–27.5 W/kg	Sinusoidal	16 h	Human spermatozoa	DNA damage	De Iuliis et al. ¹³⁹
1.95 GHz	3 W/kg	Sinusoidal	24 h	Mouse Leydig cells	Inhibited testosterone secretion	Lin et al. ¹⁵⁴
2.45 GHz	2-10 W/kg	-	4, 24 h	HL-60 cells	No effects on neutrophil chemotaxis & phagocytosis	Koyama et al. ¹⁵¹
2.45 GHz	1.0-2.5 W/kg	Wi-Fi	45, 90 min	Human semen	Increased ROS level	Ding et al. ¹⁵⁶
2.45 GHz	1 W	50 Hz pulse modulated, 1/3 duty cycle	6, 48 h	OLN-93, BV-2, HT-22, rat primary astrocyte	Increased expression of C/EBP β at 6 h	Huang et al. ¹¹⁹

Review

GHz Wi-Fi signals significantly increased the levels of ROS, glutathione peroxidase, and superoxide dismutase in the samples. ^{139,156} Besides, exposure of SH-SY5Y cells to 935 MHz, 4 W/kg RF-EMR for 24 h caused an impairment of mitochondrial function. ¹⁶¹ In addition, the 24-h exposure of mouse Leydig cells to 1.95-GHz RF-EMR of 3 W/kg inhibited the testosterone secretion. ¹⁵⁴ The RF-EMR of 900 MHz and 1.8 GHz also affected the neurite outgrowth of neuronal cells. ^{138,142}

However, some other investigations of cell systems have revealed little or no effect of RF-EMR exposure. For example, a 2.45-GHz RF-EMR at the SAR of up to 10 W/kg for up to 24 h induced very little or no effect on either chemotaxis or phagocytosis in differentiated human HL-60 cells. ¹⁵¹ While a group of researchers reported no significant change in the level of miRNA expression of the human blood cells exposed to 900-MHz EMR for up to 90 min. ¹⁶⁵

Studies about the effects of EMR on unicellular systems

Studies on the impact of EMR on unicellular systems mainly focused on the growth or viability, mobility, genotoxicity, and global gene expression change of the unicellular systems, and the antibiotic resistance and biofilm formation ability of the bacteria.

Static electric fields

Static electric field affects cell migration, and is key to the healing of wounds. 170 Phosphatidylinositol-3-OH kinase- γ and PTEN were involved in the migration of cells in electric fields, 114 yet the specific receptor of the electric field is still unknown. 171

Static magnetic fields

There are magnetoreceptive microorganisms containing magnetosomes, an object that is sensitive to the magnetic fields. ^{172–174} Static magnetic field also affects the formation of biofilms of bacteria. ^{175–177} For example, a 444-mT magnetic field suppressed the biofilms and enhanced ciprofloxacin activity of *Pseudomonas aeruginosa* when mixed with magnetic nanoparticles. ¹⁷⁵ *E. coli* exposed to a static magnetic field of 20–35 mT showed higher rates of growth and faster formation of the biofilm in the culture medium containing magnetic isotope ²⁵Mg than in the medium containing ^{24,26}Mg. ^{178,179} Additionally, a 200-mT magnetic field significantly increased the swarming of *P. aeruginosa* strain. ¹⁷⁶ However, the mechanisms of these variations are still poorly understood.

Low frequency EMR

Exposure of Gram-positive and Gram-negative bacteria to ELF-EMR of 20–50 Hz, 1-4 mT leaded to decreased cell viabilities and shifted membrane potentials. 180-182

RF-EMR

An 835-MHz EMR did not affect the reverse mutation frequency or DNA degradation in the *E. coli* in a genotoxicity study. ¹⁸³ Meanwhile, a 2.4-GHz RF-EMR of Wi-Fi altered antibiotic resistance of *E. coli* and *Listeria monocytogenes*, ^{184,185} increased biofilm formation of *E. coli*, *Staphylococcus aureus*, and *Staphylococcus epidermis*, ¹⁸⁵ and altered gene expression of *E. coli* (especially in the metabolism-related pathways). ¹⁸⁶ Similar results were also reported in the study conducted by Crabtree et al. ¹⁸⁷

Challenges of the experiments in cell systems

Compared to the animals, the cell system is more sensitive to the environmental conditions. Thus, the cell systems require higher quality control, and parallel experiments are obligatory to reduce the influence of hazardous factors. The limitation of the cell system is that it shows only the cell-level responses, lacking in the systematic information. Likewise, cells are complex integrity containing intricate network composed of numerous pathways of signal transduction. So, they are not preferable subjects for reductionist experiments with nice and clean single-variable controls. It is very difficult to obtain direct evidence from the cell experiments about the receptor that directly interacts with EMR. Up to now, the reported cell responses to the EMR stimulation are most likely to be the down-stream changes. The key molecules interacting with the EMR are still unknown.

IN-VITRO BIOCHEMICAL EXPERIMENTS

Overview of the in vitro biochemical experiments

In vitro biochemical experiments aim to reveal the molecular basis of the biochemical reactions in the living organisms, and to provide evidence how biomolecules, as exemplified by proteins and nucleic acids, interact with each other. The *in vitro* biochemical system is a practical system for the reductionist approach because the reaction system can be simple in chemical composition and can be precisely defined. Carefully designed *in vitro* biochemical experiments with well-controlled variables can help to identify the key functional sites of the biomolecules.

Biochemical experiments are applicable to medical and pharmaceutical studies, as exemplified by those for the interactions between receptors and ligands or antibodies. The *in vitro* biochemical experiments for bio-impacts of EMR mostly focus on the gene transcription and translation, the structure and function of proteins, the reactive oxidative species, the DNA damage, and other *in vivo* reactions. This approach is an important complementation to the experiments of animals and cells because it provides direct evidence to the molecular basis of the possible bio-responses to the EMR. Representative investigations of EMR impacts on biochemical reaction systems are listed in Table 4.

		Modulation					
EMR Frequency	Dose of EMR	pattern	Exposure duration	Target molecules	Bioeffect of EMR	Reference	
10-50 Hz	15–18.5 mT	Sinusoidal	2, 4, 6, 8 h	Laccase	Increase activity and shift in optimum pH	Wasak et al. ¹⁹¹	
50, 100 Hz	50 Hz: 2.7 mT; 100 Hz: 5.5 mT.	Sinusoidal	5 min	Horseradish peroxidase (HRP)	50 Hz decreases the maximum rate and catalytic efficiency of HRP	Caliga et al. ¹⁹⁴	
50-400 Hz	1 mT	Sinusoidal	1, 2, 3, 4 h	Horseradish peroxidase (POD)	Distinctly affect the catalytic activity of soluble or insoluble POD	Portaccio et al. ¹³⁶	
75 Hz	2.5 mT	Square wave	20 min	Alkaline phosphatase, acetylcholinesterase, phosphoglycerate kinase	Decreased activities of these membrane- associated enzymes	Morelli et al. ¹⁹³	
500, 900 MHz	0.01, 0.1, 1 μW	Sinusoidal	5 min	L-Lactate Dehydrogenase (LDH)	Increase the bioactivity of LDH	Pirogova et al. ¹⁹²	
0.1, 1, 1.9 GHz	Up to 5 kV/m 0.3 kV/m	Sinusoidal GSM	Real-time	The thermosensor protein GrpE	No effect of EMR on conformation of GrpE	Beyer et al. ¹⁹⁵	

Challenges of the biochemical experiments

It is not easy to identify a biochemical reaction that is sensitive to the EMR from a complex network of regulations and feedback pathways of the biological system. Once a reaction system is radiated by the EMR, its temperature of must be carefully controlled to rule out the thermal effect of the EMR. Moreover, the experiments should be carefully designed to avoid systematic error and to prevent false positives or false negatives caused by random errors or by major flaws of the experimental design.

Studies about the effect of EMR on the biochemical reactions

Cryptochrome is presumably a molecular magnetoreceptor that mediates the light-dependent orientation of navigating birds. ¹⁸⁸ In vitro biochemical experiments showed that cryptochrome can be photo-reduced efficiently and forms long-lived spin-correlated radical pairs via a tetrad of tryptophan residues. ¹⁸⁹ Another putative magnetoreceptor is a protein corresponding to electromagnetic perceptive gene (EPG) screened from the total mRNA of glass catfish (*Kryptopterus bicirrhis*). It will lead to increased intracellular calcium concentrations when activated by EMR. ¹⁹⁰

The *in vitro* biochemical experiments for impacts of EMR focus on the catalytic activity of crucial enzymes. Exposure of laccase to a rotating magnetic field leaded to increased catalytic activity and a shift in the optimal pH.¹⁹¹ Extremely low-power microwave stimulations of 500 MHz and 900 MHz enhanced the bioactivity of the L-lactate dehydrogenase enzyme without inducing temperature rise.¹⁹² However, exposures of purified horseradish peroxidase or certain membrane-associated enzymes to ELF-EMR resulted in significant decrease in their activities.^{193,194} And ELF-EMR of 130–150 Hz, 1 mT affects the catalytic activities of the soluble and insoluble horseradish peroxidase.¹³⁶ The real-time conformation of the isolated protein GrpE exposed to EMR of 0.1–1.9 GHz was monitored under strictly controlled conditions, and appeared to be insensitive to the EMR.¹⁹⁵

DIELECTRIC SPECTROSCOPY

Overview of the dielectric spectroscopy

Complex permittivity is a macro-scale physical describing the property of a substance regarding its capability to store (real part) and absorb (imaginary part) the EM energy. The dielectric spectroscopy is to characterize the complex permittivity of a substance and can provide information of possible interactions between the substance and the EMR. In contrast to the experiments with long-term exposure to EMR, the dielectric spectroscopy focuses on the intermediate response of the substance to EM signal with sweeping frequencies. Consequently, signals indicating stronger interactions of a biological subject with EMR can be extracted from the complex permittivity, and the frequency ranges corresponding to these signals are most promising in triggering bioeffects of the subject.

According to the frequencies of the EMR most promising to induce bioeffects provided by the complex permittivity of a target substance, one can easily design experiments to further investigate the factors that influences the interaction between the EMR and biological subjects. The selection of proper EMR frequency and reporter system is clear. Thus, the targets less likely to be affected by the EMR can be excluded,

and those showing strong EMR interactions will be studied in precedence. The complex permittivity of material can provide direct evidence of interactions between materials and the EMR from the perspective of energy and is thus indispensable in identification of the bio-receptor of the EMR.

Challenges of the dielectric spectroscopy

The complex permittivity of a biological subject generally includes the signals of ionic components and water. These signals are less interesting but disrupting for the observation of other signals. One method for discriminating different signals is model-fitting method. To perform this method, one could fit the experimental data with dielectric models, such as Debye model on Cole-Cole model, obtaining the best-match parameters of different signals. Thus, the signals of the ions and the water can be discriminated and ignored. This model-fitting method is quite effective, but the analysis requires certain amount of calculation and is not quite straight-forward for beginners.

Another way to minimize the disruption from the signals of the water and ions is to introduce an ionic aquatic solution as a reference. The complex permittivity of the biological subject could be normalized by that of the reference solution, highlighting the signals of interest. The data processed using this method shows highlighted signals of different cells and liposomes, indicating the ability of the closed structures formed by lipid-bilayer membranes to interact with the EMR. ¹⁹⁸

Even though the background interaction signals of the ions and water can be separated from the complex permittivity, the signal-to-background ratio is still critical for the detection of the effective signals of the biological components. Thus, the concentration of the biological subject should be high enough. For example, the concentration of the lipid component in the liposome emulsions of the literature ¹⁹⁸ is no less than 0.5% (weight to volume); while the volume proportion of the cells is up to 28% in the cell suspensions. Composite solution such as tissue homogenate can also be subjects of dielectric spectroscopy, but the signals of each composition are most likely to be difficult to separate with each other due to the complexity of the sample and the low concentration of each composition. Thus, in this specific approach, samples with simple chemical compositions and high concentrations are preferable.

DETECTION OF THE EMR EMITTED BY BIOLOGICAL SYSTEMS

Overview of the detection of the EMR emission

The nonradiative EMR signals are not intuitively sensed by human like infrasonic or ultrasonic signals. In 1966, ultrasound emitted by plants were detected using sensitive ultrasonic detectors. ¹⁹⁹ EMR signals emitted by biological subjects, by contrast, are still waiting to be discovered. Sufficient sensitivity of the EMR detector is obligatory in discovering biological sources of the EMR. The detection of EMR emission will directly identify the subject that plays as a transmitter of EMR and prove the existence of the bio-EM interactions. The specific subject that emits the electromagnetic signal should include certain functional module that transforms other forms of energy into EM wave.

An emission of "biophoton" in the range of infrared and visible band was recorded using an ultra-sensitive camera and was assumed to be emitted by sliced bio-tissues. ^{200,201} An emission of 3.6-MHz EMR was also recorded from *in vitro* cultivated cells in BioEM 2022. ²⁰² These observations are worth of further confirmation and the sources of the signals are interesting for further investigation.

Challenges of the detection of the EMR emission

There are challenges in the detection of the EMR emitted by biological systems. The first challenge is to realize both high sensitivity and large bandwidth in the detector. A large gain-bandwidth product is required, to enable detection of the faintest EMR emitted by the living matters. And there is still a need of a trade-off between the gain and the bandwidth. In practice, multiple highly sensitive detectors with complementary operating frequency bands can be employed synchronously. Some EM signals decay sharply along the distance of transmission, so near-field detection is preferred. Thus, the antenna of the detector should be arranged with proper location and orientation relative to the target, so that optimal performance of the EM detection can be achieved.

The high level of the background EMR from the crowded wireless communication terminals in the environment is also challenging for the detection of EMR emitted from biological systems. The detection must be performed inside an effective EM shielding providing a low background EM noise that facilitates the detection of faint EMR signals. In addition, false positive signals of stochastic EM noises emitted by distant transmitters must be carefully excluded. To discriminate between the signal emitted by the biological target and the signal from distant transmitters, the EMR signals both inside and outside the EM shielding should be monitored synchronously. The EMR signal is emitted by the biological target only when the signal recorded inside the shielding is much larger than the one recorded outside. Moreover, the signal-to-noise ratio should be further improved from the aspect of circuit design. For example, a band-pass filter can be employed to remove the wideband noise out of the range of the sensitive frequency of each detector.

THEORETICAL PREDICTIONS

Overview of the theoretical approach

Theoretical prediction of the bioeffect of EMR based on physical theories and models is an indispensable complement to the experimental approaches. It proposes hypotheses explaining the mechanism of the bioeffects of the EMR, provides guidance for the choice of frequency and amplitude of the EMR in the experiments, and suggests the potential receptors of the EMR and the related reporter systems for measurement. Thus, the experiments can be designed accordingly.

However, the theories that have been proposed for the interactions between biological systems and EMR are very limited, namely the ICR model and the radical pair model. They are limited in the applicable range of frequency, leaving most of the spectrum vacant. More theoretical investigations are needed for better understanding of the mechanisms of the interaction between the EMR and the biological systems.

Ion cyclotron resonance model

The ICR model was proposed in the 1980s. It assumes that the magnetic field and the ions in cells could interact with each other through Lorentz force, and that the motions of the ions are affected by the magnetic field oscillating at the cyclotron resonance frequency of the ions, resulting in alterations of ion flux and concentration. ^{124,203,204} The cyclotron resonance frequencies of the abundant ions of cells are in the order of tens of Hz, in the range of ELF-EMR. ²⁰³ Therefore, investigations have focused on the impact of ELF-EMR on cells in the aspect of alterations of calcium flux, ion concentrations, membrane potential, neuro activities, etc. ^{125,127–131,140,145,152,157,205,206} A summary of the ICR model explaining the EMR effect on the calcium influx and the downstream signaling pathways is shown in Scheme 2A. However, the reported bio-responses of the ELF-EMR are mostly faint, and some of the observations are inconsistent with each other. ^{125,127,130,157} So far, the key evidence is still missing about whether the EMR of cyclotron resonance frequency could trigger alterations in the biological systems.

Radical pair model

The radical pair model is another well-known model to explain the bioeffects of the magnetic field or RF-EMR ^{207–210} It was based on the Zeeman effect of magnetic fields on spin states, i.e., the energy levels of the degenerated spin states of radical pairs are differentiated by the variation of the magnetic field.^{207,211} In a reaction system containing singlet-state and triplet-state radical pairs, an external magnetic field shifts the energy level of the triplet states, and further alters the balance of singlet-triplet inter-conversion, and changes the concentrations of singlet-state radicals, triplet-state radicals, and the products of the downstream reactions. ^{97,208,209,211–213} The radical pair model is applicable to biochemical reactions as exemplified by those involving the photoreceptor cryptochrome ^{208,212,214} and ROS. ^{98,144,215–218}

The light-dependent orientation of navigating birds suggested that certain photoreceptors in the retina are potential magnetosensitive molecules for their navigational ability. A widely recognized such photoreceptor in the retina is rhodopsin, a complex of a retinal and an opsin protein. The retinal absorbs a green-blue light photon, undergoes a conformational change from *cis*-retinal to *trans*-retinal, and subsequently triggers a conformational change in opsin. Thus, the rhodopsin is transformed into an active-state meta-rhodopsin that subsequently activates downstream G-protein-coupled receptor (GPCR) signaling pathways.²¹⁹

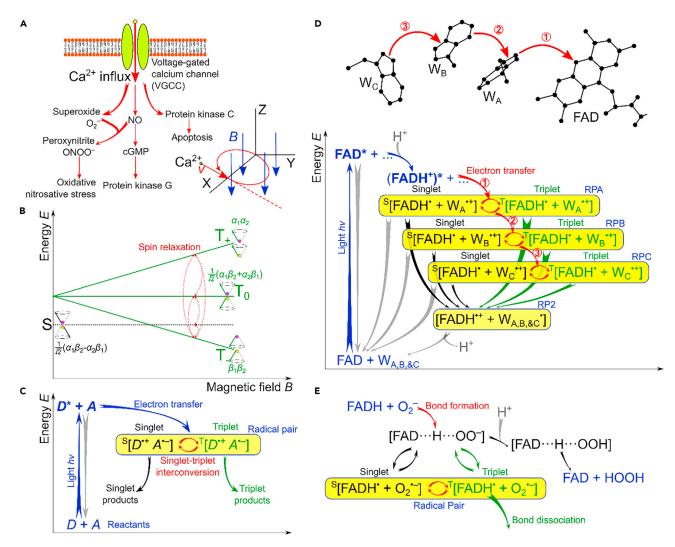
A frequently mentioned magnetosensitive photoreceptor, a flavin adenine dinucleotide (FAD) bounded with cryptochrome (Cry), is shown in Scheme 2D. It assumes that the FAD is excited by a blue photon (FAD \rightarrow FAD*) and subsequently protonated (FAD* \rightarrow (FADH⁺)*). Then three electron transfers occur sequentially: the first one is from the tryptophan residue (W_A) of the Cry to (FADH⁺)*, the second from tryptophan residue W_B to W_A, and the third from tryptophan residue W_C to W_B, generating magnetosensitive singlet and triplet radical pairs (5 [FADH• W_{A/B/C}• $^{+}$] and 7 [FADH• W_{A/B/C}• $^{+}$]). The activity of the different spin states of the radical pairs vary from each other. The singlets 5 [FADH• W_{A/B/C}• $^{+}$] quickly (in \sim 1 μ s) transform into either the radical pairs [FADH• $^{+}$ W_{A,B,&C}•] (RP2) or the ground states (FAD + W_{A,B,&C}). In contrast, the triplets 7 [FADH• W_{A/B/C}• $^{+}$] only transform into RP2. Radical pairs RP2 last for an average lifetime of \sim 1 ms, and then transform back to the ground states.

However, whether the FAD-binding Cry is the molecular magnetic compass is still in dispute. 221 A recent report has shown that the FAD-binding domain of Cry seems to be nonessential in the response of neuroactivity to magnetic fields. 51 Superoxide $O_2 \cdot ^-$ was proposed to be a possible alternative to the react with the FAD radical, as shown in Scheme 2E. 144 Even though the stand-alone $O_2 \cdot ^-$ is devoid of hyperfine couplings, the radical pair [FADH \cdot $O_2 \cdot ^-$] is supposed to be more sensitive to geomagnetic fields than the radical pairs [FADH \cdot $W_{A/B/C} \cdot ^+$]. 222 Another model assumed the magnetic receptor to be the protein complex (MagR)/Cry because the protein crystals exhibited strong intrinsic magnetic polarity and rotated in synchrony with the external magnetic field. 223

The radical pair model states that an external static magnetic field causes the hyperfine splitting of the triplet states, and that the magnetic sensitivity of the corresponding biochemical reactions can be affected by the EMR of Larmor frequency, i.e., those with energy of the photons exactly equal to the differences between the energy levels of the singlet and that of the triplet states.

There is experimental evidence in support of the radical pair model. The flight orientation of the navigating birds was interrupted by Larmor-frequency EMR.⁸² And the biochemical reactions involving the triplet $(O_2 \cdot \bar{})$ and singlet (H_2O_2) states of the ROS in cells is affected by a 7-MHz EMR in the presence of a static magnetic field of 45 μ T.¹⁴⁴

ADDITIONAL ISSUES


EMR heating

When EMR are applied to the biological subjects, a proportion of the energy of the EMR will be absorbed by the subject and eventually converted to heat.²²⁴ If the heat induced by the EMR is not dispersed promptly, it will accumulate within the subject and causes an increase of temperature. This will further affect heat-sensitive biochemical reactions in the subject and the down-stream responses.¹¹⁵ Therefore, researchers must pay special attention to such thermal effects, and carefully discriminate the bio-responses directly triggered by the EMR and those caused by heating.

A convenient way to evaluate the EMR heating is to monitor the temperature of the subject during EMR stimulation. But this method is not suitable for thermostatic animals, because they will automatically adjust the body temperature. The absorption of EMR can be evaluated

Review

Scheme 2. Current theories for explaining the bioeffects of EMR

(A) Ion cyclotron resonance model applied to EMR effects on calcium influx and downstream signaling pathways (adapted from 204,236); (B and C) Radical pair theory. (B) Energy diagram of electronic spin states (S, T_0 , T_+ , and T_-) of a radical pair in a magnetic field B. The vector representation corresponding to each spin state were shown by the cartoon next to the curve. The triplet spin states (T_0 , T_+ , and T_-) are energy degenerate at B = 0, but T_+ and T_- are split to higher and lower energy from T_0 at B > 0. Meanwhile, the energy level of the spin states S and T_0 are unaffected by the magnetic field B (adapted from 211). (C) Reaction scheme for a radical pair reaction with magnetic field-dependent reaction products. The radical pair is generated by an electron transfer from a donor molecule D, which is excited by light, to an acceptor molecule A. The external magnetic field affects the interconversion between the singlet and triplet states of the radical pair (adapted from 207,208).

(D) Radical pair reaction of Cry. A flavin adenine dinucleotide (FAD) bounded with cryptochrome (Cry) is excited by a photon (FAD \to FAD*) and then protonated (FAD* \to (FADH*)*). Three electron transfers occur sequentially: the first one is from the tryptophan residue (W_A) of the Cry to (FADH*)*, the second from tryptophan residue W_B to W_A, and the third from tryptophan residue W_C to W_B, generating magnetosensitive singlet and triplet radical pairs (5 [FADH* 4 W_{A/B/C}* 4]). The different spin states of the radical pairs act differently in the reaction cascade (adapted from 212,220,237).

(E) Magnetosensitive radical pair reactions involving radical pairs of enzyme-bound neutral flavin FADH and superoxide (singlet state $^{S}[FADH \cdot O_{2} \cdot ^{-}]$ and triplet state $^{T}[FADH \cdot O_{2} \cdot ^{-}]$) (adapted from 144).

through calculations of the SAR according to the dielectric parameters of the subject and the strength of the EMR obtained either by measurement or by simulation. By contrast, in the detection of bioelectromagnetic emissions, no external EM energy is introduced, so there is no need to consider thermal effects.

Modulation of the EMR

The bio-responses induced by the EMR are affected not only by the frequency and amplitude, but also the modulation pattern of the EMR.²²⁵
Amplitude-modulated EMR affects the biosystems differently from the single-frequency carrier EMR.^{226,227} Many studies also focus on pulse

modulated EMR (P-EMR), because it allows applying large field strengths without inducing significant EMR heating, ²²⁸ and that the waveforms of the wireless communication signals of GSM or CDMA protocols contain plenty of pulses. ^{229,230} The P-EMR affects self-assembly of tubulin, ²³¹ enhances cell proliferation and differentiation, ^{133,152} affects the expression and activity transcription factor, ¹¹⁹ reduces hypoxia and inflammation damage, ²³² and induces ultrastructural damage in cells. ¹⁴⁸ The P-EMR also alters the sleep pattern⁷⁰ and the permeability of the blood-brain-barrier ¹⁰⁸ of rodents, and causes pathological changes in their sinoatrial node tissues. ²³³ P-EMR was also assumed to be related to certain neurodevelopmental and neurobehavioral changes in children. ²³⁴ The interesting bioeffects of P-EMR indicate that the biosystems are possibly sensitive to the envelope of the EMR through certain nonlinear mechanisms.

Complexity of the EMR environment

In the experiments, a well-controlled stable and uniform EMR environment is usually preferred, but it is very different from the one in our daily life. The real EMR environment is quite complicated, containing various and stochastic EMR signals of all frequencies and patterns from all the directions. The possible nonlinearity of the bio-responses to the EMR makes it difficult to extrapolate the observations under well-controlled EMR stimulation to the complex EMR conditions. A representative nonlinear bio-electromagnetic response is observed in neurons. The neurons are insensitive to 2 kHz electric stimulations, but are activated by an electric signal containing two frequency components around 2 kHz.

CONCLUDING REMARKS

The investigations focusing on the bioeffects of nonradiative EMR are performed by exposing various biological systems to EMR and detecting the bio-responses in the systems. The biological systems of these studies include humans, animals, *in vitro* cell systems, and biochemical reaction systems. Alternative approaches include dielectric spectroscopy, detection of bioelectromagnetic emissions, and theoretical predictions. Most studies of the EMR impacts on the biological systems are confined to the EMR frequencies commonly used in the daily life, such as the power-frequency of 50–60 Hz, mobile phone communication bands of 800–935 MHz, 1.8 GHz, and 1.9 GHz, and Wi-Fi communication bands of 2.4–2.45 GHz. In contrast, bioeffects of the EMR of other frequencies were studied much less. Thus, the frequency specificity of the reported bioeffects of the EMR is still unclear. Moreover, the real-time monitoring the bio-response to the EMR is still hard to realize, so the time-course responses of the bioeffects of the EMR stimulation is unsolved.

Many bioeffects of high-power EMR are side effects of the EMR heating. In some of the investigations, the influence of the EMR heating was not properly excluded in the control experiments. In contrast, the bio-responses observed under exposure to low-dose EMR are mild and inconsistent, and the corresponding response mechanisms are mostly unclear. Recent investigations have reported interesting findings indicating that the neural system might be able to respond to electromagnetic waves through mechanisms awaiting to be revealed. 32,70,119,138,142,158,227,232 These responses to the EMR are even possibly related to molecular switches highly organized as supramolecular architectures that allows infinite reverie, such as arrays resembling array antennas, bifurcation structure resembling trees, etc.

Last but not the least, the EMR in the real environment is complicated: it is usually stochastic, and contains many different frequency components, varying in amplitude and direction of the fields, and changing with time and location. Given the possibility that the bio-responses to the EMR is nonlinear, the bioeffects of the total EMR of the environment can be different from the summary of those of each single component. It is highly desirable, but still very difficult to define an EMR condition in the experiments that is representative to the complex real EMR environment.

ACKNOWLEDGMENTS

We thank Songfeng Chen and Xiaofei Wang from Tsinghua University, Dr. Yahong Wang and Dr. Yujing Huang from Westlake University, and Dr. Hu Deng from Beijing Huilongguan Hospital for their helpful advice to this article. This work was supported by funds from the National Natural Science Foundation of China (31930059 and 81920108015 to Y.S.), the Key R&D Program of Zhejiang Province (2020C04001 to Y.S.), and the National Key R&D Program of China (2020YFA0509300 to Y.S.).

AUTHOR CONTRIBUTIONS

L.L., B.H., and Y.L. contributed equally to this work. L.L., B.H., Y.L., Y.Z., X.T., and Y.S. wrote this paper.

DECLARATION OF INTERESTS

The authors have no conflicts of interest to declare that are relevant to the content of this article.

REFERENCES

- Bianchi, C., and Meloni, A. (2007). Natural and man-made terrestrial electromagnetic noise An outlook. Ann. Geophys. 50, 435–445
- 2. Constable, C. (2015). Earth's electromagnetic environment. Surv.
- Geophys. 37, 27–45. https://doi.org/10. 1007/s10712-015-9351-1.
- Bandara, P., and Carpenter, D.O. (2018). Planetary electromagnetic pollution: it is time to assess its impact. Lancet Planet. Health 2, e512–e514. https://doi.org/10. 1016/S2542-5196(18)30221-3.
- Belyaev, I., Dean, A., Eger, H., Hubmann, G., Jandrisovits, R., Kern, M., Kundi, M., Moshammer, H., Lercher, P., Müller, K., et al. (2016). EUROPAEM EMF Guideline 2016 for the prevention, diagnosis and treatment of EMF-related health problems and illnesses. Rev. Environ. Health 31,

- 363–397. https://doi.org/10.1515/reveh-2016-0011.
- Redmayne, M. (2016). International policy and advisory response regarding children's exposure to radio frequency electromagnetic fields (RF-EMF). Electromagn. Biol. Med. 35, 176–185. https://doi.org/10.3109/15368378.2015. 1038832.
- Andrianome, S., De Seze, R., Braun, A., and Selmaoui, B. (2017). Descriptive selfreporting survey of people with idiopathic environmental intolerance attributed to electromagnetic fields (IEI-EMF): similarities and comparisons with previous studies. J. Public Health 26, 461–473. https://doi. org/10.1007/s10389-017-0886-0.
- Najera, A., Ramirez-Vazquez, R., Arribas, E., and Gonzalez-Rubio, J. (2020). Comparison of statistic methods for censored personal exposure to RF-EMF data. Environ. Monit. Assess. 192, 77. https://doi.org/10.1007/ s10661-019-8021-z.
 Huber, R., Treyer, V., Borbély, A.A.,
- 8. Huber, R., Treyer, V., Borbély, A.A., Schuderer, J., Gottselig, J.M., Landolt, H.-P., Werth, E., Berthold, T., Kuster, N., Buck, A., and Achermann, P. (2002). Electromagnetic fields, such as those from mobile phones, alter regional cerebral blood flow and sleep and waking EEG. J. Sleep Res. 11, 289–295.
- Schmid, M.R., Loughran, S.P., Regel, S.J., Murbach, M., Bratic Grunauer, A., Rusterholz, T., Bersagliere, A., Kuster, N., and Achermann, P. (2012). Sleep EEG alterations: effects of different pulsemodulated radio frequency electromagnetic fields. J. Sleep Res. 21, 50–58. https://doi.org/10.1111/j.1365-2869. 2011.00918 x.
- Danker-Hopfe, H., Dorn, H., Sauter, C., Schmid, G., and Eggert, T. (2020). An experimental study on effects of radiofrequency electromagnetic fields on sleep in healthy elderly males and females: Gender matters. Environ. Res. 183, 109181. https://doi.org/10.1016/j.envres.2020. 109181.
- Wallace, J., Andrianome, S., Ghosn, R., Blanchard, E.S., Telliez, F., and Selmaoui, B. (2020). Heart rate variability in healthy young adults exposed to global system for mobile communication (GSM) 900-MHz radiofrequency signal from mobile phones. Environ. Res. 191, 110097. https://doi.org/ 10.1016/j.envres.2020.110097.
- Pall, M.L. (2018). Wi-Fi is an important threat to human health. Environ. Res. 164, 405–416. https://doi.org/10.1016/j.envres.2018. 01.035.
- Wang, P., Hou, C., Li, Y., and Zhou, D. (2018). Wireless phone use and risk of adult glioma: Evidence from a meta-analysis. World Neurosurg. 115, e629–e636. https://doi. org/10.1016/j.wneu.2018.04.122.
- Lancranjan, I., Măicănescu, M., Rafailă, E., Klepsch, I., and Popescu, H.I. (1975). Gonadic function in workmen with long term exposure to microwaves. Health Phys. 29, 291 292
- Kim, S., Han, D., Ryu, J., Kim, K., and Kim, Y.H. (2021). Effects of mobile phone usage on sperm quality – No time-dependent relationship on usage: A systematic review and updated meta-analysis. Environ. Res. 202, 111784. https://doi.org/10.1016/j. envres.2021.111784.
- Fejes, I., Závaczki, Z., Szöllosi, J., Koloszár, S., Daru, J., Kovács, L., and Pál, A. (2005). Is

- there a relationship between cell phone use and semen quality? Arch. Androl. *51*, 385–393. https://doi.org/10.1080/ 014850190924520.
- Agarwal, A., Deepinder, F., Sharma, R.K., Ranga, G., and Li, J. (2008). Effect of cell phone usage on semen analysis in men attending infertility clinic: an observational study. Fertil. Steril. 89, 124–128. https://doi. org/10.1016/j.fertnstert.2007.01.166.
- Chalabi, S.S.A., and Al-Wattar, Y.T. (2011). Effect of mobile phone usage on semen analysis in infertile men. Tikrit J Pharm Sci 7, 77, 82
- Rago, R., Salacone, P., Caponecchia, L., Sebastianelli, A., Marcucci, I., Calogero, A.E., Condorelli, R., Vicari, E., Morgia, G., Favilla, V., et al. (2013). The semen quality of the mobile phone users. J Endocr Invest 36, 970–974. https://doi.org/10.3275/8996.
- Yildirim, M.E., Kaynar, M., Badem, H., Cavis, M., Karatas, O.F., and Cimentepe, E. (2015). What is harmful for male fertility: Cell phone or the wireless internet? Kaohsiung J. Med. Sci. 31, 480–484. https://doi.org/10.1016/j. kjms.2015.06.006.
- 21. Ding, S.-S., Sun, P., Tian, H., Huo, Y.-W., Wang, L.-R., Han, Y., Zhang, Z., Liu, X., and Xing, J.-P. (2018). Association between daily exposure to electromagnetic radiation from 4G smartphone and 2.45-GHz wi-fi and oxidative damage to semen of males attending a genetics clinic: a primary study. Int. J. Clin. Exp. Med. 11, 2821–2830.
- Iorio, R., Delle Monache, S., Bennato, F., Di Bartolomeo, C., Scrimaglio, R., Cinque, B., and Colonna, R.C. (2011). Involvement of mitochondrial activity in mediating ELF-EMF stimulatory effect on human sperm motility. Bioelectromagn 32, 15–27. https:// doi.org/10.1002/bem.20602.
- Wessapan, T., Rattanadecho, P., Somsuk, N., Yamfang, M., Guptasa, M., and Montienthong, P. (2023). Thermal effects of electromagnetic energy on skin in contact with metal: A numerical analysis. Energies 16, 5925. https://doi.org/10.3390/ en16165925.
- Jovanovic, U., Krstic, D., Zigar, D., Malenovic-Nikolic, J., and Cvetanovic, S. (2023). Temperature elevation of a human brain induced by a mobile phone electromagnetic radiation. Thermal Sci 27, 2433–2442. https://doi.org/10.2298/ tsci220718165j.
- Sekiba, Y., Kodera, S., Yamazaki, K., and Hirata, A. (2023). Calculation of electric field induced in the human body for simultaneous exposure to spatially uniform ELF electric and magnetic fields with a phase difference. IEEE Access 11, 95455– 95466. https://doi.org/10.1109/access.2023. 3311517.
- Tian, R., Zhang, J.-Q., and Lu, M. (2023). Research on the influence of power frequency electric field of pantograph on passengers' health in high-speed EMU. Arch Electrical Eng 72, 483–501. https://doi. org/10.24425/aee.2023.145421.
- Kato, M., Ohta, S., Shimizu, K., Tsuchida, Y., and Matsumoto, G. (1989). Detectionthreshold of 50-Hz electric fields by human subjects. Bioelectromagn 10, 319–327. https://doi.org/10.1002/bem.2250100309.
- 28. Blondin, J.-P., Nguyen, D.-H., Sbeghen, J., Goulet, D., Cardinal, C., Maruvada, P.S., Plante, M., and Bailey, W.H. (1996). Human perception of electric fields and ion currents associated with high-voltage DC

- transmission lines. Bioelectromagn 17, 230–241. https://doi.org/10.1002/(sici)1521-186x(1996)17:3<230::Aid-bem9>3.0.Co;2-4.
- Odagiri-Shimizu, H., and Shimizu, K. (1999). Experimental analysis of the human perception threshold of a DC electric field. Med. Biol. Eng. Comput. 37, 727–732.
- Chapman, C.E., Blondin, J.-P., Lapierre, A.M., Nguyen, D.H., Forget, R., Plante, M., and Goulet, D. (2005). Perception of local DC and AC electric fields in humans. Bioelectromagn 26, 357–366. https://doi. org/10.1002/bem.20109.
- Jankowiak, K., Driessen, S., Kaifie, A., Kimpeler, S., Krampert, T., Kraus, T., Stunder, D., and Kursawe, M. (2021). Identification of environmental and experimental factors influencing human perception of DC and AC electric fields. Bioelectromagn 42, 341–356. https://doi. org/10.1002/hem.20347
- 32. Wang, C.X., Hilburn, I.A., Wu, D.-A., Mizuhara, Y., Cousté, C.P., Abrahams, J.N.H., Bernstein, S.E., Matani, A., Shimojo, S., and Kirschvink, J.L. (2019). Transduction of the geomagnetic field as evidenced from alpha-band activity in the human brain. Eneuro 6. ENEURO.0483, 18.2019. https://doi.org/10.1523/eneuro.0483-18.2019.
- doi.org/10.1523/eneuro.0483-18.2019.
 33. Bojjawar, T., Jalari, M., Aamodt, E., Ware, M.F., and Haynie, D.T. (2006). Effect of electromagnetic nanopulses on C. elegans fertility. Bioelectromagn 27, 515–520.
- Gabel, C.V., Gabel, H., Pavlichin, D., Kao, A., Clark, D.A., and Samuel, A.D.T. (2007).
 Neural circuits mediate electrosensory behavior in Caenorhabditis elegans.
 J. Neurosci. 27, 7586–7596. https://doi.org/ 10.1523/ineurosci.0775-07.2007.
- Shapiro-İlan, D.I., Campbell, J.F., Lewis, E.E., Elkon, J.M., and Kim-Shapiro, D.B. (2009). Directional movement of steinernematid nematodes in response to electric current. J. Invertebr. Pathol. 100, 134–137. https://doi.org/10.1016/j.jip.2008. 11.001
- Fasseas, M.K., Fragopoulou, A.F., Manta, A.K., Skouroliakou, A., Vekrellis, K., Margaritis, L.H., and Syntichaki, P. (2015). Response of Caenorhabditis elegans to wireless devices radiation exposure. Int. J. Radiat. Biol. 91, 286–293. https://doi.org/10. 3109/09553002.2014.995384.
- Shi, Z., Yu, H., Sun, Y., Yang, C., Lian, H., and Cai, P. (2015). The energy metabolism in Caenorhabditis elegans under the extremely low-frequency electromagnetic field exposure. Sci. Rep. 5, 8471. https://doi. org/10.1038/srep08471.
- Chrisman, S.D., Waite, C.B., Scoville, A.G., Carnell, L., and Carnell, L. (2016). C. elegans demonstrates distinct behaviors within a fixed and uniform electric field. PLoS One 11, e0151320. https://doi.org/10.1371/ journal.pone.0151320.
- Sun, Y., Shi, Z., Wang, Y., Tang, C., Liao, Y., Yang, C., and Cai, P. (2018). Coupling of oxidative stress responses to tricarboxylic acid cycle and prostaglandin E2 alterations in Caenorhabditis elegans under extremely low-frequency electromagnetic field. Int. J. Radiat. Biol. 94, 1159–1166. https://doi.org/ 10.1080/09553002.2019.1524943
- 40. Wang, Y., Sun, Y., Zhang, Z., Li, Z., Zhang, H., Liao, Y., Tang, C., and Cai, P. (2020). Enhancement in the ATP level and antioxidant capacity of Caenorhabditis elegans under continuous exposure to

- extremely low-frequency electromagnetic field for multiple generations. Int. J. Radiat. Biol. 96, 1633–1640. https://doi.org/10.1080/09553002.2020.1828657.
- Jenrow, K.A., Smith, C.H., and Liboff, A.R. (1996). Weak extremely-low-frequency magnetic field-induced regeneration anomalies in the planarian Dugesia tigrina. Bioelectromagn 17, 467–474.
- Novikov, V.V., Sheiman, I.M., and Fesenko, E.E. (2008). Effect of weak static and low-frequency alternating magnetic fields on the fission and regeneration of the planarian dugesia (Girardia) tigrina. Bioelectromagn 29, 387–393. https://doi. org/10.1002/bem.20407.
- Goodman, R., Lin-Ye, A., Geddis, M.S., Wickramaratne, P.J., Hodge, S.E., Pantazatos, S.P., Blank, M., and Ambron, R.T. (2009). Extremely low frequency electromagnetic fields activate the ERK cascade, increase hsp70 protein levels and promote regeneration in Planaria. Int. J. Radiat. Biol. 85, 851–859. https://doi.org/10. 2109/05552000002372489
- Murugan, N.J., Karbowski, L.M., Lafrenie, R.M., and Persinger, M.A. (2013). Temporally-patterned magnetic fields induce complete fragmentation in planaria. PLoS One 8, e61714. https://doi.org/10. 1371/journal.pone.0061714.
- Birkholz, T.R., and Beane, W.S. (2017). The planarian TRPA1 homolog mediates extraocular behavioral responses to nearultraviolet light. J. Exp. Biol. 220, 2616–2625. https://doi.org/10.1242/jeb.152298.
- 46. Van Huizen, A.V., Morton, J.M., Kinsey, L.J., Von Kannon, D.G., Saad, M.A., Birkholz, T.R., Czajka, J.M., Cyrus, J., Barnes, F.S., and Beane, W.S. (2019). Weak magnetic fields alter stem cell-mediated growth. Sci. Adv. 5, eaau7201.
- Gegear, R.J., Casselman, A., Waddell, S., and Reppert, S.M. (2008). Cryptochrome mediates light-dependent magnetosensitivity in Drosophila. Nature 454, 1014–1018. https://doi.org/10.1038/ nature07183.
- Gegear, R.J., Foley, L.E., Casselman, A., and Reppert, S.M. (2010). Animal cryptochromes mediate magnetoreception by an unconventional photochemical mechanism. Nature 463, 804–807. https://doi.org/10. 1038/nature08719.
- Fedele, G., Green, E.W., Rosato, E., and Kyriacou, C.P. (2014). An electromagnetic field disrupts negative geotaxis in Drosophila via a CRY-dependent pathway. Nat. Commun. 5, 4391. https://doi.org/10. 1038/ncomms5391
- Bassetto, M., Reichl, T., Kobylkov, D., Kattnig, D.R., Winklhofer, M., Hore, P.J., and Mouritsen, H. (2023). No evidence for magnetic field effects on the behaviour of Drosophila. Nature 620, 595–599. https:// doi.org/10.1038/s41586-023-06397-7.
- 51. Bradlaugh, A.A., Fedele, G., Munro, A.L., Hansen, C.N., Hares, J.M., Patel, S., Kyriacou, C.P., Jones, A.R., Rosato, E., and Baines, R.A. (2023). Essential elements of radical pair magnetosensitivity in Drosophila. Nature 615, 111–116. https://doi.org/10.1038/s41586-023-05735-z.
- Persson, B.R., Salford, L.G., Brun, A., Eberhardt, J.L., and Malmgren, L. (1992). Increased permeability of the blood-brain barrier induced by magnetic and electromagnetic fields. Ann. N. Y. Acad. Sci.

- 649, 356–358. https://doi.org/10.1111/j. 1749-6632.1992.tb49629.x.
- 53. Aitken, R.J., Bennetts, L.E., Sawyer, D., Wiklendt, A.M., and King, B.V. (2005). Impact of radio frequency electromagnetic radiation on DNA integrity in the male germline. Int. J. Androl. 28, 171–179. https:// doi.org/10.1111/j.1365-2605.2005.00531.x.
- 54. Kirson, E.D., Dbalý, V., Tovarys, F., Vymazal, J., Soustiel, J.F., Itzhaki, A., Mordechovich, D., Steinberg-Shapira, S., Gurvich, Z., Schneiderman, R., et al. (2007). Alternating electric fields arrest cell proliferation in animal tumor models and human brain tumors. Proc. Natl. Acad. Sci. USA 104, 10152–10157.
- Kesari, K.K., Kumar, S., and Behari, J. (2011). Effects of radiofrequency electromagnetic wave exposure from cellular phones on the reproductive pattern in male Wistar rats. Appl. Biochem. Biotechnol. 164, 546–559. https://doi.org/10.1007/s12010-010-9156-0.
- Sirav, B., and Seyhan, N. (2011). Effects of radiofrequency radiation exposure on blood-brain barrier permeability in male and female rats. Electromagn. Biol. Med. 30, 253–260. https://doi.org/10.3109/15368378. 2011.600167.
- Ulubay, M., Yahyazadeh, A., Deniz, Ö.G., Kıvrak, E.G., Altunkaynak, B.Z., Erdem, G., and Kaplan, S. (2015). Effects of prenatal 900 MHz electromagnetic field exposures on the histology of rat kidney. Int. J. Radiat. Biol. 91, 35–41. https://doi.org/10.3109/09553002. 2014 950436
- Liu, X., Zuo, H., Wang, D., Peng, R., Song, T., Wang, S., Xu, X., Gao, Y., Li, Y., Wang, S., et al. (2015). Improvement of spatial memory disorder and hippocampal damage by exposure to electromagnetic fields in an Alzheimer's disease rat model. PLoS One 10, e0126963. https://doi.org/10.1371/ journal.pone.0126963.
- Sırav, B., and Seyhan, N. (2016). Effects of GSM modulated radio-frequency electromagnetic radiation on permeability of blood-brain barrier in male & female rats.
 J. Chem. Neuroanat. 75, 123–127. https:// doi.org/10.1016/j.jchemneu.2015.12.010.
- Barthélémy, A., Mouchard, A., Bouji, M., Blazy, K., Puigsegur, R., and Villégier, A.S. (2016). Glial markers and emotional memory in rats following acute cerebral radiofrequency exposures. Environ. Sci. Pollut. Res. 23, 25343–25355. https://doi. org/10.1007/s11356-016-7758-y.
- 61. Erdem Koç, G., Kaplan, S., Altun, G., Gümüş, H., Gülsüm Deniz, Ö., Aydin, I., Emin Onger, M., and Altunkaynak, Z. (2016). Neuroprotective effects of melatonin and omega-3 on hippocampal cells prenatally exposed to 900 MHz electromagnetic fields. Int. J. Radiat. Biol. 92, 590–595. https://doi. org/10.1080/09553002.2016.1206223.
- 62. Aslan, A., İkinci, A., Baş, O., Sönmez, O.F., Kaya, H., and Odacı, E. (2017). Long-term exposure to a continuous 900 MHz electromagnetic field disrupts cerebellar morphology in young adult male rats. Biotech. Histochem. 92, 324–330. https:// doi.org/10.1080/10520295.2017.1310295.
- 63. Othman, H., Ammari, M., Sakly, M., and Abdelmelek, H. (2017). Effects of prenatal exposure to WIFI signal (2.45 GHz) on postnatal development and behavior in rat: Influence of maternal restraint. Behav. Brain Res. 326, 291–302. https://doi.org/10.1016/j. bbr.2017.03.011.

- 64. Falcioni, L., Bua, L., Tibaldi, E., Lauriola, M., De Angelis, L., Gnudi, F., Mandrioli, D., Manservigi, M., Manservisi, F., Manzoli, I., et al. (2018). Report of final results regarding brain and heart tumors in Sprague-Dawley rats exposed from prenatal life until natural death to mobile phone radiofrequency field representative of a 1.8 GHz GSM base station environmental emission. Environ. Res. 165, 496–503. https://doi.org/10.1016/j.envres.2018.01.037.
- 65. Wyde, M., Cesta, M., Blystone, C., Elmore, S., Foster, P., Hooth, M., Kissling, G., Malarkey, D., Sills, R., Stout, M., et al. (2018). Report of Partial Findings from the National Toxicology Program Carcinogenesis Studies of Cell Phone Radiofrequency Radiation in Hsd: Sprague Dawley® SD Rats (Whole Body Exposures).
- Zuo, H., Liu, X., Wang, D., Li, Y., Xu, X., Peng, R., and Song, T. (2018). RKIP-mediated NFkappaB signaling is involved in ELF-MFmediated improvement in AD rat. Int. J. Med. Sci. 15, 1658–1666. https://doi.org/10. 7150/ijms.28411.
- Martínez-Sámano, J., Flores-Poblano, A., Verdugo-Díaz, L., Juárez-Oropeza, M.A., and Torres-Durán, P.V. (2018). Extremely low frequency electromagnetic field exposure and restraint stress induce changes on the brain lipid profile of Wistar rats. BMC Neurosci. 19, 31. https://doi.org/10.1186/ s12868-018-0432-1.
- Kamali, K., Taravati, A., Sayyadi, S., Gharib, F.z., and Maftoon, H. (2018). Evidence of oxidative stress after continuous exposure to Wi-Fi radiation in rat model. Environ. Sci. Pollut. Res. 25, 35396–35403. https://doi. org/10.1007/s11356-018-3482-0.
- Ouadah, N.S., Lecomte, A., Robidel, F., Olsson, A., Deltour, I., Schüz, J., Blazy, K., and Villégier, A.S. (2018). Possible effects of radiofrequency electromagnetic fields on in vivo C6 brain tumors in Wistar rats. J. Neuro Oncol. 140, 539–546. https://doi. org/10.1007/s11060-018-03012-y.
- Liu, L., Deng, H., Tang, X., Lu, Y., Zhou, J., Wang, X., Zhao, Y., Huang, B., and Shi, Y. (2021). Specific electromagnetic radiation in the wireless signal range increases wakefulness in mice. Proc. Natl. Acad. Sci. USA 118, e2105838118. https://doi.org/10. 1073/pnas. 2105838118.
- Tricas, T.C., and Carlson, B.A. (2012). Electroreceptors and Magnetoreceptors. In Cell Physiol Source Book, pp. 705–725. https://doi.org/10.1016/b978-0-12-387738-3.00041-x.
- Kempster, R.M., Hart, N.S., and Collin, S.P. (2013). Survival of the stillest: predator avoidance in shark embryos. PLoS One 8, e52551. https://doi.org/10.1371/journal. pone 0052551
- Zhang, X., Xia, K., Lin, L., Zhang, F., Yu, Y., St Ange, K., Han, X., Edsinger, E., Sohn, J., and Linhardt, R.J. (2018). Structural and functional components of the skate sensory organ ampullae of Lorenzini. ACS Chem. Biol. 13, 1677–1685. https://doi.org/10. 1021/acschembio.8b00335
- Bellono, N.W., Leitch, D.B., and Julius, D. (2018). Molecular tuning of electroreception in sharks and skates. Nature 558, 122–126. https://doi.org/10.1038/s41586.018.0140.9
- https://doi.org/10.1038/s41586-018-0160-9.
 75. de Santana, C.D., Crampton, W.G.R.,
 Dillman, C.B., Frederico, R.G., Sabaj, M.H.,
 Covain, R., Ready, J., Zuanon, J., de Oliveira,
 R.R., Mendes-Júnior, R.N., et al. (2019).
 Unexpected species diversity in electric eels

- with a description of the strongest living bioelectricity generator. Nat. Commun. 10, 4000. https://doi.org/10.1038/s41467-019-11690-z.
- Xu, J., Cui, X., and Zhang, H. (2021). The third form electric organ discharge of electric eels. Sci. Rep. 11, 6193. https://doi. org/10.1038/s41598-021-85715-3.
- 77. Clarke, D., Whitney, H., Sutton, G., and Robert, D. (2013). Detection and learning of floral electric fields by bumblebees. Science 340. 66–69.
- Koziorowska, A., Depciuch, J., Białek, J., Woś, I., Kozioł, K., Sadło, S., and Piechowicz, B. (2020). Electromagnetic field of extremely low frequency has an impact on selected chemical components of the honeybee. Pol. J. Vet. Sci. 23, 537–544. https://doi.org/10. 24425/pivs.2020.134703.
- Dreyer, D., Frost, B., Mouritsen, H., Günther, A., Green, K., Whitehouse, M., Johnsen, S., Heinze, S., and Warrant, E. (2018). The earth's magnetic field and visual landmarks steer migratory flight behavior in the nocturnal Australian bogong moth. Curr. Biol. 28, 2160–2166.e5. https://doi.org/10. 1016/j.cub.2018.05.030.
- Wiltschko, W., and Wiltschko, R. (2001). Light-dependent magnetoreception in birds: the behaviour of European robins, Erithacus rubecula, under monochromatic light of various wavelengths and intensities. J. Exp. Biol. 204, 3295–3302.
- 81. Muheim, R., Bäckman, J., and Åkesson, S. (2002). Magnetic compass orientation in European robins is dependent on both wavelength and intensity of light. J. Exp. Biol. 205, 3845–3856.
- Ritz, T., Wiltschko, R., Hore, P.J., Rodgers, C.T., Stapput, K., Thalau, P., Timmel, C.R., and Wiltschko, W. (2009). Magnetic compass of birds is based on a molecule with optimal directional sensitivity. Biophys. J. 96, 3451–3457. https://doi.org/10.1016/j. bpj.2008.11.072.
- Engels, S., Schneider, N.L., Lefeldt, N., Hein, C.M., Zapka, M., Michalik, A., Elbers, D., Kittel, A., Hore, P.J., and Mouritsen, H. (2014). Anthropogenic electromagnetic noise disrupts magnetic compass orientation in a migratory bird. Nature 509, 353–356. https://doi.org/10.1038/ pature 13290
- 84. Schwarze, S., Schneider, N.-L., Reichl, T., Dreyer, D., Lefeldt, N., Engels, S., Baker, N., Hore, P.J., and Mouritsen, H. (2016). Weak broadband electromagnetic fields are more disruptive to magnetic compass orientation in a night-migratory songbird (Erithacus rubecula) than strong narrow-band fields. Front. Behav. Neurosci. 10, 55. https://doi. org/10.3389/fnbeh.2016.00055.
- Hiscock, H.G., Mouritsen, H., Manolopoulos, D.E., and Hore, P.J. (2017). Disruption of magnetic compass orientation in migratory birds by radiofrequency electromagnetic fields. Biophys. J. 113, 1475–1484. https://doi.org/10.1016/j.bpj. 2017.07.031.
- Xu, J., Jarocha, L.E., Zollitsch, T., Konowalczyk, M., Henbest, K.B., Richert, S., Golesworthy, M.J., Schmidt, J., Déjean, V., Sowood, D.J.C., et al. (2021). Magnetic sensitivity of cryptochrome 4 from a migratory songbird. Nature 594, 535–540. https://doi.org/10.1038/s41586-021-03618-9.
- 87. Wiltschko, W., Wiltschko, R., and Keeton, W.T. (1976). Effects of a permanent clock-

- shift on the orientation of young homing pigeons. Behav. Ecol. Sociobiol. 1, 229–243
- Mora, C.V., Davison, M., Martin Wild, J., and Walker, M.M. (2004). Magnetoreception and its trigeminal mediation in the homing pigeon. Nature 432, 508–511. https://doi. org/10.1038/nature03039.
- Treiber, C.D., Salzer, M.C., Riegler, J., Edelman, N., Sugar, C., Breuss, M., Pichler, P., Cadiou, H., Saunders, M., Lythgoe, M., et al. (2012). Clusters of iron-rich cells in the upper beak of pigeons are macrophages not magnetosensitive neurons. Nature 484, 367–370. https://doi.org/10.1038/ nature11046.
- Nimpf, S., Malkemper, E.P., Lauwers, M., Ushakova, L., Nordmann, G., Wenninger-Weinzierl, A., Burkard, T.R., Jacob, S., Heuser, T., Resch, G.P., and Keays, D.A. (2017). Subcellular analysis of pigeon hair cells implicates vesicular trafficking in cuticulosome formation and maintenance. Elife 6, e29959. https://doi.org/10.7554/ el ife 29959
- Sutton, G.P., Clarke, D., Morley, E.L., and Robert, D. (2016). Mechanosensory hairs in bumblebees (Bombus terrestris) detect weak electric fields. Proc. Natl. Acad. Sci. USA 113, 7261–7265. https://doi.org/10. 1073/pnas.1601624113.
- 92. Greggers, U., Koch, G., Schmidt, V., Dürr, A., Floriou-Servou, A., Piepenbrock, D., Göpfert, M.C., and Menzel, R. (2013). Reception and learning of electric fields in bees. Proc. Biol. Sci. 280, 20130528. https://doi.org/10.1098/rspb.2013.0528.
- Cranfield, C.G., Dawe, A., Karloukovski, V., Dunin-Borkowski, R.E., de Pomerai, D., and Dobson, J. (2004). Biogenic magnetite in the nematode Caenorhabditis elegans. Proc. Biol. Sci. 271, S436–S439. https://doi.org/10. 1098/rsbl.2004.0209.
- Murugan, N.J., and Persinger, M.A. (2014). Comparisons of responses by planarian to micromolar to attomolar dosages of morphine or naloxone and/or weak pulsed magnetic fields: Revealing receptor subtype affinities and non-specific effects. Int. J. Radiat. Biol. 90, 833–840. https://doi.org/10. 3109/09553002.2014.911421.
- Makow, D., and Grice, H. (1963). Influence of radio frequency heating on sperm. Nature 200, 1120–1121.
- Czéh, B., Welt, T., Fischer, A.K., Erhardt, A., Schmitt, W., Müller, M.B., Toschi, N., Fuchs, E., and Keck, M.E. (2002). Chronic psychosocial stress and concomitant repetitive transcranial magnetic stimulation: Effects on stress hormone levels and adult hippocampal neurogenesis. Biol. Psychiatry 52, 1057–1065.
- Brocklehurst, B., and McLauchlan, K.A. (1996). Free radical mechanism for the effects of environmental electromagnetic fields on biological systems. Int. J. Radiat. Biol. 69, 3–24. https://doi.org/10.1080/ 095530096146147.
- Özorak, A., Nazıroğlu, M., Çelik, Ö., Yüksel, M., Özçelik, D., Özkaya, M.O., Çetin, H., Kahya, M.C., and Kose, S.A. (2013). Wi-Fi (2.45 GHz)- and mobile phone (900 and 1800 MHz)-induced risks on oxidative stress and elements in kidney and testis of rats during pregnancy and the development of offspring. Biol. Trace Elem. Res. 156, 221–229. https://doi.org/10.1007/s12011-013-9836-z.
- 99. Liu, Q., Si, T., Xu, X., Liang, F., Wang, L., and Pan, S. (2015). Electromagnetic radiation at

- 900 MHz induces sperm apoptosis through bcl-2, bax and caspase-3 signaling pathways in rats. Reprod. Health 12, 65. https://doi.org/10.1186/s12978-015-0062-3.
- 100. Shokri, S., Soltani, A., Kazemi, M., Sardari, D., and Mofrad, F.B. (2015). Effects of Wi-Fi (2.45 GHz) exposure on apoptosis, sperm parameters and testicular histomorphometry in rats: A time course study. Cell J. 17, 322–331.
- 101. Mina, D., Sagonas, K., Fragopoulou, A.F., Pafilis, P., Skouroliakou, A., Margaritis, L.H., Tsitsilonis, O.E., and Valakos, E.D. (2016). Immune responses of a wall lizard to wholebody exposure to radiofrequency electromagnetic radiation. Int. J. Radiat. Biol. 92, 162–168. https://doi.org/10.3109/ 09553002.2016.1135262.
- 102. Hassanshahi, A., Shafeie, S.A., Fatemi, I., Hassanshahi, E., Allahtavakoli, M., Shabani, M., Roohbakhsh, A., and Shamsizadeh, A. (2017). The effect of Wi-Fi electromagnetic waves in unimodal and multimodal object recognition tasks in male rats. Neurol. Sci. 38, 1069–1076. https://doi.org/10.1007/ s10072-017-2920-y.
- 103. Kim, J.H., Kim, H.J., Yu, D.H., Kweon, H.S., Huh, Y.H., and Kim, H.R. (2017). Changes in numbers and size of synaptic vesicles of cortical neurons induced by exposure to 835 MHz radiofrequency-electromagnetic field. PLoS One 12, e0186416. https://doi.org/10. 1371/journal.pone.0186416.
- 104. Piccinetti, C.C., De Leo, A., Cosoli, G., Scalise, L., Randazzo, B., Cerri, G., and Olivotto, I. (2018). Measurement of the 100 MHz EMF radiation in vivo effects on zebrafish D. rerio embryonic development: A multidisciplinary study. Ecotoxicol. Environ. Saf. 154, 268–279. https://doi.org/ 10.1016/j.ecoenv.2018.02.053.
- 105. Houston, B.J., Nixon, B., McEwan, K.E., Martin, J.H., King, B.V., Aitken, R.J., and De Iuliis, G.N. (2019). Whole-body exposures to radiofrequency-electromagnetic energy can cause DNA damage in mouse spermatozoa via an oxidative mechanism. Sci. Rep. 9, 17478. https://doi.org/10.1038/s41598-019-53983-9
- 106. Saliev, T., Begimbetova, D., Masoud, A.-R., and Matkarimov, B. (2019). Biological effects of non-ionizing electromagnetic fields: Two sides of a coin. Prog. Biophys. Mol. Biol. 141, 25–36. https://doi.org/10.1016/j. pbiomolbio.2018.07.009.
- 107. Kim, H.S., Lee, Y.H., Choi, H.D., Lee, A.K., Jeon, S.B., Pack, J.K., Kim, N., and Ahn, Y.H. (2020). Effect of exposure to a radiofrequency electromagnetic field on body temperature in anesthetized and nonanesthetized rats. Bioelectromagn 41, 104–112. https://doi.org/10.1002/bem. 22236.
- 108. Gao, P., Chen, Q., Hu, J., Lin, Y., Lin, J., Guo, Q., Yue, H., Zhou, Y., Zeng, L., Li, J., et al. (2020). Effect of ultra-wide-band electromagnetic pulses on blood-brain barrier permeability in rats. Mol. Med. Rep. 22, 2775–2782. https://doi.org/10.3892/mmr.2020.11382.
- 109. Aghajari, S., Mortazavi, S.M.J., Kalani, M., Nematolahi, S., Habibzadeh, P., and Farjadian, S. (2021). The immunomodulatory effect of radiofrequency electromagnetic field on serum cytokine levels in a mouse model of hindlimb unloading. Cell J. 22, 401–405. https://doi.org/10.22074/cellj. 2021.6856.

- 110. Yaghmazadeh, O., Vöröslakos, M., Alon, L., Carluccio, G., Collins, C., Sodickson, D.K., and Buzsáki, G. (2022). Neuronal activity under transcranial radio-frequency stimulation in metal-free rodent brains invivo. Commun. Eng. 1, 15. https://doi.org/ 10.1038/s44172-022-00014-7.
- 111. Singh, K.V., Prakash, C., Nirala, J.P., Nanda, R.K., and Rajamani, P. (2023). Acute radiofrequency electromagnetic radiation exposure impairs neurogenesis and causes neuronal DNA damage in the young rat brain. Neurotoxicol 94, 46–58. https://doi.org/10.1016/j.neuro.2022.11.001.
- 112. Kirson, E.D., Gurvich, Z., Schneiderman, R., Dekel, E., Itzhaki, A., Wasserman, Y., Schatzberger, R., and Palti, Y. (2004). Disruption of cancer cell replication by alternating electric fields. Cancer Res. 64, 3288–3295.
- 113. Ariza, C.A., Fleury, A.T., Tormos, C.J., Petruk, V., Chawla, S., Oh, J., Sakaguchi, D.S., and Mallapragada, S.K. (2010). The influence of electric fields on hippocampal neural progenitor cells. Stem Cell Rev. Rep. 6, 585–600. https://doi.org/10.1007/s12015-010-9171-0.
- 114. Sun, Y., Do, H., Gao, J., Zhao, R., Zhao, M., and Mogilner, A. (2013). Keratocyte fragments and cells utilize competing pathways to move in opposite directions in an electric field. Curr. Biol. 23, 569–574. https://doi.org/10.1016/j.cub.2013.02.026.
- Samsonov, A., and Popov, S.V. (2013). The effect of a 94 GHz electromagnetic field on neuronal microtubules. Bioelectromagn 34, 133–144. https://doi.org/10.1002/bem. 21760
- 116. Yumoto, H., Hirao, K., Tominaga, T., Bando, N., Takahashi, K., and Matsuo, T. (2015). Electromagnetic wave irradiation promotes osteoblastic cell proliferation and upregulates growth factors via activation of the ERK1/2 and p38 MAPK pathways. Cell. Physiol. Biochem. 35, 601–615. https://doi.org/10.1159/000369722.
- 117. Čermak, A.M.M., Ilić, K., and Pavičić, I. (2020). Microtubular structure impairment after GSM-modulated RF radiation exposure. Arh. Hig. Rada. Toksikol. 71, 205–210. https://doi.org/10.2478/aiht-2020-71.3267
- 118. Ikeya, N., and Woodward, J.R. (2021). Cellular autofluorescence is magnetic field sensitive. Proc. Natl. Acad. Sci. USA 118, e2018043118. https://doi.org/10.1073/pnas. 2018043118.
- 119. Huang, B., Zhao, W., Cai, X., Zhu, Y., Lu, Y., Zhao, J., Xiang, N., Wang, X., Deng, H., Tang, X., et al. (2023). Expression and activity of the transcription factor CCAAT/enhancer-binding protein β (C/EBPβ) is regulated by specific pulse-modulated radio frequencies in oligodendroglial cells. Int. J. Mol. Sci. 24, 11131. https://doi.org/10.3390/iims241311131.
- 120. Halgamuge, M.N. (2020). Supervised Machine Learning Algorithms for Bioelectromagnetics: Prediction Models and Feature Selection Techniques Using Data from Weak Radiofrequency Radiation Effect on Human and Animals Cells. Int. J. Environ. Res. Public Health 17, 4595. https:// doi.org/10.3390/jierph17124595
- 121. Tessaro, L.W.E., Murugan, N.J., and Persinger, M.A. (2015). Bacterial growth rates are influenced by cellular characteristics of individual species when immersed in electromagnetic fields.

- Microbiol. Res. 172, 26–33. https://doi.org/10.1016/j.micres.2014.12.008.
- 122. Weissman, J.L., Hou, S., and Fuhrman, J.A. (2021). Estimating maximal microbial growth rates from cultures, metagenomes, and single cells via codon usage patterns. Proc. Natl. Acad. Sci. USA 118, e2016810118. https://doi.org/10.1073/pages.2016810118
- https://doi.org/10.1073/pnas.2016810118.

 123. Dimitrov, D.S., and Zhelev, D.V. (1987).
 Dielectrophoresis of individual cells:
 Experimental methods and results.
 Bioelectrochem. Bioenerg. 17, 549–557.

 124. Smith, S.D., McLeod, B.R., Liboff, A.R., and
- 124. Smith, S.D., McLeod, B.R., Liboff, A.R., and Cooksey, K. (1987). Calcium cyclotron resonance and diatom mobility. Bioelectromagn 8, 215–227.
- 125. Walleczek, J., and Liburdy, R.P. (1990). Nonthermal 60 Hz sinusoidal magnetic-field exposure enhances Ca2+ uptake in rat thymocytes: dependence on mitogen activation. FEBS Lett. 271, 157–160. https:// doi.org/10.1016/0014-5793(90)80396-z.
- Gascoyne, P.R.C., Huang, Y., Pethig, R., Vykoukal, J., and Becker, F.F. (1992).
 Dielectrophoretic separation of mammalian cells studied by computerized image analysis. Meas. Sci. Technol. 3, 439–445.
 Liburdy, R.P., Callahan, D.E., Harland, J.,
- Liburdy, R.P., Callahan, D.E., Harland, J., Dunham, E., Sloma, T.R., and Yaswen, P. (1993). Experimental evidence for 60 Hz magnetic fields operating through the signal transduction cascade. FEBS Lett. 334, 301–308.
- 128. Coulton, L.A., and Barker, A.T. (1993). Magnetic fields and intracellular calcium effects on lymphocytes exposed to conditions for 'cyclotron resonance. Phys. Med. Biol. 38, 347–360.
- 129. García-Sancho, J., Montero, M., Alvarez, J., Fonteriz, R.I., and Sanchez, A. (1994). Effects of extremely-low-frequency electromagnetic fields on ion transport in several mammalian cells. Bioelectromagn 15, 579–588.
- 130. Hendee, S.P., Faour, F.A., Christensen, D.A., Patrick, B., Durney, C.H., and Blumenthal, D.K. (1996). The effects of weak extremely low frequency magnetic fields on calcium calmodulin interactions. Biophys. J. 70, 2915–2923.
- 131. Lyle, D.B., Fuchs, T.A., Casamento, J.P., Davis, C.C., and Swicord, M.L. (1997). Intracellular calcium signaling by jurkat T-lymphocytes exposed to a 60 Hz magnetic field. Bioelectromagn 18, 439–445.
- Figure 1. Figure 2.
 Figure 2.
 Figure 3.
 Figure 3.
 Figure 3.
 Figure 4.
 Figure 4.</li
- 133. Diniz, P., Soejima, K., and Ito, G. (2002). Nitric oxide mediates the effects of pulsed electromagnetic field stimulation on the osteoblast proliferation and differentiation. Nitric Oxide 7, 18–23.
- 134. Eguchi, Y., Ogiue-Ikeda, M., and Ueno, S. (2003). Control of orientation of rat Schwann cells using an 8-T static magnetic field. Neurosci. Lett. 351, 130–132. https://doi. org/10.1016/s0304-3940(03)00719-5.
- 135. Morimoto, S., Takahashi, T., Shimizu, K., Kanda, T., Okaishi, K., Okuro, M., Murai, H., Nishimura, Y., Nomura, K., Tsuchiya, H., et al. (2005). Electromagnetic fields inhibit endothelin-1 production stimulated by thrombin in endothelial cells. J. Int. Med. Res. 33, 545–554.
- Portaccio, M., De Luca, P., Durante, D., Grano, V., Rossi, S., Bencivenga, U., Lepore, M., and Mita, D.G. (2005). Modulation of the

- catalytic activity of free and immobilized peroxidase by extremely low frequency electromagnetic fields: dependence on frequency. Bioelectromagn 26, 145–152. https://doi.org/10.1002/bem.20059.
- 137. Lisi, A., Foletti, A., Ledda, M., Rosola, E., Giuliani, L., D'Emilia, E., and Grimaldi, S. (2006). Extremely low frequency 7 Hz 100 μT electromagnetic radiation promotes differentiation in the human epithelial cell line HaCaT. Electromagn. Biol. Med. 25, 269–280. https://doi.org/10.1080/15368370601044184.
- 138. Del Vecchio, G., Giuliani, A., Fernandez, M., Mesirca, P., Bersani, F., Pinto, R., Ardoino, L., Lovisolo, G.A., Giardino, L., and Calzà, L. (2009). Continuous exposure to 900MHz GSM-modulated EMF alters morphological maturation of neural cells. Neurosci. Lett. 455, 173–177. https://doi.org/10.1016/j. neulet.2009.03.061.
- 139. De Iuliis, G.N., Newey, R.J., King, B.V., Aitken, R.J., and Aitken, R.J. (2009). Mobile phone radiation induces reactive oxygen species production and DNA damage in human spermatozoa in vitro. PLoS One 4, e6446. https://doi.org/10.1371/journal. pone.0006446.
- 140. De Carlo, F., Ledda, M., Pozzi, D., Pierimarchi, P., Zonfrillo, M., Giuliani, L., D'Emilia, E., Foletti, A., Scorretti, R., Grimaldi, S., and Lisi, A. (2012). Nonionizing radiation as a noninvasive strategy in regenerative medicine: the effect of Ca(2+)-ICR on mouse skeletal muscle cell growth and differentiation. Tissue Eng. Part A 18, 2248–2258. https://doi.org/10.1089/ten. TEA.2012.0113.
- Pilla, A.A. (2012). Electromagnetic fields instantaneously modulate nitric oxide signaling in challenged biological systems. Biochem. Biophys. Res. Commun. 426, 330–333. https://doi.org/10.1016/j.bbrc. 2012.08.078
- 142. Chen, C., Ma, Q., Liu, C., Deng, P., Zhu, G., Zhang, L., He, M., Lu, Y., Duan, W., Pei, L., et al. (2014). Exposure to 1800 MHz radiofrequency radiation impairs neurite outgrowth of embryonic neural stem cells. Sci. Rep. 4, 5103. https://doi.org/10.1038/ sren05103.
- 143. Giladi, M., Weinberg, U., Schneiderman, R.S., Porat, Y., Munster, M., Voloshin, T., Blatt, R., Cahal, S., Itzhaki, A., Onn, A., et al. (2014). Alternating electric fields (tumortreating fields therapy) can improve chemotherapy treatment efficacy in nonsmall cell lung cancer both in vitro and in vivo. Semin. Oncol. 41, S35–S41. https:// doi.org/10.1053/j.seminoncol.2014.09.006.
- 144. Usselman, R.J., Hill, I., Singel, D.J., Martino, C.F., and Martino, C.F. (2014). Spin biochemistry modulates reactive oxygen species (ROS) production by radio frequency magnetic fields. PLoS One 9, e93065. https://doi.org/10.1371/journal. pone.0093065.
- 145. Neves, G.F., Silva, J.R.F., Moraes, R.B., Fernandes, T.S., Tenorio, B.M., and Nogueira, R.A. (2014). 60 Hz electric field changes the membrane potential during burst phase in pancreatic beta-cells: in silico analysis. Acta Biotheor. 62, 133–143. https:// doi.org/10.1007/s10441-014-9214-z.
- 146. Reale, M., Kamal, M.A., Patruno, A.,
 Costantini, E., D'Angelo, C., Pesce, M., and
 Greig, N.H. (2014). Neuronal cellular
 responses to extremely low frequency
 electromagnetic field exposure: implications

- regarding oxidative stress and neurodegeneration. PLoS One 9, e104973. https://doi.org/10.1371/journal.pone. 0104973.
- 147. Riggio, C., Calatayud, M.P., Giannaccini, M., Sanz, B., Torres, T.E., Fernández-Pacheco, R., Ripoli, A., Ibarra, M.R., Dente, L., Cuschieri, A., et al. (2014). The orientation of the neuronal growth process can be directed via magnetic nanoparticles under an applied magnetic field. Nanomedicine. 10, 1549–1558. https://doi.org/10.1016/j. nano.2013.12.008.
- 148. Cheng, K., Ren, D.-Q., Yi, J.U.N., Zhou, X.-G., Yang, W.-Q., Chen, Y.-B., Li, Y.-Q., Huang, X.-F., and Zeng, G.-Y. (2015). Pulsed electromagnetic wave exposure induces ultrastructural damage and upregulated expression of heat shock protein 70 in the rat adenohypophysis. Mol. Med. Rep. 12, 2175–2180. https://doi.org/10.3892/mmr. 2015.3627.
- 149. Kazemi, E., Mortazavi, S.M.J., Ali-Ghanbari, A., Sharifzadeh, S., Ranjbaran, R., Mostafavi-Pour, Z., Zal, F., and Haghani, M. (2015). Effect of 900 MHz electromagnetic radiation on the induction of ROS in human peripheral blood mononuclear cells. J. Biomed. Phys. Eng. 5, 105–114.
- 150. Giladi, M., Schneiderman, R.S., Voloshin, T., Porat, Y., Munster, M., Blat, R., Sherbo, S., Bomzon, Z., Urman, N., Itzhaki, A., et al. (2015). Mitotic spindle disruption by alternating electric fields leads to improper chromosome segregation and mitotic catastrophe in cancer cells. Sci. Rep. 5, 18046. https://doi.org/10.1038/srep18046.
- 151. Koyama, S., Narita, E., Suzuki, Y., Taki, M., Shinohara, N., and Miyakoshi, J. (2015). Effect of a 2.45-GHz radiofrequency electromagnetic field on neutrophil chemotaxis and phagocytosis in differentiated human HL-60 cells. J. Radiat. Res. 56, 30–36. https://doi.org/10.1093/jrr/ rru075.
- 152. Akbarnejad, Z., Eskandary, H., Vergallo, C., Nematollahi-Mahani, S.N., Dini, L., Darvishzadeh-Mahani, F., and Ahmadi, M. (2017). Effects of extremely low-frequency pulsed electromagnetic fields (ELF-PEMFs) on glioblastoma cells (U87). Electromagn. Biol. Med. 36, 238–247. https://doi.org/10. 1080/15368378.2016.1251452
- 153. Storch, K., Dickreuter, E., Artati, A., Adamski, J., Cordes, N., and Cordes, N. (2016). BEMER electromagnetic field therapy reduces cancer cell radioresistance by enhanced ROS formation and induced DNA damage. PLoS One 11, e0167931. https:// doi.org/10.1371/journal.pone.0167931.
- 154. Lin, Y.Y., Wu, T., Liu, J.Y., Gao, P., Li, K.C., Guo, Q.Y., Yuan, M., Lang, H.Y., Zeng, L.H., and Guo, G.Z. (2017). 1950 MHz radio frequency electromagnetic radiation inhibits testosterone secretion of mouse Leydig cells. Int. J. Environ. Res. Public Health 15, 17. https://doi.org/10.3390/ijerph15010017.
- 155. Chang, E., Patel, C.B., Pohling, C., Young, C., Song, J., Flores, T.A., Zeng, Y., Joubert, L.-M., Arami, H., Natarajan, A., et al. (2018). Tumor treating fields increases membrane permeability in glioblastoma cells. Cell Death Discov. 4, 113. https://doi.org/10.1038/s41420-018-0130-x.
- 156. Ding, S.S., Sun, P., Zhang, Z., Liu, X., Tian, H., Huo, Y.W., Wang, L.R., Han, Y., and Xing, J.P. (2018). Moderate dose of trolox preventing the deleterious effects of Wi-Fi

- radiation on spermatozoa in vitro through reduction of oxidative stress damage. Chin. Med. J. 131, 402–412. https://doi.org/10.4103/0366-6999 225045.
- 157. Fei, Y., Su, L., Lou, H., Zhao, C., Wang, Y., and Chen, G. (2019). The effects of 50 Hz magnetic field-exposed cell culture medium on cellular functions in FL cells. J. Radiat. Res. 60, 424-431. https://doi.org/10.1093/ jrr/rrz020.
- 158. Ho, S.-Y., Chen, I.C., Chen, Y.-J., Lee, C.-H., Fu, C.-M., Liu, F.-C., and Liou, H.-H. (2019). Static magnetic field induced neural stem/ progenitor cell early differentiation and promotes maturation. Stem Cells Int. 2019, 8790176. https://doi.org/10.1155/2019/ 8790176
- 159. Bagheri Hosseinabadi, M., Khanjani, N., Mirzaii, M., Norouzi, P., and Atashi, A. (2019). DNA damage from long-term occupational exposure to extremely low frequency electromagnetic fields among power plant workers. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 846, 403079. https://doi. org/10.1016/j.mrgentox.2019.07.007.
- 160. Berkelmann, L., Bader, A., Meshksar, S., Dierks, A., Hatipoglu Majernik, G., Krauss, J.K., Schwabe, K., Manteuffel, D., and Ngezahayo, A. (2019). Tumour-treating fields (TTFields): Investigations on the mechanism of action by electromagnetic exposure of cells in telophase/cytokinesis. Sci. Rep. 9, 7362. https://doi.org/10.1038/s41598-019-43621-9.
- 161. von Niederhäusern, N., Ducray, A., Zielinski, J., Murbach, M., and Mevissen, M. (2019). Effects of radiofrequency electromagnetic field exposure on neuronal differentiation and mitochondrial function in SH-SY5Y cells. Toxicol. Vitro 61, 104609. https://doi.org/10. 1016/j.tiv.2019.104609.
- 162. Górski, R., Kotwicka, M., Skibińska, I., Jendraszak, M., and Wosiński, S. (2020). Effect of low-frequency electric field screening on motility of human sperm. Ann. Agric. Environ. Med. 27, 427–434. https:// doi.org/10.26444/aaem/116019.
- 163. Wu, H., Wang, C., Liu, J., Zhou, D., Chen, D., Liu, Z., Wu, A., Yang, L., Chang, J., Luo, C., et al. (2020). Evaluation of a tumor electric field treatment system in a rat model of glioma. CNS Neurosci. Ther. 26, 1168–1177. https://doi.org/10.1111/cns.13441.
- 164. Wust, P., Kortüm, B., Strauss, U., Nadobny, J., Zschaeck, S., Beck, M., Stein, U., and Ghadjar, P. (2020). Non-thermal effects of radiofrequency electromagnetic fields. Sci. Rep. 10, 13488. https://doi.org/10.1038/ s41598-020-69561-3.
- 165. Lamkowski, A., Kreitlow, M., Radunz, J., Willenbockel, M., Stiemer, M., Fichte, L.O., Rädel, C.F., Majewski, M., Ostheim, P., Port, M., and Abend, M. (2021). Analyzing the impact of 900 MHz EMF short-term exposure to the expression of 667 miRNAs in human peripheral blood cells. Sci. Rep. 11, 4444. https://doi.org/10.1038/s41598-021-82278-1.
- 166. Semeano, A.T., Tofoli, F.A., Corrêa-Velloso, J.C., de Jesus Santos, A.P., Oliveira-Giacomelli, Á., Cardoso, R.R., Pessoa, M.A., da Rocha, E.L., Ribeiro, G., Ferrari, M.F.R., et al. (2022). Effects of magnetite nanoparticles and static magnetic field on neural differentiation of pluripotent stem cells. Stem Cell Rev. Rep. 18, 1337–1354. https://doi.org/10.1007/s12015-022-10332-0.

- 167. Yadav, H., Rai, U., and Singh, R. (2021). Radiofrequency radiation: A possible threat to male fertility. Reprod. Toxicol. 100, 90–100. https://doi.org/10.1016/j.reprotox. 2021.01.007.
- 168. Pall, M.L. (2016). Microwave frequency electromagnetic fields (EMFs) produce widespread neuropsychiatric effects including depression. J. Chem. Neuroanat. 75, 43–51. https://doi.org/10.1016/j. jchemneu.2015.08.001.
- 169. Tian, X., Wang, D., Zha, M., Yang, X., Ji, X., Zhang, L., and Zhang, X. (2018). Magnetic field direction differentially impacts the growth of different cell types. Electromagn. Biol. Med. 37, 114–125. https://doi.org/10. 1080/15368378.2018.1458627.
- 170. Borgens, R.B., Vanable, J.W., Jr., Jaffe, L.F., and Jaffe, L.F. (1977). Bioelectricity and regeneration: Large currents leave the stumps of regenerating newt limbs. Proc. Natl. Acad. Sci. USA 74, 4528–4532.
- 171. Zhao, M., Song, B., Pu, J., Wada, T., Reid, B., Tai, G., Wang, F., Guo, A., Walczysko, P., Gu, Y., et al. (2006). Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-gamma and PTEN. Nature 442, 457–460. https://doi.org/10.1038/nature04925.
- 172. Bazylinski, D.A., and Frankel, R.B. (2004). Magnetosome formation in prokaryotes. Nat. Rev. Microbiol. 2, 217–230. https://doi.org/10.1038/nrmicro842.
- 173. Monteil, C.L., and Lefevre, C.T. (2020). Magnetoreception in microorganisms. Trends Microbiol. 28, 266–275. https://doi. org/10.1016/j.tim.2019.10.012.
- 174. Pfeiffer, D., Toro-Nahuelpan, M., Awal, R.P., Müller, F.D., Bramkamp, M., Plitzko, J.M., and Schüler, D. (2020). A bacterial cytolinker couples positioning of magnetic organelles to cell shape control. Proc. Natl. Acad. Sci. USA 117, 32086–32097. https://doi.org/10. 1073/pnas.2014/59117
- 175. Bandara, H.M.H.N., Nguyen, D., Mogarala, S., Osiñski, M., and Smyth, H.D.C. (2015). Magnetic fields suppress Pseudomonas aeruginosa biofilms and enhance ciprofloxacin activity. Biofouling 31, 443–457. https://doi.org/10.1080/08927014.
- 176. Raouia, H., Hamida, B., Khadidja, A., Ahmed, L., and Abdelwaheb, C. (2020). Effect of static magnetic field (200 mT) on biofilm formation in Pseudomonas aeruginosa. Arch. Microbiol. 202, 77–83. https://doi.org/10.1007/s00203-019-01719-8.
- 177. Lu, M., Wang, S., Wang, T., Hu, S., Bhayana, B., Ishii, M., Kong, Y., Cai, Y., Dai, T., Cui, W., and Wu, M.X. (2021). Bacteria-specific phototoxic reactions triggered by blue light and phytochemical carvacrol. Sci. Transl. Med. 13, eaba3571.
- 178. Letuta, U.G., and Berdinskiy, V.L. (2017). Magnetosensitivity of bacteria E. coli: Magnetic isotope and magnetic field effects. Bioelectromagn 38, 581–591. https://doi.org/10.1002/bem.22073.
- 179. Letuta, U.G., and Tikhonova, T.A. (2019). Magnetic Fields and Magnetic Isotope 25Mg Effects on Biofilms Formation by Bacteria E. coli. Dokl. Biochem. Biophys. 484, 85–87. https://doi.org/10.1134/ s160767291901023x.
- 180. Bayır, E., Bilgi, E., Şendemir-Ürkmez, A., and Hameş-Kocabaş, E.E. (2015). The effects of different intensities, frequencies and exposure times of extremely low-frequency

- electromagnetic fields on the growth ofStaphylococcus aureusandEscherichia coliO157:H7. Electromagn. Biol. Med. 34, 14–18. https://doi.org/10.3109/15368378. 2013.853671.
- Oncul, S., Cuce, E.M., Aksu, B., and Inhan Garip, A. (2016). Effect of extremely low frequency electromagnetic fields on bacterial membrane. Int. J. Radiat. Biol. 92, 42–49. https://doi.org/10.3109/09553002. 2015.1101500.
- 182. Di Campli, E., Di Bartolomeo, S., Grande, R., Di Giulio, M., and Cellini, L. (2010). Effects of extremely low-frequency electromagnetic fields on Helicobacter pylori biofilm. Curr. Microbiol. 60, 412–418. https://doi.org/10. 1007/s00284-009-9558-9.
- 183. Chang, S.-K., Choi, J.-S., Gil, H.-W., Yang, J.-O., Lee, E.-Y., Jeon, Y.-S., Lee, Z.-W., Lee, M., Hong, M.-Y., Ho Son, T., and Hong, S.-Y. (2005). Genotoxicity evaluation of electromagnetic fields generated by 835-MHz mobile phone frequency band. Eur. J. Cancer Prev. 14, 175–179.
- 184. Taheri, M., Mortazavi, S.M.J., Moradi, M., Mansouri, S., Hatam, G.R., and Nouri, F. (2017). Evaluation of the effect of radiofrequency radiation emitted from Wi-Fi router and mobile phone simulator on the antibacterial susceptibility of pathogenic bacteria Listeria monocytogenes and Escherichia coli. Dose Response 15, 1559325816688527. https://doi.org/10. 1177/1559325816688527.
- 185. Said-Salman, I.H., Jebaii, F.A., Yusef, H.H., and Moustafa, M.E. (2019). Evaluation of Wi-Fi radiation effects on antibiotic susceptibility, metabolic activity and biofilm formation by Escherichia coli O157H7, Staphylococcus aureus and Staphylococcus epidermis. J. Biomed. Phys. Eng. 9, 579–586. https://doi.org/10.31661/jbpe.v0i0.1106.
- 186. Said-Salman, I.H., Jebaii, F.A., Yusef, H.H., and Moustafa, M.E. (2019). Global gene expression analysis of Escherichia coli K-12 DH5α after exposure to 2.4 GHz wireless fidelity radiation. Sci. Rep. 9, 14425. https:// doi.org/10.1038/s41598-019-51046-7.
- 187. Crabtree, D.P.E., Herrera, B.J., and Kang, S. (2017). The response of human bacteria to static magnetic field and radiofrequency electromagnetic field. J. Microbiol. 55, 809–815. https://doi.org/10.1007/s12275-017-7208-7.
- 188. Hiscock, H.G., Worster, S., Kattnig, D.R., Steers, C., Jin, Y., Manolopoulos, D.E., Mouritsen, H., and Hore, P.J. (2016). The quantum needle of the avian magnetic compass. Proc. Natl. Acad. Sci. USA 113, 4634–4639. https://doi.org/10.1073/pnas. 1600341113.
- 189. Hochstoeger, T., Al Said, T., Maestre, D., Walter, F., Vilceanu, A., Pedron, M., Cushion, T.D., Snider, W., Nimpf, S., Nordmann, G.C., et al. (2020). The biophysical, molecular, and anatomical landscape of pigeon CRY4 A candidate light-based quantal magnetosensor. Sci. Adv. 6, eabb9110.
- 190. Krishnan, V., Park, S.A., Shin, S.S., Alon, L., Tressler, C.M., Stokes, W., Banerjee, J., Sorrell, M.E., Tian, Y., Fridman, G.Y., et al. (2018). Wireless control of cellular function by activation of a novel protein responsive to electromagnetic fields. Sci. Rep. 8, 8764. https://doi.org/10.1038/s41598-018-27087-9.
- 191. Wasak, A., Drozd, R., Jankowiak, D., and Rakoczy, R. (2019). Rotating magnetic field

- as tool for enhancing enzymes properties laccase case study. Sci. Rep. 9, 3707. https://doi.org/10.1038/s41598-019-39198-y.
- 192. Pirogova, E., Vojisavljevic, V., and Cosic, I. (2008). Non-thermal Effects of 500 MHz - 900 MHz Microwave Radiation on Enzyme Kinetics (IEEE EMBS).
- 193. Morelli, A., Ravera, S., Panfoli, I., and Pepe, I.M. (2005). Effects of extremely low frequency electromagnetic fields on membrane-associated enzymes. Arch. Biochem. Biophys. 441, 191–198. https://doi.org/10.1016/j.abb.2005.07.011.
 194. Caliga, R., Lucian Maniu, C., and Mihăşan, M. (2004). Electromagnetic field for a financial field field for a field fi
- 194. Caliga, R., Lucian Maniu, C., and Mihăşan, M. (2016). ELF-EMF exposure decreases the peroxidase catalytic efficiency in vitro. Open Life Sci. 11, 71–77. https://doi.org/10.1515/ biol-2016-0009.
- 195. Beyer, C., Christen, P., Jelesarov, I., and Fröhlich, J. (2014). Real-time assessment of possible electromagnetic-field-induced changes in protein conformation and thermal stability. Bioelectromagn 35, 470–478. https://doi.org/10.1002/bem. 21865.
- 196. Liebe, H.J., Hufford, G.A., and Manabe, T. (1991). A model for the complex permittivity of water at frequencies below 1 THz. Int J Infrared Milimeter Waves 12, 659–675.
 197. Varadan, T.S., and Varadan, V.V. (2009).
- Varadan, T.S., and Varadan, V.V. (2009).
 Variation of Cole-Cole model parameters with the complex permittivity of biological tissues (IMS).
- 198. Lu, Y., Tang, X., Zhao, Y., Jiang, T., Zhou, J., Wang, X., Huang, B., Liu, L., Deng, H., Huang, Y., and Shi, Y. (2023). Analysis of electromagnetic response of cells and lipid membranes using a model-free method. Bioelectrochemistry 152, 108444. https:// doi.org/10.1016/j.bioelechem.2023.108444.
- 199. Milburn, J.A., and Johnson, R.P. (1966). The conduction of sap: II. Detection of vibrations produced by sap cavitation in Ricinus xylem. Planta 69, 43–52. https://doi. org/10.1007/BF00380209.
- Tang, R., and Dai, J. (2014). Spatiotemporal imaging of glutamate-induced biophotonic activities and transmission in neural circuits. PLoS One 9, e85643. https://doi.org/10. 1371/journal.pone.0085643.
- Wang, Z., Wang, N., Li, Z., Xiao, F., and Dai, J. (2016). Human high intelligence is involved in spectral redshift of biophotonic activities in the brain. Proc. Natl. Acad. Sci. USA 113, 8753–8758. https://doi.org/10. 1073/pnas.1604855113.
- 202. Barnes, F. (2022). A possible model for weak magnetic field effects based on nuclear magnetic moments. Bioelectromagnetics 2022 Conference.
- 203. Liboff, A.R., Smith, S.D., and McLeod, B.R. (1987). Experimental evidence for ion cyclotron resonance mediation of membrane transport. In Mechanistic Approaches to Interactions of Electric and Electromagnetic Fields with Living Systems, M. Blank and E.M. Findl, eds. (Springer Science + Business Media).
- 204. Sandweiss, J. (1990). On the cyclotron resonance model of ion transport.

 Bioelectromagn 11, 203–205. https://doi.org/10.1002/bem.2250110210.
- 205. Pazur, A., Rassadina, V., Dandler, J., and Zoller, J. (2006). Growth of etiolated barley plants in weak static and 50 Hz electromagnetic fields tuned to calcium ion cyclotron resonance. Biomagn. Res. Technol. 4, 1. https://doi.org/10.1186/1477-044X-4-1.

- Komaki, A., Khalili, A., Salehi, I., Shahidi, S., and Sarihi, A. (2014). Effects of exposure to an extremely low frequency electromagnetic field on hippocampal longterm potentiation in rat. Brain Res. 1564, 1–8. https://doi.org/10.1016/j.brainres.2014. 03.041.
- Grissom, C.B. (1995). Magnetic field effects in biology: A survey of possible mechanisms with emphasis on radical-pair recombination. Chem. Rev. 95, 3–24. https://doi.org/10.1021/cr00033a001.
 Ritz, T., Adem, S., and Schulten, K. (2000). A
- Ritz, T., Adem, S., and Schulten, K. (2000). A model for photoreceptor-based magnetoreception in birds. Biophys. J. 78, 707–718.
- Barnes, F.S., and Greenebaum, B. (2015).
 The effects of weak magnetic fields on radical pairs. Bioelectromagn 36, 45–54. https://doi.org/10.1002/bem.21883.
- Clites, B.L., and Pierce, J.T. (2017). Identifying cellular and molecular mechanisms for magnetosensation. Ann Rev Neurosci 40, 231–250. https://doi.org/10. 1146/annurev-neuro-072116-031312.
- Steiner, U.E., and Ulrich, T. (1989). Magnetic field effects in chemical kinetics and related phenomena. Chem. Rev. 89, 51–147. https:// doi.org/10.1021/cr00091a003.
- doi.org/10.1021/cr00091a003.
 212. Hore, P.J., and Mouritsen, H. (2016). The radical-pair mechanism of magnetoreception. Annu. Rev. Biophys. 45, 299–344. https://doi.org/10.1146/annurev-biophys-032116-094545.
- Grundler, W., Kaiser, F., Keilmann, F., and Walleczek, J. (1992). Mechanisms of Electromagnetic Interaction with Cellular Systems. Naturwissenschaften 79, 551–559
- Johnsen, S., and Lohmann, K.J. (2005). The physics and neurobiology of magnetoreception. Nat. Rev. Neurosci. 6, 703–712. https://doi.org/10.1038/nrn1745.
 Murphy, J.C., Kaden, D.A., Warren, J., and
- Murphy, J.C., Kaden, D.A., Warren, J., and Sivak, A. (1993). Power frequency electric and magnetic fields: A review of genetic toxicology. Mutat. Res. 296, 221–240.
- Massey, V. (1994). Activation of molecular oxygen by flavins and flavoproteins. J. Biol. Chem. 269, 22459–22462. https://doi.org/ 10.1016/s0021-9258(17)31664-2.
- Türker, Y., Nazıroğlu, M., Gümral, N., Çelik, Ö., Saygın, M., Cömlekçi, S., and Flores-Arce, M. (2011). Selenium and I-carnitine reduce oxidative stress in the heart of rat induced by 2.45-GHz radiation from wireless devices. Biol. Trace Elem. Res. 143, 1640–1650. https://doi.org/10.1007/s12011-011-8994-0.
- Naziroğlu, M., Tokat, S., and Demirci, S. (2012). Role of melatonin on electromagnetic radiation-induced oxidative stress and Ca2+ signaling molecular pathways in breast cancer.
 J. Recept. Signal Transduct. Res. 32, 290–297. https://doi.org/10.3109/10799893. 2012 737002
- Okada, T., Ernst, O.P., Palczewski, K., and Hofmann, K.P. (2001). Activation of rhodopsin:new insights from structural and biochemical studies. Trends Biochem. Sci. 26, 318–324. https://doi.org/10.1016/S0968-0004(01)01799-6.
- Solov'yov, I.A., Chandler, D.E., and Schulten, K. (2007). Magnetic field effects in Arabidopsis thaliana cryptochrome-1. Biophys. J. 92, 2711–2726. https://doi.org/ 10.1529/biophysj.106.097139.
- 221. Buchachenko, A. (2016). Why magnetic and electromagnetic effects in biology are

- irreproducible and contradictory? Bioelectromagn 37, 1–13. https://doi.org/ 10.1002/bem.21947
- 222. Lee, A.A., Lau, J.C.S., Hogben, H.J., Biskup, T., Kattnig, D.R., and Hore, P.J. (2014). Alternative radical pairs for cryptochrome-based magnetoreception. J. R. Soc. Interface 11, 20131063. https://doi.org/10.1098/rsif.2013.1063.
- 223. Qin, S., Yin, H., Yang, C., Dou, Y., Liu, Z., Zhang, P., Yu, H., Huang, Y., Feng, J., Hao, J., et al. (2016). A magnetic protein biocompass. Nat. Mater. *15*, 217–226. https://doi.org/10.1038/nmat4484.
- 224. Johnson, C.C., and Guy, A.W. (1972). Nonionizing electromagnetic wave effects in biological materials and systems. Proc. IEEE 60, 692–718.
- 225. Foster, K.R., and Repacholi, M.H. (2004). Biological effects of radiofrequency fields: Does modulation matter. Radiat. Res. 162, 219–225
- 226. Juutilainen, J., and de Seze, R. (1998). Biological effects of amplitude-modulated radiofrequency radiation. Scand. J. Work. Environ. Health 24, 245–254.
- 227. Grossman, N., Bono, D., Dedic, N., Kodandaramaiah, S.B., Rudenko, A., Suk, H.-J., Cassara, A.M., Neufeld, E., Kuster, N., Tsai, L.-H., et al. (2017). Noninvasive deep

- brain stimulation via temporally interfering electric fields. Cell 169, 1029–1041.e16. https://doi.org/10.1016/j.cell.2017.05.024.
- 228. Lu, S.-T., and Lorge, J.o.d. (2000). Biological effects of high peak power radio frequency pulses. In Adv Electromagn Fields living Syst, pp. 207–264.
- 229. Global System Mobile, GSM, 2G (2018). In Introduction to Mobile Network Engineering, pp. 59–102. https://doi.org/10. 1002/9781119484196.ch7.
- Buehrer, R.M. (2006). Code Division Multiple Access (CDMA). https://doi.org/10.1007/ 978-3-031-01673-8.
- 231. Chafai, D.E., Sulimenko, V., Havelka, D., Kubínová, L., Dráber, P., and Cifra, M. (2019). Reversible and irreversible modulation of tubulin self-assembly by intense nanosecond pulsed electric fields. Adv. Mater. 31, e1903636. https://doi.org/10. 1002/adma.201903636.
- 232. Vincenzi, F., Ravani, A., Pasquini, S., Merighi, S., Gessi, S., Setti, S., Cadossi, R., Borea, P.A., and Varani, K. (2017). Pulsed electromagnetic field exposure reduces hypoxia and inflammation damage in neuron-like and microglial cells. J. Cell. Physiol. 232, 1200–1208. https://doi.org/10.1002/jcp.25606.

- 233. Liu, Y.Q., Gao, Y.B., Dong, J., Yao, B.W., Zhao, L., and Peng, R.Y. (2015). Pathological changes in the sinoatrial node tissues of rats caused by pulsed microwave exposure. Biomed. Environ. Sci. 28, 72–75. https://doi. org/10.3967/bes2015.007.
- 234. Sage, C., and Burgio, E. (2018). Electromagnetic fields, pulsed radiofrequency radiation, and epigenetics: How wireless technologies may affect childhood development. Child Dev. 89, 129–136. https://doi.org/10.1111/cdev. 12824.
- Al-Bayyari, N. (2017). The effect of cell phone usage on semen quality and fertility among Jordanian males. Middle East Fertil. Soc. J. 22, 178–182. https://doi.org/10.1016/j.mefs. 2017.03.006.
- 236. L Pall, M. (2016). Electromagnetic fields act similarly in plants as in animals: Probable activation of calcium channels via their voltage sensor. Curr. Chem. Biol. 10, 74–82. https://doi.org/10.2174/ 22127968106661604191604.
- 237. Zoltowski, B.D., Vaidya, A.T., Top, D., Widom, J., Young, M.W., and Crane, B.R. (2011). Structure of full-length Drosophila cryptochrome. Nature 480, 396–399. https://doi.org/10.1038/nature10618.