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ABSTRACT: Molybdenum alkylidyne complexes of the “canopy catalyst” series define new standards in the field of alkyne
metathesis. The tripodal ligand framework lowers the symmetry of the metallacyclobutadiene complex formed by [2 + 2]
cycloaddition with the substrate and imposes constraints onto the productive [2 + 2] cycloreversion; pseudorotation corrects this
handicap and makes catalytic turnover possible. A combined spectroscopic, crystallographic, and computational study provides
insights into this unorthodox mechanism and uncovers the role that metallatetrahedrane complexes play in certain cases.

The discovery that molybdenum alkylidyne units synergize
particularly well with triarylsilanolate ligands marked an

important milestone in the development of alkyne metathesis in
general.1−6 Catalysts such as 1 and the derived bench-stable
phenanthroline adducts combine high activity and unrivaled
functional group tolerance with a previously unknown user-
friendliness (Scheme 1).7−9 A new generation of “canopy
catalysts” of type 2 distinguished by a tripodal silanolate ligand
framework shows an even better application profile.10−13

In consideration thereof, it was perplexing to find that
addition of excess 3-hexyne to a solution of 2a (R = 4-
MeOC6H4-) in [D8]-toluene afforded the metallatetrahedrane 4
as the only detectable and isolable intermediate (Scheme
2).10−12 Even though its formation is reversible, as shown by
exchange NMR spectroscopy (EXSY), the generally accepted
mechanism of alkyne metathesis does not involve an
intermediate of this type; rather, it is believed to proceed via
the two square-pyramidal metallacyclobutadiene tautomers A
and B formed and disassembled by [2 + 2] cycloaddition/
cycloreversion; they interconvert by passing through a trigonal-
bipyramidal form C (Scheme 1);14−19 metallatetrahedranes, in

contrast, are considered to be unreactive sinks and/or gateways
to catalyst decomposition.20−23 The exclusive formation of 4
from one of the best available catalysts is therefore non-
intuitive.10,11 A veritable conundrum accrues when the behavior
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Scheme 1. Overview

Scheme 2. Distinct Behavior of Different Alkylidyne
Complexes
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of the tungsten analogue 3 (R = 2,6-Me2C6H3-) is also taken into
consideration, which furnished the canonical metallacyclobuta-
diene 5 on reaction with 3-hexyne. It took 1 week for the latter to
transform into 6 by what represents a single “turnover”; complex
3 is hence catalytically incompetent.24 The question arises
whether these perplexing observations challenge the consensus
mechanism of alkyne metathesis or whether they can be
consolidated with it. The answer is deemed critically important
for further catalyst development.
In the first foray, we checked the behavior of the parent

catalyst 1a (R = 4-MeOC6H4-) endowed with monodentate
silanolates, which had so far been tacitly assumed to follow the
canonical mechanistic course. Indeed, treatment of a solution of
1a with 3-hexyne (5 equiv) in [D8]-toluene gave molybdena-
cyclobutadiene 7 exclusively (Scheme 2). Although 1a and 2a
are both excellent catalysts and both carry silanolate ligands,
they obviously afford distinct types of intermediates on reaction
with the substrate. Complex 7 is C2v symmetric in solution since
only one signal is observed for the two Cα-atoms (δC = 248.8
ppm); even at−90 °C, the two tautomers of the metallacycle are
not frozen out, which indicates an extremely low barrier for
interconversion. EXSY-NMR data revealed the dynamic
exchange of the ethyl substituents at the Cα- and Cβ-atoms
with free 3-hexyne, thus implying that the product-forming
(“productive”) and the substrate-regenerating (“unproductive”)
[2 + 2] cycloreversions are equally likely.25

Highly sensitive steel-blue crystals suitable for X-ray
diffraction could be grown from a solution of 7 in Et2O at
−85 °C. This result is deemed rewarding since pertinent
information about the structure of molybdenacyclobutadienes
in the solid state is very limited.19,26−28

The Mo(+6) center of 7 adopts a coordination geometry in
between trigonal-bipyramidal and square-pyramidal (τ5 = 0.37,
Figure 1).29 The bond lengths are uneven: whereas the Mo1−

C2 bond is only slightly shorter than the Mo1−C3 bond, the
difference is more pronounced for C1−C2 versus C1−C3
(Figure 2).30,31 It is remarkable that the metallacyclobutadiene
forms A/B surface in the X-ray structure of 7 even though it is
fairly close to the trigonal-bipyramidal rendition C where the
tautomers converge (Scheme 1);18 this peculiar situation may
explain why their interconversion in solution is fast even at −90
°C as manifested in the spectra of C2v symmetry.32,33

The comparison of 7 with the structure of tungstenacyclo-
butadiene 524 derived from the catalytically incompetent
tungsten alkylidyne 3 is also informative, as it allows the effect
of the tripodal “canopy” ligand architecture to be assessed

(Figure 2). In contrast to 7, complex 5 is closer to square-
pyramidal than trigonal-bipyramidal (τ5 ≈ 0.14).29 The
metallacyclic core is much more distorted in all bond
distances;24,34 this distortion persists in solution in that the
Cα/Cα′-atoms of 5 are inequivalent as manifested in discrete
shifts and notably different 1JC,W coupling constants indicative of
substantial “double” bond character for the short W−Cα bond
but “single” bond character for the longer W−Cα′.

24 The fact
that a single tautomer of 5 is detected in solution explains why
EXSY-NMR experiments show only the dynamic exchange
between the ethyl substituents at Cα′ and Cβ with free 3-hexyne
by “unproductive” [2 + 2] cycloreversion that regenerates the
starting materials. The obviously much higher barrier of the
“productive” cycloreversion is in line with the overly long
reaction time of 1 week for 5 to transform into the all-ethyl-
substituted tungstenacyclobutadiene 6.24 The core of 6must be
similarly distorted since the Cα/Cα′-atoms and their ethyl
substituents are inequivalent. However, mutual interconversion
of these positions is observed on the NMR time scale: for
favorable circumstances, the activation parameters could be
deduced.35

As mentioned above, the reaction of the molybdenum
alkylidyne 2 with 3-hexyne gave metallatetrahedrane 4
exclusively. A more systematic study, however, showed that
the outcome is substrate-dependent: thus, treatment of 2a with
2-butyne gave a mixture of metallatetrahedrane 8 and the
corresponding metallacyclobutadiene 9 (Scheme 3).36 Only for
the latter, a dynamic exchange with 2-butyne by [2 + 2]
cycloreversion was observed by EXSY-NMR, whereas the
metallatetrahedrane 8 is static at −40 °C. The mixture had to
be warmed to 0 °C for 8 and 9 to mutually interconvert and for 8
to commence exchanging with 2-butyne (see the SI).
The shifts of the methyl groups at the Cα and Cα′ positions of

9 are strikingly different, which implies a complex of low
symmetry: on the NMR time scale, only one of these methyl
substituents resides in the anisotropy cone of a neighboring
phenyl ring.39,40 Equally informative are the EXSY data, which
show two different dynamic processes: First, the methyl groups
at Cα′/Cβ exchange with 2-butyne (11) much more readily than
that at Cα (Figure 3). This finding proves that the
“unproductive” and the “productive” [2 + 2] cycloreversion
both proceed even at −40 °C but are not equally facile.25

Second, interconversion of the methyl substituents at the Cα/
Cα′ positions is observed: this effect, however, is unlikely to be
caused by formation of the second canonical tautomer: the
tripodal ligand scaffold renders the second canonical tautomer
(Scheme 1) inaccessible on steric grounds. Retention of the
geometry of 9 but shuffling of the π-bonds with formation of a
hypothetical tautomer 10 is equally excluded;41 even if 10 were

Figure 1. Structure of complex 7 in the solid state; H atoms and the
solvent are omitted for clarity.

Figure 2.Comparison of the metallacyclobutadiene cores of complexes
7 and 5.
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reached, release of the product would be strongly disfavored by
the clash of the incipient alkylidyne with the ligand framework
(Scheme 3). DFT calculations confirmed the notion of two
massively different barriers for the disintegration of the
metallacyclobutadiene (TS1/TS1′, see below). It is therefore
safe to conclude that canopy catalysts do not operate by the
generally accepted mechanism because the second required
canonical metallacyclobutadiene tautomer is beyond reach, and
its productive deconvolution is disfavored. Yet, complexes of
type 2 are very powerful catalysts; therefore, some process must

be operative that corrects this situation and renders turnover
facile.
DFT calculations were used to probe this missing piece of the

mechanism.42,43 The minimum and transition state geometries
as well as the obtained minimum energy pathways for the
reaction of 2c (R =Me) with 2-butyne and the interplay of 8 and
9 are available in the SI as well as Cartesian coordinates and
video files A and B. Figure 4 summarizes the essentials: focusing

on the black data first, all barriers along the path are thermally
accessible, including the interconversion of 9 and 8. Moreover,
the Gibbs free energy of the dissociated reactants is similar to
that of these intermediates. Therefore, a mixture of both
intermediates should be formed in the presence of excess alkyne,
whereas the starting alkylidyne complex gets depleted. This
conclusion is in excellent agreement with experiment (NMR)
and hence gives confidence in the accuracy of the chosen DFT
level of theory.
Complexes 9 to 8were computationally found to interconvert

via an intermediate 12, which is higher in energy and hence not
observed by NMR. A priori, 12 shows the proper π-bonding for
productive cycloreversion. However, the metallacyclobutadiene
ring is no longer flat as in 9, but the three Mo−C distances are
not yet equal as in 8 (Figure 5); it adopts a trigonal-bipyramidal

geometry with two oxygen atoms and the former Cα-atom
occupying equatorial positions, whereas the third oxygen and
the former Cα′ are axially disposed. Related metallacyclobuta-
dienes are known in the literature;19 the arguably most relevant
one is a rhenacycle, in which Cβ is tilted out of the M−Cα−Cα′
plane by no less than 34°; importantly, however, this complex
does not undergo [2 + 2] cycloreversion and is hence
catalytically incompetent.44,45

Scheme 3. Formation and Fate of Intermediates Carrying a
Tripodal Ligand Framework

Figure 3.Dynamic exchange processes of 9manifested in cross peaks in
the EASY-ROESY spectrum ([D8]-toluene, −40 °C, spin-lock time:
200 ms).37,38

Figure 4. Thermochemistry of the reaction of 2c with 2-butyne.

Figure 5.Computed structure of 12; lateral phenyl groups andH-atoms
are omitted for clarity.
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Intermediate 12 is not static but succumbs to Berry
pseudorotation46 about the adjacent M−O bond,47 which
exchanges the axial and equatorial Cα positions via TSBR; 12/
12′, in turn, connect to two distinct metallacyclobutadienes 9/
9′, in which the Cα/Cα′ atoms and their substituents R1/R3 are
mutually exchanged, whereas Cβ remains in place (Scheme
4).48,49

Because of the lost C2v symmetry, only the “unproductive”
cycloreversion is facile for metallacyclobutadiene 9 via the low-
lying TS1.50,51 “Productive” cleavage would either require
isomer 10, which is not within reach, or the highly distorted
metallacycle 12, for which DFT predicts an unfavorably high
barrier (TS1′) (Figure 4). The fact that 9 is, after all, not a dead
end but a truly competent catalytic intermediate is solely due to
its dynamic behavior: the pseudorotation that interconverts 9/
9′ via 12/12′ entails exchange of the R1 and R3 substituents on one
and the same tautomeric form of the π-system (Scheme 5). The
small barrier TSBR can be overcome at (or even below) room
temperature, where the canopy catalysts are usually fully
operative. Hence, we conclude that catalysts of type 2 operate

by an unprecedentedmechanism that involves a single tautomeric
form of the metallacyclobutadiene which appears in two dif ferently
substituted formats (9/9′). Pseudorotation is the quintessential
link in between them, without which product formation and
catalyst turnover would not take place. The need to pass through
this higher-lying intermediate and the accumulation of 8 off the
actual cycle (see below) might be construed as an inherent
kinetic disadvantage: indeed, 2 reacts more slowly than 1.
Importantly, however, canopy catalysts comprising smaller
lateral R2Si− groups allow this handicap to be counter-
balanced.10

Finally, one needs to consider that the interconversion of 9
and 9′ could pass through 8. Yet, several pieces of evidence
speak against this assumption. As discussed above, EXSY-NMR
experiments showed the exchange of 9with 2-butyne at−40 °C,
whereas 8 was static; productive and unproductive [2 + 2]
cycloreversions are obviously ongoing, but the metallatetrahe-
drane is not engaged. The new mechanism allows this
observation to be readily explained, since the barrier TSBR for
pseudorotation is lower than TS3 connecting 9 and 8.
Moreover, if a metallatetrahedrane were to connect 9/9′, all

three C atoms would eventually get scrambled. However, the
EXSY-NMR experiments showed only exchange of Cα/Cα′ but
no exchange of Cα/Cβ. For the tungstenacyclobutadiene 6,
which exhibits an analogous dynamic behavior, such a process
can also be firmly excluded: only the NMR signals of the Cα/R

1

and Cα′/R
3 are broadened, whereas the resonances of Cβ/R

2

remain sharp.
Taken together, these data suggest that the metallatetrahe-

drane is off-cycle (Scheme 5). The question as to whether this
conclusion applies to any substrate/catalyst combination can
currently not be answered. In the present case, however, it is
clear that intermediate 12 brokers the interconversion of the
metallacyclobutadiene isomers 9/9′ and connects themwith the
metallatetrahedrane 8; since TS2 and TS3 are of similar
magnitude, ametallatetrahedrane can−butmust not−be present
in high concentration.
In summary, a combined spectroscopic/theoretical inves-

tigation advocates the notion that the performant canopy
catalysts for alkyne metathesis operate by a mechanism that is
notably different from that of earlier catalyst generations. The
tripodal ligand framework lifts the degeneracy of the [2 + 2]
cycloreversions and makes the classical pathway unattainable:
pseudorotation, however, clears this handicap. This conclusion
needs to be closely considered in future catalyst development
exercises.
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